Lecture 21: Zero Knowledge Proofs

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 27, 2024

1/76

Overview

® Why Zero Knowledge?

@ Zero-Knowledge Proofs

@ Conclusion

@ Acknowledgements

2/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.

3/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.
@ Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us

o
o
o
e it's a wild world out there

4/76

Cryptography
@ In cryptography, want to communicate with other people/entities
whom we may not trust.

@ Or we may not trust the channel of communication

@ someone may eavesdrop our messages
e messages could be corrupted

e someone may try to impersonate us

e it's a wild world out there

@ Situation

o Alice has all her files encrypted (in public database)
e Bob requests from her the contents of one of her files

5/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.
@ Or we may not trust the channel of communication

@ someone may eavesdrop our messages
e messages could be corrupted

e someone may try to impersonate us

e it's a wild world out there

@ Situation

o Alice has all her files encrypted (in public database)
e Bob requests from her the contents of one of her files
e She could simply send the decrypted file to Bob

6/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.
@ Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

@ Situation

Alice has all her files encrypted (in public database)

Bob requests from her the contents of one of her files

She could simply send the decrypted file to Bob

Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)

7/76

Cryptography
@ In cryptography, want to communicate with other people/entities
whom we may not trust.
@ Or we may not trust the channel of communication

e someone may eavesdrop our messages
e messages could be corrupted
e someone may try to impersonate us
e it's a wild world out there
@ Situation
o Alice has all her files encrypted (in public database)
e Bob requests from her the contents of one of her files
e She could simply send the decrypted file to Bob
e Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)
e Alice could prove to Bob this is the correct file by sending her
encryption key

8/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.
@ Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

@ Situation

o Alice has all her files encrypted (in public database)

e Bob requests from her the contents of one of her files

e She could simply send the decrypted file to Bob

e Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)

e Alice could prove to Bob this is the correct file by sending her
encryption key

e But then Bob has access to her entire database!

9/76

Cryptography

@ In cryptography, want to communicate with other people/entities
whom we may not trust.

@ Or we may not trust the channel of communication

someone may eavesdrop our messages
messages could be corrupted
someone may try to impersonate us
it’s a wild world out there

@ Situation

Alice has all her files encrypted (in public database)

Bob requests from her the contents of one of her files

She could simply send the decrypted file to Bob

Bob has no way of knowing that this message comes from Alice (or
that this is indeed the right file)

Alice could prove to Bob this is the correct file by sending her
encryption key

o But then Bob has access to her entire database!
e Can Alice convince Bob that she gave right file without giving any

more knowledge beyond that she gave right file?

10/76

Zero-Knowledge Proofs

Proofs in which the verifier
gains no knowledge
beyond the validity of the assertion.

11/76

Knowledge vs Information

@ What do you mean by knowledge?
@ What does it mean to “learn something/gain knowledge”?

© What is difference between knowledge and information?

12/76

Knowledge vs Information

@ What do you mean by knowledge?
@ What does it mean to “learn something/gain knowledge”?
© What is difference between knowledge and information?

First question is quite complex.
Let’s only talk about the second and third.

13/76

Knowledge vs Information

@ What do you mean by knowledge?
@ What does it mean to “learn something/gain knowledge”?

© What is difference between knowledge and information?

o Knowledge:
o related to computational difficulty

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

e about publicly known objects

One gains knowledge when one obtains something one could not
compute before!

14 /76

Knowledge vs Information

@ What do you mean by knowledge?
@ What does it mean to “learn something/gain knowledge”?
© What is difference between knowledge and information?

o Knowledge:
o related to computational difficulty

If you could have found the answer (i.e. computed it) without help,
then you gained no knowledge

e about publicly known objects

One gains knowledge when one obtains something one could not
compute before!

@ Information:

e unrelated to computational difficulty
e about partially known objects

One gains information when one obtains something one could not
access before!

15/76

Example: Knowledge vs Information

@ Bob asks Alice whether a graph G is Eulerian

16 /76

Example: Knowledge vs Information

@ Bob asks Alice whether a graph G is Eulerian

@ Bob gains no knowledge in this interaction, since he could have
computed it by himself

Euler's theorem: check that all vertices have even degree

17/76

Example: Knowledge vs Information

@ Bob asks Alice whether a graph G is Eulerian

@ Bob gains no knowledge in this interaction, since he could have
computed it by himself

Euler's theorem: check that all vertices have even degree

@ Bob asks Alice if graph G has Hamiltonian cycle

18/76

Example: Knowledge vs Information

Bob asks Alice whether a graph G is Eulerian

Bob gains no knowledge in this interaction, since he could have
computed it by himself

Euler's theorem: check that all vertices have even degree

Bob asks Alice if graph G has Hamiltonian cycle

Bob now gains knowledge (P # NP = Bob could not compute it)

19/76

Example: Knowledge vs Information

Bob asks Alice whether a graph G is Eulerian

Bob gains no knowledge in this interaction, since he could have
computed it by himself

Euler's theorem: check that all vertices have even degree

Bob asks Alice if graph G has Hamiltonian cycle

Bob now gains knowledge (P # NP = Bob could not compute it)

In both cases Alice didn't convey any information!

The graph is given, so all information about it is “available” to
everyone.

20/76

Example: Graph Isomorphism

o Setup:
e A claim C := graphs Gy, G; are isomorphic

21/76

Example: Graph Isomorphism
o Setup:

e A claim C := graphs Gy, G; are isomorphic
e A prover P writes down an isomorphism p such that p(Go) = G;

22/76

Example: Graph Isomorphism

@ Setup:
e A claim C := graphs Gy, G; are isomorphic
e A prover P writes down an isomorphism p such that p(Go) = G;
o Prover P sends p to a verifier V

23/76

Example: Graph Isomorphism

@ Setup:
e A claim C := graphs Gy, G; are isomorphic
e A prover P writes down an isomorphism p such that p(Go) = G;
o Prover P sends p to a verifier V
o Verifier checks that p is a permutation of vertices, and that
p(Go) = Gy (deterministic, polynomial time algorithm)

24/76

Example: Graph Isomorphism

e Setup:

A claim C := graphs Gy, G; are isomorphic

e A prover P writes down an isomorphism p such that p(Go) = G;
o Prover P sends p to a verifier V

o Verifier checks that p is a permutation of vertices, and that
p(Go) = Gy (deterministic, polynomial time algorithm)

Verifier accepts iff the above is correct.

25/76

Example: Graph Isomorphism

e Setup:

A claim C := graphs Gy, G; are isomorphic

e A prover P writes down an isomorphism p such that p(Go) = G;

o Prover P sends p to a verifier V

o Verifier checks that p is a permutation of vertices, and that
p(Go) = Gy (deterministic, polynomial time algorithm)

o Verifier accepts iff the above is correct.

@ In this setting, verifier learns the isomorphism (i.e., the proof)!

26/76

Can we convince people differently?

@ Yes! But we need to modify the way proofs are checked.

27 /76

Can we convince people differently?

@ Yes! But we need to modify the way proofs are checked.
o Make proofs interactive, instead of only one-way

28/76

Can we convince people differently?

@ Yes! But we need to modify the way proofs are checked.

o Make proofs interactive, instead of only one-way
o Verifier is allowed private randomness

29/76

Can we convince people differently?

@ Yes! But we need to modify the way proofs are checked.

o Make proofs interactive, instead of only one-way
o Verifier is allowed private randomness

@ In the end, we will see a (zero-knowledge) proof for graph
isomorphism as follows:

Alice: | will not give you an isomorphism, but | will prove that | could
give you one, if | wanted to.

30/76

@ Zero-Knowledge Proofs

31/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

32/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier

33/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover

34/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier

o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does

e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gy) =

o If b =1, then prover sends p :=m

G1)

35/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier

o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does

e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gy) =

o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H

G1)

36/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. o(Go) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H
@ Note that verifier will not learn isomorphism between Gg and G !

37/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. o(Go) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H
@ Note that verifier will not learn isomorphism between Gg and G !
o Note that:

e Claim is true = prover can always give isomorphism!
o Claim is false = can catch bad proof with probability = 1/2

38/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. o(Go) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H

@ Note that verifier will not learn isomorphism between Gg and G !
o Note that:
e Claim is true = prover can always give isomorphism!
o Claim is false = can catch bad proof with probability = 1/2
o Can amplify probability of catching bad proof by repeating protocol
above!

39/76

Example: Graph Isomorphism
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
o A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. o(Go) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H

@ Note that verifier will not learn isomorphism between Gg and G !
o Note that:
e Claim is true = prover can always give isomorphism!
o Claim is false = can catch bad proof with probability = 1/2
o Can amplify probability of catching bad proof by repeating protocol
above!
@ How can we model the fact that verifier does not gain knowledge?!

Simulation!
40/76

(Attempt at) Perfect Zero Knowledge

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)!

In particular, the zero knowledge is a property of the prover.
41/76

(Attempt at) Perfect Zero Knowledge

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)!

Definition ((Ideal/Naive) Perfect Zero Knowledge)

A proof system (P, V) is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V*, there is a randomized algorithm
M* such that for every x € L the following random variables are identically
distributed:

e (P,V*)(x), thatis, output of interaction between prover P and
verifier V* on input x

e M*(x), that is, output of algorithm M* (simulation) on input x

YIn particular, the zero knowledge is a property of the prover.
42/76

(Attempt at) Perfect Zero Knowledge

Note that we usually talked about not trusting provers so far, but for
Zero-Knowledge, we will not trust verifiers (as they may try to obtain
information about the proof!)!

Definition ((Ideal/Naive) Perfect Zero Knowledge)

A proof system (P, V) is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V*, there is a randomized algorithm
M* such that for every x € L the following random variables are identically
distributed:

e (P,V*)(x), thatis, output of interaction between prover P and
verifier V* on input x

e M*(x), that is, output of algorithm M* (simulation) on input x

@ The above captures the idea that V* is not gaining any extra
computational power by interacting with P, since same output could
have been generated by M*

YIn particular, the zero knowledge is a property of the prover.
43/76

Perfect Zero Knowledge
@ Previous definition is a bit too strict to be useful, so we relax it.?
e We will allow simulator to fail with small probability (denoted by
outputting L)

2\lery common phenomenon in crypto, that statistical indistinguishability too strict.
44/76

Perfect Zero Knowledge
@ Previous definition is a bit too strict to be useful, so we relax it.?
e We will allow simulator to fail with small probability (denoted by

outputting L)

Definition (Perfect Zero Knowledge)
A proof system (P, V) is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V*, there is a probabilistic, poly-time
TM M* such that the following holds:

@ For each x € {0,1}",
PriM*(x) = 1] <1/2

@ The following variables are identically distributed for x € L:
o (P,V*)(x), thatis, output of interaction between prover P and

verifier V* on input x
o B, :=(M*(x)| M*(x) #L), thatis, output of simulator M* on input

x conditioned on not outputting L
v

%\lery common phenomenon in crypto, that statistical indistinguishability too strict.
45/76

Statistical Zero Knowledge

@ Given two random variables A, B over the same discrete set D, their
statistical distance (or Total Variation distance — TV) is given by

Aty (A, B) Z |PrlA = a] — Pr[B = o]
a€eD

46 /76

Statistical Zero Knowledge

@ Given two random variables A, B over the same discrete set D, their
statistical distance (or Total Variation distance — TV) is given by

Aty (A, B) Z |PrlA = a] — Pr[B = o]
a€eD

@ Given a language L C {0,1}*, consider the ensembles of random
variables {Ay}xer, {Bx}xer — that is, for each x € L, we have two
random variables Ay, By

47/76

Statistical Zero Knowledge

@ Given two random variables A, B over the same discrete set D, their
statistical distance (or Total Variation distance — TV) is given by

Aty (A, B) Z |PrlA = a] — Pr[B = o]
a€eD

@ Given a language L C {0,1}*, consider the ensembles of random
variables {Ay}xer, {Bx}xer — that is, for each x € L, we have two
random variables Ay, By

@ Two ensembles of random variables {Ax}xcr, {Bx}xeL are statistically
indistinguishable if for every polynomial function p: N — N and all
sufficiently large x € L

Atv(Axg, Bx) <

p(Ix])

48/76

Statistical Zero Knowledge

Definition (Statistical Zero Knowledge)

A proof system (P, V) is statistical zero-knowledge for language L if for
every PPT verifier V*, there is a PPT TM M* such that:

@ For each x € {0,1}",
PrIM*(x) = L] <1/2

@ The following ensembles are statistically indistinguishable for x € L:
o A= (P, V*)(x), (output of interaction)
o B, := (M*(x) | M*(x) #L), that is, output of simulator M* on input
x conditioned on not outputting |

49/76

Computational Zero Knowledge

e Given a language L C {0,1}*, consider the ensembles of random
variables {Ay}xer, {Bx}xer — that is, for each x € L, we have two
random variables Ay, By

50/76

Computational Zero Knowledge

e Given a language L C {0,1}*, consider the ensembles of random
variables {Ay}xer, {Bx}xer — that is, for each x € L, we have two
random variables Ay, By

@ The ensembles are computationally indistinguishable if for every PPT
TM D, for every polynomial function p : N — N, and for all
sufficiently large x € L

1
p(Ix[)

| Pr[D(x, Ax) = 1] — Pr[D(x, Bx) = 1]| <

51/76

Computational Zero Knowledge

e Given a language L C {0,1}*, consider the ensembles of random
variables {Ay}xer, {Bx}xer — that is, for each x € L, we have two
random variables Ay, By

@ The ensembles are computationally indistinguishable if for every PPT
TM D, for every polynomial function p : N — N, and for all
sufficiently large x € L

1
p(Ix[)

@ That is, no poly-time randomized algorithm can distinguish between
above ensembles

| Pr[D(x, Ax) = 1] — Pr[D(x, Bx) = 1]| <

52/76

Computational Zero Knowledge

Definition (Computational Zero Knowledge)

A proof system (P, V) is computationally zero-knowledge for language L if
for every PPT verifier V*, there is a PPT simulator M* such that:

@ For each x € {0,1}",
PriM*(x) = L] <1/2

@ The following ensembles are computationally indistinguishable for
x € L:
o (P, V*)(x), (output of interaction)
o (M*(x)| M*(x) #£L), thatis, output of simulator M* on input x
conditioned on not outputting L

53/76

Complexity Classes & Relations

o Let PZK be the class of languages that have perfect zero-knowledge
proof.

@ Similarly, define SZK and CZK for the statistical and computational
zero-knowledge

54/76

Complexity Classes & Relations

o Let PZK be the class of languages that have perfect zero-knowledge
proof.

@ Similarly, define SZK and CZK for the statistical and computational
zero-knowledge

@ From the definitions, we have:

BPP C PZK C SZK C CZK C IP

55 /76

Complexity Classes & Relations

o Let PZK be the class of languages that have perfect zero-knowledge
proof.

@ Similarly, define SZK and CZK for the statistical and computational
zero-knowledge

@ From the definitions, we have:
BPP C PZK CSZK C CZK C IP

@ Fun fact:
IP = PSPACE

56 /76

Complexity Classes & Relations

o Let PZK be the class of languages that have perfect zero-knowledge
proof.

Similarly, define SZK and CZK for the statistical and computational
zero-knowledge

@ From the definitions, we have:
BPP C PZK CSZK C CZK C IP

@ Fun fact:
IP = PSPACE

Fun (conditional under some strong conditions) semi-fact:

existence of non-uniformly hard OWFs = CZK = IP

57/76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

58 /76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:
e A prover P picks m ~ S, and sends H := 7(Gy) to verifier

59 /76

PZK for Graph Isomorphism - Proof
Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover

60 /76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier

o Verifier picks b ~ {0,1} and sends b to prover

e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gp) = G1)
o If b =1, then prover sends p :=m

61/76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier

o Verifier picks b ~ {0,1} and sends b to prover

e Upon receiving b, prover does
e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gp) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H

62/76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does

e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gp) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H

o Note that verifier will not learn isomorphism between Gg and Gp!

63/76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does

e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gp) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H
o Note that verifier will not learn isomorphism between Gg and Gp!
o Note that:

e Claim is true = prover can always give isomorphism!
o Claim is false = can catch bad proof with probability = 1/2

64/76

PZK for Graph Isomorphism - Proof

Setup:
e A claim C := graphs Go([n], Eo), G1([n], E1) are isomorphic

Protocol:

e A prover P picks m ~ S, and sends H := 7(Gy) to verifier
o Verifier picks b ~ {0,1} and sends b to prover
e Upon receiving b, prover does

e If b=0, then prover sends p:=moo (if thereis o s.t. 0(Gp) = G1)
o If b =1, then prover sends p :=m

o Verifier checks that p(Gp) = H
o Note that verifier will not learn isomorphism between Gg and Gp!

@ Note that:

e Claim is true = prover can always give isomorphism!

o Claim is false = can catch bad proof with probability = 1/2

e Can amplify probability of catching bad proof by repeating protocol
above!

65/76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, G1) be the input

66 /76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, G1) be the input

o The simulator M* selects a random string R ~ {0, 1}9(x)

67/76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, Gy) be the input
o The simulator M* selects a random string R ~ {0, 1}9(x)
e M* then picks b ~ {0,1} and m ~ S, and sends 7(Gp) to " verifier”

68/76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, Gy) be the input
o The simulator M* selects a random string R ~ {0, 1}9(x)
e M* then picks b ~ {0,1} and m ~ S, and sends 7(Gp) to " verifier”

e Now, M* simulates V*(x, R, m(Gp)), and "sends” bit b (the outcome
of V*) to " prover”

69 /76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, Gy) be the input
o The simulator M* selects a random string R ~ {0, 1}9(x)
e M* then picks b ~ {0,1} and m ~ S, and sends 7(Gp) to " verifier”

e Now, M* simulates V*(x, R, m(Gp)), and "sends” bit b (the outcome
of V*) to " prover”

o If b= b, then M* halts with output (x, R, 7(Gp),). Else, output L.

70/76

PZK for Graph Isomorphism - Simulator

Protocol:
o Let x := (Gp, Gy) be the input
o The simulator M* selects a random string R ~ {0, 1}9(x)
e M* then picks b ~ {0,1} and m ~ S, and sends 7(Gp) to " verifier”
°

)
Now, M* simulates V*(x, R, m(Gp)), and "sends” bit b (the outcome
of V*) to " prover”

If b= b, then M* halts with output (x, R, 7(Gp), 7). Else, output L.

@ Need to prove: whenever we don't fail, we output same distribution
as the original protocol!

71/76

Proof of same distribution

o Let x = (G, G1) € L, i.e. Gy and G; are isomorphic3
o Let A, := (P, V*)(x) and By := (M*(x) | M*(x) #1).
o Ay, By take values on tuples (x, R, H,)

Note that the bit b that V* (same for M*) sends is determined by
x,R, H,
so no need to include it in the description of the random variable.

3Simplifying assumption: Gy, Gi are asymmetric, i.e., Aut(Gp)= {1}.
72/76

Proof of same distribution

o Let A, := (P, V*)(x) and By := (M*(x) | M*(x) #1).
o Ay, By take values on tuples (x, R, H,)

@ Proof that A, and By are identically distributed:

o Enough to show that for each choice of x € L and R € {0, 1} the
random variables

wi=A(x,R,— —) and v:=B(x,R,—,—)

are identically distributed
o

73/76

Conclusion

@ We saw today how the power of interaction can be used to verify
validity of “proofs” without conveying information about it

74/76

Conclusion

@ We saw today how the power of interaction can be used to verify
validity of “proofs” without conveying information about it

@ Has applications in
o Modern cryptography
Credit Cards

Passwords
Complexity Theory (can use zero-knowledge to construct complexity

classes)
e Used in cryptocurrencies (validate transactions without giving details

about transactions)

75/76

Acknowledgement

@ Lecture based largely on:

e Oded Goldreich’'s Foundations of Cryptography book, Chapter 4

o Oded Goldreich’'s Computational Complexity book, Chapter 9.2

o Berkeley & MIT's 6.875 Lecture 14
https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf

76 /76

https://inst.eecs.berkeley.edu/~cs276/fa20/slides/lec14.pdf

	Why Zero Knowledge?
	Zero-Knowledge Proofs
	Conclusion
	Acknowledgements

