Lecture 10: Fundamental Theorem of Markov Chains, Page Rank

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

May 27, 2024

Overview

- Main Tools
- Linear Algebra Background
- Perron-Frobenius
- Main Applications
- Fundamental Theorem of Markov Chains
- Page Rank
- Acknowledgements

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
- The spectral radius of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
- The spectral radius of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$
\rho(A)=\lim _{t \rightarrow \infty}\left\|A^{t}\right\|_{F}^{1 / t}
$$

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
- The spectral radius of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$
\rho(A)=\lim _{t \rightarrow \infty}\left\|A^{t}\right\|_{F}^{1 / t}
$$

- Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A-\lambda l$ is k.

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
- The spectral radius of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$
\rho(A)=\lim _{t \rightarrow \infty}\left\|A^{t}\right\|_{F}^{1 / t}
$$

- Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A-\lambda l$ is k.
- Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity k if $(t-\lambda)^{k}$ is the highest power of $t-\lambda \operatorname{dividing} \operatorname{det}(t I-A)$

Eigenvalues, Eigenvectors and Spectral Radius

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is a vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
- The spectral radius of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$
\rho(A)=\lim _{t \rightarrow \infty}\left\|A^{t}\right\|_{F}^{1 / t}
$$

- Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A-\lambda l$ is k.
- Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity k if $(t-\lambda)^{k}$ is the highest power of $t-\lambda \operatorname{dividing} \operatorname{det}(t I-A)$
- Example:

Positivity Lemma

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^{n}$ are distinct vectors such that $u \geq v$, then $A u>A v$. Moreover, there exists $\varepsilon>0$ such that $A u>(1+\varepsilon) A v$.

Positivity Lemma

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^{n}$ are distinct vectors such that $u \geq v$, then $A u>A v$. Moreover, there exists $\varepsilon>0$ such that $A u>(1+\varepsilon) A v$.

- Note that

$$
(A(u-v))_{i}=\sum_{j} A_{i j}\left(u_{j}-v_{j}\right) \geq\left(\min _{i, j} A_{i j}\right) \cdot \sum_{j}\left(u_{j}-v_{j}\right)
$$

Positivity Lemma

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^{n}$ are distinct vectors such that $u \geq v$, then $A u>A v$. Moreover, there exists $\varepsilon>0$ such that $A u>(1+\varepsilon) A v$.

- Note that

$$
(A(u-v))_{i}=\sum_{j} A_{i j}\left(u_{j}-v_{j}\right) \geq\left(\min _{i, j} A_{i j}\right) \cdot \sum_{j}\left(u_{j}-v_{j}\right)
$$

- Since $u_{j} \geq v_{j}$ for all j and u, v distinct implies that there is one index k such that $u_{k}>v_{k}$, we have

$$
\sum_{j}\left(u_{j}-v_{j}\right) \geq u_{k}-v_{k}>0
$$

Positivity Lemma

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^{n}$ are distinct vectors such that $u \geq v$, then $A u>A v$. Moreover, there exists $\varepsilon>0$ such that $A u>(1+\varepsilon) A v$.

- Note that

$$
(A(u-v))_{i}=\sum_{j} A_{i j}\left(u_{j}-v_{j}\right) \geq\left(\min _{i, j} A_{i j}\right) \cdot \sum_{j}\left(u_{j}-v_{j}\right)
$$

- Since $u_{j} \geq v_{j}$ for all j and u, v distinct implies that there is one index k such that $u_{k}>v_{k}$, we have

$$
\sum_{j}\left(u_{j}-v_{j}\right) \geq u_{k}-v_{k}>0
$$

- the moreover part just follows from taking small enough ε.
- Main Tools
- Linear Algebra Background
- Perron-Frobenius
- Main Applications
- Fundamental Theorem of Markov Chains
- Page Rank
- Acknowledgements

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

- By the definition of $\rho(A)$, there is an eigenvalue $\lambda \in \mathbb{C}$ such that $|\lambda|=\rho(A)$. Let v the a corresponding eigenvector.

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

- By the definition of $\rho(A)$, there is an eigenvalue $\lambda \in \mathbb{C}$ such that $|\lambda|=\rho(A)$. Let v the a corresponding eigenvector.
- Let u be the vector defined by $u_{i}=\left|v_{i}\right|$. Then, we have

$$
(A u)_{i}=\sum_{j} A_{i j} u_{j} \geq\left|\sum_{j} A_{i j} v_{j}\right|=\left|\lambda v_{i}\right|=\rho(A) \cdot u_{i}
$$

so $A u \geq \rho(A) u$.

Perron's Theorem - item 1

- We proved $A u \geq \rho(A) u$.
- If inequality strict, then we have

$$
A^{2} u>\rho(A) \cdot A u
$$

and there is some positive $\varepsilon>0$ such that

$$
A^{2} u \geq(1+\varepsilon) \rho(A) A u
$$

Perron's Theorem - item 1

- We proved $A u \geq \rho(A) u$.
- If inequality strict, then we have

$$
A^{2} u>\rho(A) \cdot A u
$$

and there is some positive $\varepsilon>0$ such that

$$
A^{2} u \geq(1+\varepsilon) \rho(A) A u
$$

- By induction, we would have

$$
A^{n+1} u \geq(1+\varepsilon)^{n} \cdot \rho(A)^{n} \cdot A u
$$

Perron's Theorem - item 1

- We proved $A u \geq \rho(A) u$.
- If inequality strict, then we have

$$
A^{2} u>\rho(A) \cdot A u
$$

and there is some positive $\varepsilon>0$ such that

$$
A^{2} u \geq(1+\varepsilon) \rho(A) A u
$$

- By induction, we would have

$$
A^{n+1} u \geq(1+\varepsilon)^{n} \cdot \rho(A)^{n} \cdot A u
$$

- By Gelfand's formula we would have

$$
\rho(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|_{F}^{1 / n} \geq(1+\varepsilon) \rho(A)
$$

which is a contradiction. So equality must hold.

Perron's theorem - items 1 and 2

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.

Perron's theorem - items 1 and 2

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.
- Note that $u>0$ since $\rho(A) u_{i}=(A u)_{i}>0$

Perron's theorem - items 1 and 2

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.
- Note that $u>0$ since $\rho(A) u_{i}=(A u)_{i}>0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu|=\rho(A)$ is $\rho(A)$

Perron's theorem - items 1 and 2

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.
- Note that $u>0$ since $\rho(A) u_{i}=(A u)_{i}>0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu|=\rho(A)$ is $\rho(A)$
- If we had another eigenvalue $\lambda \neq \rho(A)$ in the circumference $|\mu|=\rho(A)$, where z is the eigenvector corresponding to λ, by the previous slide, we know that w defined as $w_{i}=\left|z_{i}\right|$ satisfies

$$
A w=\rho(A) w \Leftrightarrow \sum_{j} A_{i j} w_{j}=\rho(A) \cdot\left|z_{i}\right|=\left|\lambda z_{i}\right|=\left|\sum_{j} A_{i j} z_{j}\right|
$$

for every $1 \leq i \leq n$

Perron's theorem - items 1 and 2

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.
- Note that $u>0$ since $\rho(A) u_{i}=(A u)_{i}>0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu|=\rho(A)$ is $\rho(A)$
- If we had another eigenvalue $\lambda \neq \rho(A)$ in the circumference $|\mu|=\rho(A)$, where z is the eigenvector corresponding to λ, by the previous slide, we know that w defined as $w_{i}=\left|z_{i}\right|$ satisfies

$$
A w=\rho(A) w \Leftrightarrow \sum_{j} A_{i j} w_{j}=\rho(A) \cdot\left|z_{i}\right|=\left|\lambda z_{i}\right|=\left|\sum_{j} A_{i j} z_{j}\right|
$$

for every $1 \leq i \leq n$

- Lemma: if the conditions above hold, then there is $\alpha \in \mathbb{C}$ nonzero such that $\alpha z \geq 0$

Proof by squaring both sides and using complex conjugates.

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu|=\rho(A)$. This concludes item 2.

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu|=\rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1 .
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu|=\rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1 .
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta>0$ be such that $u-\beta v \geq 0$ and at least one entry is zero.

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu|=\rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1 .
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta>0$ be such that $u-\beta v \geq 0$ and at least one entry is zero.
- $u-\beta v \neq 0$ since the vectors are linearly independent

Perron's theorem - items 2 and 3

- But if $\alpha z \geq 0$ and a nonzero vector, we have

$$
\lambda(\alpha z)=\alpha \cdot(\lambda z)=\alpha(A z)=A(\alpha z) \geq 0
$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu|=\rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1 .
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta>0$ be such that $u-\beta v \geq 0$ and at least one entry is zero.
- $u-\beta v \neq 0$ since the vectors are linearly independent
- But for each $1 \leq i \leq n$

$$
\rho(A) \cdot(u-\beta v)_{i}=(A(u-\beta v))_{i}>0
$$

which contradicts our choice of β. Thus, there cannot be two linearly independent eigenvectors.

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

- By previous lecture, we saw that A being aperiodic and irreducible implies that there is $m>0$ such that A^{m} has all positive entries.

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:
(1) $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
(2) $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda|=\rho(A)$
(3) $\rho(A)$ has geometric multiplicity 1
(9) $\rho(A)$ has algebraic multiplicity 1

- By previous lecture, we saw that A being aperiodic and irreducible implies that there is $m>0$ such that A^{m} has all positive entries.
- Apply Perron's theorem to A^{m} and note that the eigenvalues of A^{m} are λ_{i}^{m}, where λ_{i} are the eigenvalues of A
- Main Tools
- Linear Algebra Background
- Perron-Frobenius
- Main Applications
- Fundamental Theorem of Markov Chains
- Page Rank
- Acknowledgements

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
T_{i, i}:=\min \left\{t \geq 1 \mid X_{t}=i, X_{0}=i\right\}
$$

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
T_{i, i}:=\min \left\{t \geq 1 \mid X_{t}=i, X_{0}=i\right\}
$$

- Expected return time: defined as $\tau_{i, i}:=\mathbb{E}\left[T_{i, i}\right]$.

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
T_{i, i}:=\min \left\{t \geq 1 \mid X_{t}=i, X_{0}=i\right\}
$$

- Expected return time: defined as $\tau_{i, i}:=\mathbb{E}\left[T_{i, i}\right]$.

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There exists a unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) The sequence of distributions $\left\{p_{t}\right\}_{t \geq 0}$ will converge to π, no matter what the initial distribution is
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}$,

$$
\lim _{t \rightarrow \infty} P^{t} \cdot p_{0}=\pi
$$

(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}$,

$$
\lim _{t \rightarrow \infty} P^{t} \cdot p_{0}=\pi
$$

(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

- The transition matrix P is non-negative, irreducible and aperiodic. So we can apply Perron-Frobenius and prove items 1 and 2.

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} P^{t} \cdot p_{0}=\pi$
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

If our underlying graph is undirected:

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} P^{t} \cdot p_{0}=\pi$
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} P^{t} \cdot p_{0}=\pi$
©

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{\tau_{i, i}}
$$

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

- Note that in this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

- P not symmetric, but similar to a symmetric matrix:

$$
D^{-1 / 2} P D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1} D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1 / 2}=P^{\prime}
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

- P not symmetric, but similar to a symmetric matrix:

$$
D^{-1 / 2} P D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1} D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1 / 2}=P^{\prime}
$$

- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=A_{G} D^{-1}
$$

- P not symmetric, but similar to a symmetric matrix:

$$
D^{-1 / 2} P D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1} D^{1 / 2}=D^{-1 / 2} A_{G} D^{-1 / 2}=P^{\prime}
$$

- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
- unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
- unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive
- This eigenvector is π !

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
- unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive
- This eigenvector is π !
- All random walks converge to π, as we wanted to show.
- Main Tools
- Linear Algebra Background
- Perron-Frobenius
- Main Applications
- Fundamental Theorem of Markov Chains
- Page Rank
- Acknowledgements

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

Page Rank - Example

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(j)}
$$

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(j)}
$$

- Pagerank values and transition probabilities satisfy same equations:

$$
p_{t+1}(j)=\sum_{i:(i, j) \in E} \frac{p_{t}(i)}{\delta^{\text {out }}(i)} \Rightarrow p_{t+1}=P \cdot p_{t}
$$

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(j)}
$$

- Pagerank values and transition probabilities satisfy same equations:

$$
p_{t+1}(j)=\sum_{i:(i, j) \in E} \frac{p_{t}(i)}{\delta^{\text {out }}(i)} \Rightarrow p_{t+1}=P \cdot p_{t}
$$

- If graph finite, irreducible and aperiodic, fundamental theorem guarantees stationary distribnution.

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
- With probability $1-s$ go to random page (uniformly at random)

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
- With probability $1-s$ go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic \Rightarrow unique stationary distribution

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
- With probability $1-s$ go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic \Rightarrow unique stationary distribution
- This modification does not change "relative importance" of vertices

Acknowledgement

- Lecture based largely on:
- Hannah Cairns notes on Perron-Frobenius (see link in course webpage)
- Lap Chi's notes
- [Motwani \& Raghavan 2007, Chapter 6]
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf
- Also see Lap Chi's notes https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a proof of fundamental theorem of Markov chains for undirected graphs.

References I

固
Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms
Karp, R.M. and Luby, M. and Madras, N. (1989)
Monte-Carlo approximation algorithms for enumeration problems.
Journal of algorithms, 10(3), pp.429-448.
R
Jerrum, M. and Sinclair, A. and Vigoda, E. (2004)
A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries.
Journal of the ACM (JACM), 51(4), pp.671-697.

