
Lecture 3: Concentration Inequalities

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

May 13, 2024

1 / 70



Overview

Introduction
Concentration Inequalities
Markov’s Inequality

Higher Moments
Moments and Variance
Chebyshev’s Inequality
Chernoff-Hoeffding’s Inequality

Acknowledgements

2 / 70



Why do we want concentration?

When evaluating performance of randomized algorithms, not enough to
know our algorithm runs in expected time T . What we want to say is

“our algorithm will run in time ≈ T very often.”

That is,

not only analyse the expected running times of the algorithms,

we would also like to know if the algorithm runs in time close to its
expected running time most of the time.

Running time small with high probability better than small expected
running time.

Often times in algorithm analysis, running time is concentrated around
expectation. This concentration of measure proves that our algorithms will
typically run in time close to expectation.
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Today’s inequalities

Theorem (Markov’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[X ≥ t] ≤ E[X ]

t
, ∀t > 0.

Theorem (Chebyshev’s Inequality)

Let X be a discrete random variable. Then

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]

t2
, ∀t > 0.
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Today’s inequalities II

Theorem (Chernoff-Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent indicator variables such that
Pr[Xi = 1] = pi , where 0 < pi < 1. Let X =

∑n
i=1 Xi and δ > 0. Then

Pr[X ≥ (1 + δ) · E[X ]] ≤
[

eδ

(1 + δ)1+δ

]E[X ]

,

and
Pr[X ≤ (1− δ) · E[X ]] ≤ exp

(
−E[X ] · δ2/2

)
.
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Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be a non-negative discrete random variable. Then

Pr[X ≥ t] ≤ E[X ]

t
, ∀t > 0.

Quicksort: Expected running time of Quicksort is 2n ln n. Markov’s
inequality tells us that the runtime is at least 2cn ln n with probability
≤ 1/c, for any c ≥ 1

Coin Flipping: If we flip n fair coins, the expected number of heads
is n/2. Markov’s inequality tells us that Pr[ # heads ≥ 3n/4] ≤ 2/3

Remark

Useful when we have no information beyond expected value (or when
random variable difficult to analyze). Otherwise other inequalities much
sharper!
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Markov’s Inequality

Some practice problems.

Is Markov’s inequality tight? Can you give an example?

Does it hold for general random variables (not just non-negative)?

Can it be modified to upper bound Pr[X ≤ t]?
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Moments and Variance
To give better bounds, we need more information about the random
variable (beyond expected value).
How to distinguish between:

X such that Pr[X = i ] =

{
1/n, if 1 ≤ i ≤ n

0, otherwise

Y such that Pr[Y = 1] = 1/2 and Pr[Y = n] = 1/2

same expectation, but very different random variables...

Look at how far variable usually is from its expectation. How to do
that?

How to bound Pr[|X − E[X ]| ≥ t]?

Theorem (Chebyshev’s Inequality)

Let X be a discrete random variable. Then

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]

t2
, ∀t > 0.
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Chebyshev’s inequality
Let X be a random variable.

Its Variance is defined as Var[X ] := E[(X − E[X ])2]

and its standard deviation is σ(X ) :=
√

Var[X ]

Theorem (Chebyshev’s Inequality)

Let X be a discrete random variable. Then

Pr[|X − E[X ]| ≥ t] ≤ Var[X ]

t2
, ∀t > 0.
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Covariance

How do we measure the correlation between two random variables?

Definition (Covariance)

The covariance of two random variables X ,Y is defined as

Cov[X ,Y ] := E[(X − E[X ]) · (Y − E[Y ])].

We say that X ,Y are positively correlated if Cov[X ,Y ] > 0 and negatively
correlated if Cov[X ,Y ] < 0.

Proposition

Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov[X ,Y ]

If X ,Y are independent, then Var[X + Y ] = Var[X ] + Var[Y ]
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Chebyshev & Covariance example

Coin Flipping: If X be # heads in n independent unbiased coin flips, let
us bound again Pr[X ≥ 3n/4].

Xi =

{
1, if coin flipped heads

0, otherwise

X =
∑n

i=1 Xi , and we know that Xi ,Xj are independent

By proposition:

Var[X ] =
n∑

i=1

Var[Xi ] = n/4

Chebyshev:

Pr[X ≥ 3n/4] ≤ Pr[|X − n/2| ≥ n/4] ≤ n/4

(n/4)2
= 4/n
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Higher Moments

To obtain even more information of a random variable, useful to see more
of its moments:

the kth moment of random variable X is E[X k ].

the kth central moment of random variable X is

µ
(k)
X := E[(X − E[X ])k ],

if it exists.

Remark

Chebyshev’s inequality is most useful when we only have information
about the second moment of our random variable X .

Practice problem: Can you generalize Chebyshev’s inequality to kth order
moments?
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Sums of Independent Random Variables
Often times in analysis of algorithms we deal with random variables which
are sums of independent random variables (Distinct Elements, hashing,
balls & bins, etc).

Can we use this information to get better tail inequalities?

Law of large numbers: average of independent, identically distributed
variables is approximately the expectation of the random variables. That
is, if each Xi is an independent copy of random variable X

1

n
·

n∑
i=1

Xi ≈ E[X ]

Central Limit Theorem: if we let Zn =
∑n

i=1 Xi , where Xi independent
copy of X , the random variable

Yn =
Zn − n · E[X ]√

n · σ(X )2
→ N (0, 1)
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Chernoff Bounds

Chernoff bounds give us quantitative estimates of the probability that X is
far from E[X ] for large enough values of n, when X = X1 + · · ·+ Xn.

1

Simple Setting: we have n coin flips, each is head with probability p. So

Xi =

{
1, with probability p

0, otherwise
and X =

n∑
i=1

Xi .

Expected # heads: n · p
To bound upper tail, need to compute:

Pr[X ≥ k] ≤
∑
i≥k

(
n

i

)
pi (1− p)n−i

Not easy to work with, hard to generalize

1Also works for sums of random variables which are not identically distributed!
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Chernoff Bounds
Generic Chernoff Bounds: apply Markov in the following way:

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]/eta, for any t > 0.

What do we gain by doing this?

The moment generating function

MX (t) := E[etX ] = E

∑
i≥0

t i

i !
· X i

 =
∑
i≥0

t i

i !
· E

[
X i

]
contains information about all moments!

If X = X1 + X2, where X1,X2 are independent, note that

E[etX ] = E[etX1etX2 ] = E[etX1 ] · E[etX2 ]
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Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]/eta, for any t > 0.

What do we gain by doing this?

The moment generating function
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Chernoff Bounds for Bounded Variables

Example (Heterogeneous Coin Flips)

Let Xi =

{
1, with probability pi

0, otherwise
, X =

∑n
i=1 Xi and µ = E[X ]

1 for δ > 0, Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ

2 for 0 < δ < 1, Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3

3 for R ≥ 6µ, Pr[X ≥ R] ≤ 2−R
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Chernoff Bounds for Bounded Variables

What about the lower tail?

Similar proof, by setting t < 0.2

Theorem (Heterogeneous Coin Flips - lower tail)

1 Pr[X ≤ (1− δ) · µ] ≤
[

e−δ

(1− δ)1−δ

]µ
2 if 0 < δ < 1 then Pr[X ≤ (1− δ) · µ] ≤ e−µδ2/2

2See [Motwani & Raghavan 2007, Theorem 4.2] or [Mitzenmacher & Upfal,
Theorem 4.5]
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Hoeffding’s generalization

What if the variables Xi took values in [ai , bi ]?

Theorem (Hoeffding’s Inequality)

Let Xi be independent random variables, taking values in [ai , bi ],
X =

∑n
i=1 Xi . Then

Pr[|X − E[X ]| ≥ ℓ] ≤ 2 · exp
(
− 2ℓ2∑n

i=1(bi − ai )2

)

Proof uses Hoeffding’s lemma: E[et(Xi−E[Xi ])] ≤ exp

(
t2(bi − ai )

2

8

)
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Remarks
In coin flips example from beginning of lecture, by flipping n
independent fair coins, expected # heads is n/2. Chernoff-Hoeffding
implies:

Pr[|# heads − µ| ≥ δµ] ≤ 2 exp(−µδ2/3) = 2 exp(−nδ2/6)

Setting δ =
√

60/n, probability above is ≤ 2e−10. Thus

Pr[|# heads − n/2| ≥
√
15 · n] ≤ 2e−10.

With high probability, # heads is within O(
√
n) of the expected value

(this comes up in many places). Practice problem: prove that with
constant probability that |# heads − n/2| = Ω(

√
n).

From previous slides:

Markov: Pr[# heads ≥ 3n/4] ≤ 2/3

Chebyshev: Pr[# heads ≥ 3n/4] ≤ 4/n.

Chernoff: Pr[# heads ≥ 3n/4] ≤ e−n/24.
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Remarks

It is often easier to compute moments by computing the moment
generating functions

Why do we want to compute moments? See Sum-of-Squares and
pseudo-distributions references in course webpage. These methods
give very powerful tools to solve many challenging problems! (great
final project topic!)

Chernoff-Hoeffding bounds also hold for negatively correlated
variables, because all we need is

E[et(X+Y )] ≤ E[etX ] · E[etY ]

This observation is very useful in many applications (also great source
of final projects!)

For instance: two edges appear in a random spanning tree is a
negatively correlated event, thus Chernoff bounds are useful to
analyze random spanning trees.
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