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Overview

@ Introduction
o Why Random Walks & Markov Chains?
e Basics on Theory of Finite Markov Chains

@ Main Topics
o Stationary Distributions and Mixing Time

e Fundamental Theorem of Markov Chains

@ Linear Algebra Background
e Perron-Frobenius

@ Acknowledgements
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What is a Random Walk?
Given a graph G(V,E)
© random walk starts from a vertex vy

@ at each time step it moves uniformly to a random neighbor of the
current vertex in the graph

Ver1 <R Ng(ve)
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What is a Random Walk?
Given a graph G(V,E)
© random walk starts from a vertex vy

@ at each time step it moves uniformly to a random neighbor of the
current vertex in the graph

Ver1 <R Ng(ve)

Basic questions involving random walks:

@ Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

@ Mixing time: how long does it take for the walk to converge to the
stationary distribution?

@ Hitting time: starting from a vertex vy, what is expected number of
steps until it reaches a vertex vs?

@ Cover time: how long does it take to reach every vertex of the graph
at least once?
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Random Walk: Example
@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)
@ Starting from a, what is expected number of steps to visit all vertices?
(i-e, cover time)
© Stationary Distribution?
@ Mixing time? (we'll do it later)

@ Practice question: Compare question 2 to coupon collector problem!
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = Vi | XO = V0,... 7Xt—1 = Vt—].] = Pr[Xt = Vi ’ Xt—l = Vt—].]
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What is a Markov Chain?

Random walk is a special kind of stochastic process:
Pr[Xt = Vi | XO = V0o,. .. 7Xt—1 = Vt—].] = Pr[Xt = Vi | Xt—]. = Vt—].]

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.

16/94



What is a Markov Chain?

Random walk is a special kind of stochastic process:
Pr[Xt = Vi | XO = V0o,. .. 7Xt—1 = Vt—].] = Pr[Xt = Vi | Xt—]. = Vt—].]

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.

Process is “forgetful/ memoryless’

Markov chain is characterized by this property.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.
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problems [Karp, Luby & Madras]
o Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

24/94



Representing Finite Markov Chains
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

@ Vertex is a state of Markov chain

@ edge (/,j) corresponds to transition probability from i to j

@ Markov Chain irreducible if underlying directed graph is strongly
connected (i.e. there is directed path from i to j for any pair i,j € V)
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.

@ P € R" " transition matrix
@ entry P;; corresponds to transition probability to / from j
e p; € R” probability vector: p:(i) := Pr[being at state i at time t]

30/94



Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.

@ P € R" " transition matrix
@ entry P;; corresponds to transition probability to / from j
e p; € R” probability vector: p:(i) := Pr[being at state i at time t]
@ Transition given by
pt+1 =P pt
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Properties of Markov Chains
@ Period of a state i is:
ged{t € N | P, > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive
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Properties of Markov Chains

@ Period of a state i is:
ged{t € N | P,-f,- > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive

o State / is aperiodic if its period is 1.
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Properties of Markov Chains

@ Period of a state i is:
ged{t € N | P,-f,- > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive
o State / is aperiodic if its period is 1.
e Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
e Bipartite graphs yield periodic Markov Chains

For any finite, irreducible and aperiodic Markov Chain, there exists T < co
such that

P{; >0 foranyi,jeVandt>T.

See proof in reference of [Haggstrom, Chapter 4].
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Introduction

Main Topics
o Stationary Distributions and Mixing Time

Linear Algebra Background

Acknowledgements
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

Pr =m.
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7w = Ptr for any t > 0.
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Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

Pr =m.

o Informally, 7 is an “equilibrium/fixed point” state, as we have
7w = Ptr forany t > 0.
@ Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?
@ Given two distributions p, g € R”, their total variational distance is

Arv(p.q 2Z|P:—q:|— [P —allx
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

Pr =m.

Informally, 7 is an “equilibrium /fixed point” state, as we have
7w = Ptr forany t > 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?
Given two distributions p, g € R", their total variational distance is

Arv(p.q 2Z|P:—q:|— [P —allx

e p; converges to q iff lim Aty (pe,q) =0
t—o0
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Mixing Time of Markov Chains
Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

Ary(ps,m)<e

regardless of the initial starting distribution pg.
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Mixing Time of Markov Chains
Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

Ary(ps,m)<e

regardless of the initial starting distribution pg.

@ For complete graph, eigenvalues \y =1, Ay =--- =\, = —-1/(n—1),
corresponding eigenvectors v, ..., v, (orthonormal)
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Introduction

Main Topics
e Fundamental Theorem of Markov Chains
Linear Algebra Background

Acknowledgements

46 /94



Hitting Time

@ Given states /,j in a Markov chain, the hitting time from state i to
state J is defined as

T,'J = min{t >1 | Xe=j, X0 = i}

We say T;; = oo if the Markov chain never visits j starting from /.
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Hitting Time

@ Given states /,j in a Markov chain, the hitting time from state i to
state J is defined as

T,'J ::min{t21|Xt :j,X():i}

We say T;; = oo if the Markov chain never visits j starting from /.

e The mean hitting time 7;j := E[T; j]
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Hitting Time

@ Given states /,j in a Markov chain, the hitting time from state i to
state J is defined as

T,'J = min{t >1 | Xe=j, X0 = i}

We say T;; = oo if the Markov chain never visits j starting from /.
e The mean hitting time 7;j := E[T; j]
@ Hitting time lemma: For any finite, irreducible, aperiodic Markov

chain, and for any two states 7, j (not necessarily distinct) we have
that:

Pr[Tij <oc]=1 and E[T;j] < oo
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM); ; > 0 for all i},
since our Markov chain is finite, irreducible and aperiodic.
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM); ; > 0 for all i},
since our Markov chain is finite, irreducible and aperiodic.

@ set o = min,-J(PM),-J and for every t > 0 let X; be the state of the
Markov chain at step t
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Proof of Hitting Time Lemma
@ We know that we can find M < oo such that (PM); ; > 0 for all i},
since our Markov chain is finite, irreducible and aperiodic.

@ set o = min,-J(PM),-J and for every t > 0 let X; be the state of the
Markov chain at step t

@ Note that
Pr[T;J> M] < Pr[XM 75]] <1l—-«o
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Proof of Hitting Time Lemma
@ We know that we can find M < oo such that (PM); ; > 0 for all i},
since our Markov chain is finite, irreducible and aperiodic.

@ set o = min,-J(PM),-J and for every t > 0 let X; be the state of the
Markov chain at step t

o Note that
Pr(Ti; > M] <PriXy #j] <1-«a
@ Moreover, we can prove:
Pr[Tij > 2M] = Pr[T;j > M] - Pr[T;; > 2M | T;; > M]
<(l-a)-PrXom #j| Tij > M]
< (1-a)?
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM); ; > 0 for all i},
since our Markov chain is finite, irreducible and aperiodic.

@ set o = min,-J(PM),-J and for every t > 0 let X; be the state of the
Markov chain at step t

o Note that
Pr(Ti; > M] <PriXy #j] <1-«a
@ Moreover, we can prove:
Pr[Tij > 2M] = Pr[T;j > M] - Pr[T;; > 2M | T;; > M]
<(l-a)-PrXom #j| Tij > M]
< (1-a)?

o lterating, we have Pr[T;; > ¢(M] < (1 — )"
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Proof of Hitting Time Lemma

o lterating, we have Pr[T;; > ¢(M] < (1 — )"
@ Thus, we have

BTl = 3 PriTiy = = 3 Pr{Ti > n] < Mo < o0
n>1 n>0
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Fundamental Theorem of Markov Chains

@ The return time from state i to itself is T; ;

o Expected return time: defined as 7;; := E[T; j].
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Fundamental Theorem of Markov Chains

@ The return time from state i to itself is T; ;

o Expected return time: defined as 7;; := E[T; j].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

© There exists a unique stationary distribution 7, where w; > 0 for all
i € [n]

@ The sequence of distributions {pt}+>0 will converge to m, no matter
what the initial distribution is

o
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]

© For every distribution pg € RZ,
o

lim po- Pt =
t—o0

: 1
7i= lim Pf, = —
t—o00 ? Tii

b

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim po- Pt =
t—o0

) 1
m; = lim P,-t,- = —
t—o00 ?

Tii

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:

P=AsD™!
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim po- Pt =
t—o0

) 1
m; = lim P,-t,- = —
t—o00 ?

Tii

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:

P=AcD!
@ Note that in this case, easy to guess stationary distribution:
d.
TP = ﬁ, m = ‘E‘

60/94



@ Linear Algebra Background
e Perron-Frobenius
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = \v.
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.
@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A
o Gelfand’s formula
p(A) = lim ||ATIF*

t—o0
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.

o Algebraic multiplicity: an eigenvalue X of A has algebraic multiplicity
k if (t — A\)X is the highest power of t — X dividing det(t/ — A)

66/94



Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.

o Algebraic multiplicity: an eigenvalue X of A has algebraic multiplicity
k if (t — A\)X is the highest power of t — X dividing det(t/ — A)

o Example:
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that

(Au—=v))i = Ay — mlnAU) Z

Jj
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that
J

(A= v))i = 32 Al = ) = (min Ay) - 3 (u

@ Since uj > v;j for all j and u, v distinct implies that there is one index
k such that uy > vi, we have

Z(UJ >uk—vk>0
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that

(A= v))i = 32 Al = ) = (min Ay) - 3 (u

Jj

@ Since uj > v;j for all j and u, v distinct implies that there is one index
k such that uy > vi, we have

Z(UJ >uk—vk>0

@ the moreover part just follows from taking small enough ¢
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1

Q p(A) has algebraic multiplicity 1
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1
)

Q p(A) has algebraic multiplicity 1

@ By the definition of p(A), there is an eigenvalue A € C such that
|A| = p(A). Let v the a corresponding eigenvector.
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1
)

Q p(A) has algebraic multiplicity 1

@ By the definition of p(A), there is an eigenvalue A € C such that
|A| = p(A). Let v the a corresponding eigenvector.

@ Let u be the vector defined by u; = |v;|. Then, we have
(Au)i =D Aju > | Y Ajvil = [\l = p(A) - uj
J J

so Au > p(A)u.

75/94



Perron's Theorem - item 1

e We proved Au > p(A)u.
o If inequality strict, then we have

A%u > p(A) - Au
and there is some positive € > 0 such that

A%u > (14 ¢)p(A)Au
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Perron's Theorem - item 1

e We proved Au > p(A)u.
o If inequality strict, then we have

A%u > p(A) - Au
and there is some positive € > 0 such that
A%u > (14 ¢)p(A)Au
@ By induction, we would have

Au> (1+¢)"- p(A)"- Au
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Perron’s Theorem - item 1
e We proved Au > p(A)u.

o If inequality strict, then we have
A%u > p(A) - Au
and there is some positive € > 0 such that
A%u > (14 ¢)p(A)Au
@ By induction, we would have
A"u>(1+¢€)" p(A)"- Au
@ By Gelfand's formula we would have
p(A) = lim A" > (1+2)(A)

which is a contradiction. So equality must hold.
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Perron's theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.
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Perron's theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.
e Note that u > 0 since p(A)u; = (Au); >0
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

e Note that u > 0 since p(A)u; = (Au); >0

@ Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

e Note that u > 0 since p(A)u; = (Au); >0

@ Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)

o If we had another eigenvalue X # p(A) in the circumference
|| = p(A), where z is the eigenvector corresponding to A, by the
previous slide, we know that w defined as w; = |z| satisfies

Aw = p(Aw & 3 Ajw; = p(A) -zl = Pzl = |3 Agz
J J

forevery 1 <i<n
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

Note that u > 0 since p(A)u; = (Au); >0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)

If we had another eigenvalue A # p(A) in the circumference
|| = p(A), where z is the eigenvector corresponding to A, by the
previous slide, we know that w defined as w; = |z| satisfies

Aw = p(Aw & D Ayw; = p(A) - |zi = Mz = | ) Ajz|
J J
forevery 1 <i<n

Lemma: if the conditions above hold, then there is & € C nonzero
such that az >0

Proof by squaring both sides and using complex conjugates.
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Perron's theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have

Maz) =a-(Az) = a(Az) = Alaz) > 0
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Perron's theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.

u — Bv # 0 since the vectors are linearly independent
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.

@ u — [v # 0 since the vectors are linearly independent

@ Butforeach1 </<n

p(A) - (u—pv)i = (A(u = Bv))i > 0

which contradicts our choice of 5. Thus, there cannot be two linearly
independent eigenvectors.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circle |A\| = p(A)
9 p(A) has geometric multiplicity 1
)

p(A

has algebraic multiplicity 1
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circle |A\| = p(A)

9 p(A) has geometric multiplicity 1
)

p(A

has algebraic multiplicity 1

@ By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that A™ has all positive entries.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

p(A) is an eigenvalue, and it has a positive eigenvector
p(A) is the only eigenvalue in the complex circle |\| = p(A)
p(A) has geometric multiplicity 1
p(A) has algebraic multiplicity 1

0090

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that A™ has all positive entries.

Apply Perron’s theorem to A™ and note that the eigenvalues of A™
are A", where ); are the eigenvalues of A
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Acknowledgement

@ Lecture based largely on:
e Lap Chi's notes
o [Motwani & Raghavan 2007, Chapter 6]
o [Higgstrom|
@ See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

@ Also see Lap Chi's notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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