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What is a Random Walk?
Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves uniformly to a random neighbor of the

current vertex in the graph

vt+1 ←R NG (vt)

Basic questions involving random walks:

Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

Mixing time: how long does it take for the walk to converge to the
stationary distribution?

Hitting time: starting from a vertex v0, what is expected number of
steps until it reaches a vertex vf ?

Cover time: how long does it take to reach every vertex of the graph
at least once?
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices

1 What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)

2 Starting from a, what is expected number of steps to visit all vertices?
(i.e, cover time)

3 Stationary Distribution?
4 Mixing time? (we’ll do it later)

Practice question: Compare question 2 to coupon collector problem!
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = vt | X0 = v0, . . . ,Xt−1 = vt−1] = Pr[Xt = vt | Xt−1 = vt−1]

Probability that we are at vertex vt at time t only depends on the state of
our process at time t − 1.

Process is “forgetful/memoryless”

Markov chain is characterized by this property.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (next lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras]

Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)

Sampling Problems

Gibbs sampling in statistical physics (great final project topic!)
many more places

Probability amplification without too much randomness (efficient)

random walks on expander graphs (great final project topic!)

many more
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

Vertex is a state of Markov chain

edge (i , j) corresponds to transition probability from i to j

Markov Chain irreducible if underlying directed graph is strongly
connected (i.e. there is directed path from i to j for any pair i , j ∈ V )
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.

P ∈ Rn×n transition matrix

entry Pi ,j corresponds to transition probability to i from j

pt ∈ Rn probability vector: pt(i) := Pr[being at state i at time t]

Transition given by
pt+1 = P · pt
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Properties of Markov Chains

Period of a state i is:

gcd{t ∈ N | Pt
i ,i > 0}

That is, gcd of all times t such that the probability of starting at
state i and being back at i at time t is positive

State i is aperiodic if its period is 1.

Markov Chain aperiodic if all states are aperiodic (otherwise periodic)

Bipartite graphs yield periodic Markov Chains

Lemma

For any finite, irreducible and aperiodic Markov Chain, there exists T <∞
such that

Pt
i ,j > 0 for any i , j ∈ V and t ≥ T .

See proof in reference of [Häggström, Chapter 4].
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

Pπ = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = Ptπ for any t ≥ 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.

what do you mean by converge here?

Given two distributions p, q ∈ Rn, their total variational distance is

∆TV (p, q) =
1

2

n∑
i=1

|pi − qi | =
1

2
· ∥p − q∥1

pt converges to q iff lim
t→∞

∆TV (pt , q) = 0
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Mixing Time of Markov Chains

Definition (Mixing Time)

The ε-mixing time of a Markov Chain is the smallest t such that

∆TV (pt , π) ≤ ε

regardless of the initial starting distribution p0.

For complete graph, eigenvalues λ1 = 1, λ2 = · · · = λn = −1/(n− 1),
corresponding eigenvectors v1, . . . , vn (orthonormal)
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Hitting Time

Given states i , j in a Markov chain, the hitting time from state i to
state j is defined as

Ti ,j := min{t ≥ 1 | Xt = j ,X0 = i}

We say Ti ,j =∞ if the Markov chain never visits j starting from i .

The mean hitting time τi ,j := E[Ti ,j ]

Hitting time lemma: For any finite, irreducible, aperiodic Markov
chain, and for any two states i , j (not necessarily distinct) we have
that:

Pr[Ti ,j <∞] = 1 and E[Ti ,j ] <∞
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Proof of Hitting Time Lemma
We know that we can find M <∞ such that (PM)i ,j > 0 for all i , j ,
since our Markov chain is finite, irreducible and aperiodic.

set α := mini ,j(P
M)i ,j and for every t ≥ 0 let Xt be the state of the

Markov chain at step t

Note that
Pr[Ti ,j > M] ≤ Pr[XM ̸= j ] ≤ 1− α

Moreover, we can prove:

Pr[Ti ,j > 2M] = Pr[Ti ,j > M] · Pr[Ti ,j > 2M | Ti ,j > M]

≤ (1− α) · Pr[X2M ̸= j | Ti ,j > M]

≤ (1− α)2

Iterating, we have Pr[Ti ,j > ℓM] ≤ (1− α)ℓ

Thus, we have

E[Ti ,j ] =
∑
n≥1

Pr[Ti ,j ≥ n] =
∑
n≥0

Pr[Ti ,j > n] ≤ M/α <∞
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Note that
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Fundamental Theorem of Markov Chains

The return time from state i to itself is Ti ,i

Expected return time: defined as τi ,i := E[Ti ,i ].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There exists a unique stationary distribution π, where πi > 0 for all
i ∈ [n]

2 The sequence of distributions {pt}t≥0 will converge to π, no matter
what the initial distribution is

3

πi = lim
t→∞

Pt
i ,i =

1

τi ,i
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

τi ,i

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AGD
−1

Note that in this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |
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Eigenvalues, Eigenvectors and Spectral Radius

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue
of A if there is a vector v ∈ Cn such that Av = λv .

The spectral radius of a matrix A, denoted ρ(A), is the maximum
absolute value of the eigenvalues of A

Gelfand’s formula
ρ(A) = lim

t→∞
∥At∥1/tF

Geometric multiplicity: an eigenvalue λ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue λ has
dimension k . That is, if dimension of null space of A− λI is k .

Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity
k if (t − λ)k is the highest power of t − λ dividing det(tI − A)

Example:
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Positivity Lemma

Lemma (Positivity Lemma)

If A ∈ Rn×n is a positive matrix and u, v ∈ Rn are distinct vectors such
that u ≥ v, then Au > Av. Moreover, there exists ε > 0 such that
Au > (1 + ε)Av.

Note that

(A(u − v))i =
∑
j

Aij(uj − vj) ≥ (min
i ,j

Aij) ·
∑
j

(uj − vj)

Since uj ≥ vj for all j and u, v distinct implies that there is one index
k such that uk > vk , we have∑

j

(uj − vj) ≥ uk − vk > 0

the moreover part just follows from taking small enough ε.
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A ∈ Rn×n be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circumference |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By the definition of ρ(A), there is an eigenvalue λ ∈ C such that
|λ| = ρ(A). Let v the a corresponding eigenvector.

Let u be the vector defined by ui = |vi |. Then, we have

(Au)i =
∑
j

Aijuj ≥ |
∑
j

Aijvj | = |λvi | = ρ(A) · ui

so Au ≥ ρ(A)u.
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Perron’s Theorem - item 1

We proved Au ≥ ρ(A)u.

If inequality strict, then we have

A2u > ρ(A) · Au

and there is some positive ε > 0 such that

A2u ≥ (1 + ε)ρ(A)Au

By induction, we would have

Anu ≥ (1 + ε)n · ρ(A)n · Au

By Gelfand’s formula we would have

ρ(A) = lim
n→∞

∥An∥1/nF ≥ (1 + ε)ρ(A)

which is a contradiction. So equality must hold.
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Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.

79 / 94



Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.

80 / 94



Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.

81 / 94



Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.

82 / 94



Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.

83 / 94



Perron’s theorem - items 2 and 3
But if αz ≥ 0 and a nonzero vector, we have

λ(αz) = α · (λz) = α(Az) = A(αz) ≥ 0

Thus we know that λ is a non-negative number. However, ρ(A) is the
only non-negative number in the circle |µ| = ρ(A). This concludes
item 2.

Now we are ready to prove item 3: the geometric multiplicity of ρ(A)
is 1.

Suppose not, and let u, v be two linearly independent eigenvectors for
ρ(A). We can assume that both u, v are real vectors (why?).

Let β > 0 be such that u − βv ≥ 0 and at least one entry is zero.

u − βv ̸= 0 since the vectors are linearly independent

But for each 1 ≤ i ≤ n

ρ(A) · (u − βv)i = (A(u − βv))i > 0

which contradicts our choice of β. Thus, there cannot be two linearly
independent eigenvectors.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A ∈ Rn×n is aperiodic and irreducible, then the
following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that Am has all positive entries.

Apply Perron’s theorem to Am and note that the eigenvalues of Am

are λm
i , where λi are the eigenvalues of A
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