Lecture 5: Hashing

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

May 15, 2024

Overview

- Introduction
 - Hash Functions
 - Why is hashing?
 - How to hash?
- Succinctness of Hash Functions
 - Coping with randomness
 - Universal Hashing
 - Hashing using 2-universal families
 - Perfect Hashing
- Acknowledgements

Computational Model

Before we talk about hash functions, we need to state our model of computation:

Definition (Word RAM model)

In the word RAM^a model:

- all elements are integers that fit in a machine word of w bits
- Basic operations (comparison, arithmetic, bitwise) on such words take $\Theta(1)$ time
- We can also access *any* position in the array in $\Theta(1)$ time

^aRAM stands for Random Access Model

We want to store ℓ elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where $2^w > m \gg \ell$, in a data structure that supports *insertions*, *deletions*, *search* "as efficiently as possible."

We want to store ℓ elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where $2^w > m \gg \ell$, in a data structure that supports *insertions*, *deletions*, *search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.

We want to store ℓ elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where $2^w > m \gg \ell$, in a data structure that supports *insertions*, *deletions*, *search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.

- Insertion: O(1), Deletion: O(1), Search: O(1)
- Memory: $\Theta(m)$ (this is very bad!)

We want to store ℓ elements (keys) from the set $U = \{0, 1, ..., m-1\}$, where $2^w > m \gg \ell$, in a data structure that supports *insertions*, *deletions*, *search* "as efficiently as possible."

Naive approach: use an array A of m elements, initially A[i] = 0 for all i, and when a key is inserted, set A[i] = 1.

- Insertion: O(1), Deletion: O(1), Search: O(1)
- Memory: $\Theta(m)$ (this is very bad!)

Want to also achieve optimal memory $O(\ell)$. For this we will use a technique called *hashing*.

- A hash function is a function $h: U \to [0, n-1]$, where $|U| = m \gg n$.
- A *hash table* is a data structure that consists of:
 - a table T with n cells [0, n-1],
 - a hash function $h: U \rightarrow [0, n-1]$

From now on, we will define memory as # of cells.

Why is hashing useful?

- Designing efficient data structures (dictionaries) for searching
- Data streaming algorithms
- Derandomization
- Cryptography
- Complexity Theory
- many more

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size $m \gg n$ where n is the size of the range of our hash function $h: U \rightarrow [0, n-1]$
- Store $\ell := O(n)$ elements of U (keys) in hash table T (which has n cells)

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size $m \gg n$ where n is the size of the range of our hash function $h: U \to [0, n-1]$
- Store $\ell := O(n)$ elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

We say that a *collision* happens for hash function h with inputs $x, y \in U$ if $x \neq y$ and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in advance.

Challenges in Hashing

Setup:

- Universe $U = \{0, ..., m-1\}$ of size $m \gg n$ where n is the size of the range of our hash function $h: U \to [0, n-1]$
- Store $\ell := O(n)$ elements of U (keys) in hash table T (which has n cells)

Ideally, want hash function to map different keys into different locations.

Definition (Collision)

We say that a *collision* happens for hash function h with inputs $x, y \in U$ if $x \neq y$ and h(x) = h(y).

By pigeonhole principle, impossible to achieve without knowing keys in advance.

Will settle for: # collisions *small with high probability*.

Our solution: family of hash functions

Construct *family* of hash functions \mathcal{H} such that the *number of collisions* is **small** with **high probability**, when we pick hash function uniformly at random from the family \mathcal{H} .

Our solution: family of hash functions

Construct family of hash functions \mathcal{H} such that the number of collisions is small with high probability, when we pick hash function uniformly at random from the family \mathcal{H} .

Simplest version to keep in mind:

$$\Pr_{h \in_{R} \mathcal{H}}[h(x) = h(y)] \le \frac{1}{\mathsf{poly}(n)} \qquad \forall x \ne y \in U$$

Our solution: family of hash functions

Construct *family* of hash functions \mathcal{H} such that the *number of collisions* is **small** with **high probability**, when we pick hash function uniformly at random from the family \mathcal{H} .

Simplest version to keep in mind:

$$\Pr_{h \in_{\mathcal{R}} \mathcal{H}}[h(x) = h(y)] \le \frac{1}{\mathsf{poly}(n)} \qquad \forall x \ne y \in U$$

Assumptions:

- keys are independent from hash function we choose.
- we do not know keys in advance (even if we did, nontrivial problem!)

Question

Still could have collisions. How do we handle them?

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

Natural to consider following approach:

From all functions $h:U \to [0,n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting!

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! So, if we have to store n keys (i.e., if $\ell = n$):

- Expected number of keys in a location: 1
- maximum number of collisions (max load) in one particular location: $O(\log n/\log\log n)$ keys

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! So, if we have to store n keys (i.e., if $\ell = n$):

- Expected number of keys in a location: 1
- maximum number of collisions (max load) in one particular location: $O(\log n/\log\log n)$ keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as chain hashing.

Natural to consider following approach:

From all functions $h: U \rightarrow [0, n-1]$, just pick one uniformly at random.

This setting is same as our balls-and-bins setting! So, if we have to store n keys (i.e., if $\ell = n$):

- Expected number of keys in a location: 1
- maximum number of collisions (max load) in one particular location: $O(\log n/\log\log n)$ keys

Solving collisions: store all keys hashed into location i by a linked list.

Known as *chain hashing*.

Could also pick *two* random hash functions and use *power of two choices*. Collision bound becomes $O(\log \log n)$.

Random hash functions look very good. However, we haven't discussed the following:

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \to [0, n-1]$ require $O(m \log n)$ bits (way too much space!)
- Even if we only stored the elements we saw, would require $O(\ell)$ time to evaluate h(x) (need to decide if we had already computed it!)

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \to [0, n-1]$ require $O(m \log n)$ bits (way too much space!)
- Even if we only stored the elements we saw, would require $O(\ell)$ time to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take $O(\ell)$ time (at best!). Since we are aiming for $\ell = O(n)$, then the time would be O(n)!

Random hash functions look very good. However, we haven't discussed the following:

Question

How much resource (time & space) does it take to compute random hash functions?

- Storing entire function $h: U \to [0, n-1]$ require $O(m \log n)$ bits (way too much space!)
- Even if we only stored the elements we saw, would require $O(\ell)$ time to evaluate h(x) (need to decide if we had already computed it!)

Remark

Thus, for random function all operations (insert, delete, search) take $O(\ell)$ time (at best!). Since we are aiming for $\ell = O(n)$, then the time would be O(n)!

How do we cope with the computational problem that arose with randomness?

- Introduction
 - Hash Functions
 - Why is hashing?
 - How to hash?
- Succinctness of Hash Functions
 - Coping with randomness
 - Universal Hashing
 - Hashing using 2-universal families
 - Perfect Hashing
- Acknowledgements

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes O(1) time to compute (as the size of our input is $O(\log m) = O(w) = O(1)$ in the RAM model).

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes O(1) time to compute (as the size of our input is $O(\log m) = O(w) = O(1)$ in the RAM model).

Question

How many hash functions can we have with the property above?

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes O(1) time to compute (as the size of our input is $O(\log m) = O(w) = O(1)$ in the RAM model).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most $O(\log m)$ bits to describe. Thus these are *succinct functions* (easy to describe and compute) which have *random-like* properties!

We want something that is *random-like* (few collisions w.h.p.) but *easy to compute/represent*.

Ideally something that takes O(1) time to compute (as the size of our input is $O(\log m) = O(w) = O(1)$ in the RAM model).

Question

How many hash functions can we have with the property above?

poly(m) functions, as each function takes at most $O(\log m)$ bits to describe. Thus these are *succinct functions* (easy to describe and compute) which have *random-like* properties!

Part of derandomization/pseudorandomness: huge subfield in TCS!

k-wise independence

Weaker notion of independence.

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X_1, \ldots, X_n are said to be (fully) independent if they satisfy

$$\Pr\left[\bigcap_{i=1}^{n} X_i = a_i\right] = \prod_{i=1}^{n} \Pr[X_i = a_i]$$

k-wise independence

Weaker notion of independence.

Definition (Full Independence)

A set of random variables X_1, \ldots, X_n are said to be (fully) independent if they satisfy

$$\Pr\left[\bigcap_{i=1}^{n} X_i = a_i\right] = \prod_{i=1}^{n} \Pr[X_i = a_i]$$

Definition (k-wise Independence)

A set of random variables X_1,\ldots,X_n are said to be k-wise independent if for any set $J\subset [n]$ such that $|J|\leq k$ they satisfy

$$\Pr\left[\bigcap_{i\in J}X_i=a_i\right]=\prod_{i\in J}\Pr[X_i=a_i]$$

Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given t uniformly random bits Y_1, \ldots, Y_t , we can generate $2^t - 1$ pairwise independent random variables as follows:

$$X_S := \bigoplus_{i=0}^{n} Y_i \qquad S \subseteq [t] \setminus \emptyset$$

Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given t uniformly random bits Y_1, \ldots, Y_t , we can generate $2^t - 1$ pairwise independent random variables as follows:

$$X_S := \bigoplus_{i \in S} Y_i$$
 $S \subseteq [t] \setminus \emptyset$

• Why are they even random?

Pairwise independence

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given t uniformly random bits Y_1, \ldots, Y_t , we can generate $2^t - 1$ pairwise independent random variables as follows:

$$X_S := \bigoplus_{i \in S} Y_i$$
 $S \subseteq [t] \setminus \emptyset$

- Why are they even random?
- Why are they pairwise independent?

When k = 2, k-wise independence is called *pairwise independence*.

Example (XOR pairwise independence)

Given t uniformly random bits Y_1, \ldots, Y_t , we can generate $2^t - 1$ pairwise independent random variables as follows:

$$X_S := \bigoplus_{i \in S} Y_i$$
 $S \subseteq [t] \setminus \emptyset$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

Example (Pairwise independence in \mathbb{F}_p)

Let p be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \dots, p-1]$, generate p pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

Example (Pairwise independence in \mathbb{F}_p)

Let p be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \dots, p-1]$, generate p pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

• Why are they even random?

Example (Pairwise independence in \mathbb{F}_p)

Let p be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \ldots, p-1]$, generate p pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

- Why are they even random?
- Why are they pairwise independent?

Example (Pairwise independence in \mathbb{F}_p)

Let p be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \dots, p-1]$, generate p pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad \qquad i \in [0, p-1]$$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

Example (Pairwise independence in \mathbb{F}_p)

Let p be a prime number. Given 2 uniformly random variables $Y_1, Y_2 \sim [0, \ldots, p-1]$, generate p pairwise independent random variables as follows:

$$X_i := Y_1 + i \cdot Y_2 \mod p \qquad i \in [0, p-1]$$

- Why are they even random?
- Why are they pairwise independent?
- Are they also 3-wise independent?

Can think of these random variables as picking a random line over a finite field. If we only know one point of the line, the second point is still uniformly random. However two points determine the line.

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with $|U| \ge n$. A family of hash functions $\mathcal{H} = \{h: U \to [0, n-1]\}$ is k-universal if, for any distinct elements $u_1, \ldots, u_k \in U$, we have

$$\Pr_{h \in_{R} \mathcal{H}} [h(u_1) = h(u_2) = \ldots = h(u_k)] \le 1/n^{k-1}$$

Universal Hash Functions

We want hash functions. Why are we talking about random variables?

Definition (Universal Hash Functions)

Let U be a universe with $|U| \ge n$. A family of hash functions $\mathcal{H} = \{h : U \to [0, n-1]\}$ is k-universal if, for any distinct elements $u_1, \ldots, u_k \in U$, we have

$$\Pr_{h \in_{R} \mathcal{H}} [h(u_1) = h(u_2) = \ldots = h(u_k)] \le 1/n^{k-1}$$

Definition (Strongly Universal Hash Functions)

 $\mathcal{H} = \{h : U \to [0, n-1]\}$ is strongly k-universal if, for any distinct elements $u_1, \ldots, u_k \in U$ and for any values $y_1, \ldots, y_k \in [0, n-1]$, we have

$$\Pr_{h \in {}_{\mathcal{D}}\mathcal{H}}[h(u_1) = y_1, \dots, h(u_k) = y_k] = 1/n^k$$

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family \mathcal{H} is strongly k-universal if the random variables $h(0), \ldots, h(|U|-1)$ are k-wise independent.

Relation to k-wise independent random variables

What do the previous definitions have to do with random variables?

Family \mathcal{H} is strongly k-universal if the random variables $h(0), \ldots, h(|U|-1)$ are k-wise independent.

Can use random variables to construct universal hash functions!

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p - 1].

Proposition

$$\mathcal{H} = \{ h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1] \}$$

is strongly 2-universal.

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p - 1].

Proposition

$$\mathcal{H} = \{ h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1] \}$$

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as usually in hashing size of universe much larger than size of table)

Strongly 2-universal families of hash functions

Let p be a prime number, U = [0, p - 1].

Proposition

$$\mathcal{H} = \{ h_{a,b}(x) := a \cdot x + b \mod p \mid a, b \in [0, p-1] \}$$

is strongly 2-universal.

How do we make the domain U much larger than image of the maps? (as usually in hashing size of universe much larger than size of table)

Proposition

Let
$$U = [0, p^k - 1] \equiv [0, p - 1]^k \setminus \{(0, \dots, 0)\}$$
 and $\vec{a} = (a_0, \dots a_{k-1})$

$$\mathcal{H} = \{ h_{\mathbf{a},b}(\vec{x}) := \vec{\mathbf{a}} \cdot \vec{\mathbf{x}} + b \mod p \mid \mathbf{a} \in U, b \in [0, p-1] \}$$

is strongly 2-universal.

What if my hast table size is not a prime?

Proposition

$$\mathcal{H} = \{h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1], a \neq 0\}$$
 is 2-universal (but not strongly 2-universal).

Practice problem: prove the proposition above.

Can we construct k-universal families of hash functions like this?

Can we construct k-universal families of hash functions like this?

• YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k-1

Can we construct k-universal families of hash functions like this?

- YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k-1
- Two points determine a line. Similarly, k points determine a univariate polynomial of degree k-1

Can we construct k-universal families of hash functions like this?

- YES! Instead of constructing random lines (degree 1 polynomials), can construct random univariate polynomials of degree k-1
- Two points determine a line. Similarly, k points determine a univariate polynomial of degree k-1
- Random degree k-1 polynomials are k-wise independent!
- Practice problem: prove this!

Efficiency

How did pairwise independence improve the problems we were having with random functions?

Efficiency

How did pairwise independence improve the problems we were having with random functions?

Remark

For random function all operations (insert, delete, search) take O(n) time (at best!)

Efficiency

How did pairwise independence improve the problems we were having with random functions?

Remark

For random function all operations (insert, delete, search) take O(n) time (at best!)

Remark

- In XOR example, our function takes O(t) storage space, and O(t) time to compute.^a
- In \mathbb{F}_p examples, our function takes O(1) storage space and O(1) time to compute!^b

^aReminder that we assume that t < w.

^bWe assume that $p < 2^w$.

• Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$
- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$
- Only need to choose $a, b \in [0, p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also O(1)

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$
- Only need to choose $a,b \in [0,p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also O(1)
- Can this hash function match chain hashing parameters?
 (O(log log n) max load which implies search time)

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$
- Only need to choose $a,b \in [0,p-1]$ to store a function from \mathcal{H} .
- Computation time of $h_{a,b}$ is also O(1)
- Can this hash function match chain hashing parameters?
 (O(log log n) max load which implies search time)

Do not have same expected search time as chain hashing.

- Let U = [0, m-1], and p be a prime number such that $m \le p < 2m$ (exists by Bertrand's postulate)
- $\mathcal{H} = \{ h_{a,b}(x) := (a \cdot x + b \mod p) \mod n \mid a, b \in [0, p-1] \}$
- ullet Only need to choose $a,b\in [0,p-1]$ to store a function from $\mathcal{H}.$
- Computation time of $h_{a,b}$ is also O(1)
- Can this hash function match chain hashing parameters?
 (O(log log n) max load which implies search time)

Do not have same expected search time as chain hashing.

Lemma (Maximum number of collisions)

Let our set of keys S be of size ℓ , and our hash functions be from U to [0, n-1]. The expected number of collisions, using a 2-universal hash family is

$$\leq \ell^2/2n$$

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

$$\ell^2/2n$$

Lemma (Maximum number of collisions)

The expected number of collisions using a 2-universal hash family is

$$\ell^2/2n$$

Thus, by Markov's inequality, we have

Lemma (Maximum load of entry of hash table)

With probability $\geq 1/2$ the number of collisions using a 2-universal hash family is

$$\leq \sqrt{\frac{2\ell^2}{n}}$$
.

When $\ell \approx n$ (as is usually assumed in hashing), we expect $\sqrt{2n}$.

Setting: (*static keys*) Suppose now we are given the set S of keys in advance, and |S| = n (so, $\ell = n$ here).

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Setting: (*static keys*) Suppose now we are given the set S of keys in advance, and |S| = n (so, $\ell = n$ here).

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

Proof: There is no collision with probability $\geq 1/2$.

Setting: (*static keys*) Suppose now we are given the set S of keys in advance, and |S| = n (so, $\ell = n$ here).

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

Proof: There is no collision with probability $\geq 1/2$.

New idea: build a *two-level* hash table!

Setting: (*static keys*) Suppose now we are given the set S of keys in advance, and |S| = n (so, $\ell = n$ here).

How to build a hash table with O(1) search time and O(n) memory? Can we still do it with a 2-universal family of hash functions?

Corollary

If $h \in \mathcal{H}$ is a random hash function from a 2-universal family of hash functions, then for any set $S \subseteq U$ of size $\ell \leq \sqrt{n}$, the probability of h being perfect for S is at least 1/2.

Proof: There is no collision with probability $\geq 1/2$.

New idea: build a two-level hash table!

Theorem

The two-level approach gives perfect hashing scheme.

Acknowledgement

- Lecture based largely on Lap Chi's notes.
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Mitzenmacher, Michael, and Eli Upfal (2017)

Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis.

Cambridge university press, 2017.