Lecture 20: Hardness of Approximation

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 25, 2024

1 / 72

KO KAR KEK (EK) E YORN

Overview

• [Background and Motivation](#page-2-0)

- [Why Hardness of Approximation?](#page-2-0)
- [How do we prove Hardness of Approximation?](#page-9-0)
- [Hardness of Approximation Example](#page-13-0)
- **[Proofs & Hardness of Approximation](#page-32-0)**
- **•** [Conclusion](#page-69-0)
- **•** [Acknowledgements](#page-70-0)

Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
	- design algorithm which is efficient on "most" instances and always gives us the exact/best answer

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
	- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
	- design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
	- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
	- design (always) efficient algorithm, but finds sub-optimal solutions Approximation Algorithms
	- For $\alpha > 1$, an algorithm is α -approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot \mathit{OPT}$ $(\geq \frac{1}{\alpha} \cdot \mathit{OPT})$.

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
	- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
	- design (always) efficient algorithm, but finds sub-optimal solutions Approximation Algorithms
	- For $\alpha > 1$, an algorithm is α -approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot \mathit{OPT}$ $(\geq \frac{1}{\alpha} \cdot \mathit{OPT})$.
- For some problems, it is possible to prove that even the design of approximation algorithms for certain values of α is impossible, unless $P = NP$ (in which case we would have an exact algorithm).

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
	- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
	- design (always) efficient algorithm, but finds sub-optimal solutions Approximation Algorithms
	- For $\alpha > 1$, an algorithm is α -approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot \mathit{OPT}$ $(\geq \frac{1}{\alpha} \cdot \mathit{OPT})$.
- For some problems, it is possible to prove that even the design of approximation algorithms for certain values of α is impossible, unless $P = NP$ (in which case we would have an exact algorithm).

Hardness of Approximation

• Important to know the limits of efficient algorithms! K ロ X K @ X K 할 X K 할 X T 할 X YO Q @

• [Background and Motivation](#page-2-0)

- [Why Hardness of Approximation?](#page-2-0)
- [How do we prove Hardness of Approximation?](#page-9-0)
- [Hardness of Approximation Example](#page-13-0)
- **[Proofs & Hardness of Approximation](#page-32-0)**
- **•** [Conclusion](#page-69-0)
- **•** [Acknowledgements](#page-70-0)

How do we Prove Hardness of Approximation?

• When we prove that a combinatorial problem C is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a *reduction* that

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem C is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a *reduction* that
	- \bullet maps every YES instance of L to a YES instance of C
	- \bullet maps every NO instance of L to a NO instance of C

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem $\mathcal C$ is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a *reduction* that
	- \bullet maps every YES instance of L to a YES instance of C
	- \bullet maps every NO instance of L to a NO instance of C
- For hardness of approximation what we would like is a (more robust) reduction of the form:
	- \bullet maps every YES instance of L to a YES instance of C
	- \bullet maps every NO instance of L to a VERY-MUCH-NO instance of C

• [Background and Motivation](#page-2-0)

- [Why Hardness of Approximation?](#page-2-0)
- [How do we prove Hardness of Approximation?](#page-9-0)
- [Hardness of Approximation Example](#page-13-0)
- **[Proofs & Hardness of Approximation](#page-32-0)**
- **•** [Conclusion](#page-69-0)
- **•** [Acknowledgements](#page-70-0)

• Input: set of points X and a symmetric distance function

 $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$

. Input: set of points X and a symmetric distance function

 $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$

For any path $p_0 \to p_1 \to \cdots \to p_t$ in X , *length* of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1}d(p_i,p_{i+1})
$$

. Input: set of points X and a symmetric distance function

 $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$

For any path $p_0 \to p_1 \to \cdots \to p_t$ in X , *length* of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d(p_i, p_{i+1})
$$

• Output: find a cycle that reaches all points in X of shortest length.

. Input: set of points X and a symmetric distance function

 $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$

For any path $p_0 \to p_1 \to \cdots \to p_t$ in X , *length* of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d(p_i, p_{i+1})
$$

- \bullet Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
	- Efficient route planning (mail system, shuttle bus pick up and drop off...)

. Input: set of points X and a symmetric distance function

 $d: X \times X \rightarrow \mathbb{R}_{\geq 0}$

For any path $p_0 \to p_1 \to \cdots \to p_t$ in X , *length* of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d(p_i, p_{i+1})
$$

- \bullet Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
	- Efficient route planning (mail system, shuttle bus pick up and drop off...)
- One of the famous NP-complete problems

1 General TSP without repetitions (General TSP-NR)

- **1 General TSP without repetitions (General TSP-NR)**
	- if $P \neq NP$ then there is no poly-time constant-approximation algorithm for General TSP-NR.

- **1 General TSP without repetitions (General TSP-NR)**
	- if $P \neq NP$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
	- More generally, if there is any function $r : \mathbb{N} \to \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$ -approximate General TSP-NR if we assume that $P \neq NP$

- **1 General TSP without repetitions (General TSP-NR)**
	- if $P \neq NP$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
	- More generally, if there is any function $r : \mathbb{N} \to \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$ -approximate General TSP-NR if we assume that $P \neq NP$
- 2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

- **1 General TSP without repetitions (General TSP-NR)**
	- if $P \neq NP$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
	- More generally, if there is any function $r : \mathbb{N} \to \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$ -approximate General TSP-NR if we assume that $P \neq NP$
- 2 How does one prove any such hardness of approximation?

By reduction to another NP-hard problem.

³ In our case, let's reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with α -approximation, then $P = NP$.

• Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle C which passes through every vertex at most once.

• Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle C which passes through every vertex at most once.

² Proof:

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
	- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
	- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

•
$$
w(u, v) = \begin{cases} 1, & \text{if } \{u, v\} \in E \\ (1 + \alpha) \cdot |V|, & \text{if } \{u, v\} \notin E \end{cases}
$$

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
	- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

•
$$
w(u, v) = \begin{cases} 1, & \text{if } \{u, v\} \in E \\ (1 + \alpha) \cdot |V|, & \text{if } \{u, v\} \notin E \end{cases}
$$

 \bullet If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq |V|$

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
	- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

•
$$
w(u, v) = \begin{cases} 1, & \text{if } \{u, v\} \in E \\ (1 + \alpha) \cdot |V|, & \text{if } \{u, v\} \notin E \end{cases}
$$

- \bullet If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq |V|$
- **6** If G has no Hamiltonian Cycle, then OPT for TSP must use an edge not in V, thus value is $\geq (1+\alpha) \cdot |V|$

- **Hamiltonian Cycle Problem:** given a graph $G(V, E)$, decide whether there exists a cycle $\mathcal C$ which passes through every vertex at most once.
- ² Proof:
- **3** If we had an algorithm M which solved the α -approximate TSP without repetition problem, then
	- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
	- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

•
$$
w(u, v) = \begin{cases} 1, & \text{if } \{u, v\} \in E \\ (1 + \alpha) \cdot |V|, & \text{if } \{u, v\} \notin E \end{cases}
$$

- \bullet If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq |V|$
- **6** If G has no Hamiltonian Cycle, then OPT for TSP must use an edge not in V, thus value is $\geq (1+\alpha) \cdot |V|$
- **•** Thus, M on input H will output a Hamiltonian Cycle of G, if G has one, or it will output a solution with value $\geq (1+\alpha) \cdot |V|$

KO K K (D) K E K K E K (D) K G K K K K K K

• [Background and Motivation](#page-2-0)

- [Why Hardness of Approximation?](#page-2-0)
- [How do we prove Hardness of Approximation?](#page-9-0)
- [Hardness of Approximation Example](#page-13-0)

• [Proofs & Hardness of Approximation](#page-32-0)

- **•** [Conclusion](#page-69-0)
- **•** [Acknowledgements](#page-70-0)

Complexity Classes

NP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)} \text{ s.t. } V(x,y) = 1
$$

Complexity Classes

NP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)} \text{ s.t. } V(x,y) = 1
$$

BPP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine M , such that for every $x \in \{0,1\}^*$, we have

$$
\Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = L(x)] \geq 2/3
$$

Complexity Classes

NP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)} \text{ s.t. } V(x,y) = 1
$$

BPP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine M , such that for every $x \in \{0,1\}^*$, we have

$$
\Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = L(x)] \ge 2/3
$$

RP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine M, such that:

$$
x \in L \Rightarrow \Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = 1] \ge 2/3
$$

$$
x \notin L \Rightarrow \Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = 1] = 0
$$

K ロ メ イ 団 メ マ ヨ メ ス ヨ メ ニ ヨ 36 / 72
Complexity Classes

NP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)} \text{ s.t. } V(x,y) = 1
$$

BPP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine M , such that for every $x \in \{0,1\}^*$, we have

$$
\Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = L(x)] \ge 2/3
$$

RP: Set of languages $L \subseteq \{0,1\}^*$ such that there exists a poly-time Turing Machine M, such that:

$$
x \in L \Rightarrow \Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = 1] \ge 2/3
$$

$$
x \notin L \Rightarrow \Pr_{R \in \{0,1\}^{\text{poly}(|x|)}}[M(x,R) = 1] = 0
$$

 ${\sf co}\text{-}{\sf RP}\text{:}$ languages $L\subseteq \{0,1\}^*$ s.t. $\overline{L}\in \mathit{RP}$

- **4** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification

- **1** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")

A proof system looks like this:

- **4** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")

41 / 72

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

3 A prover writes down a proof of the statement

- **4** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
- **3** A prover writes down a proof of the statement
- **4** The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.

- **4** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
- **3** A prover writes down a proof of the statement
- **4** The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
- **5** NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any deterministic, poly-time Turing Machine

- **1** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
- **3** A prover writes down a proof of the statement
- **4** The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
- **5** NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any deterministic, poly-time Turing Machine
	- Given an element x , the prover gives a proof (also known as witness) $w \in \{0, 1\}^{poly(|x|)}$

- **4** A prover and a verifier agree on the following:
	- The prover must provide proofs in a certain format
	- The verifier can use algorithms from a certain complexity class for verification
- ² A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
- **3** A prover writes down a proof of the statement
- **4** The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
- **5** NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any deterministic, poly-time Turing Machine
	- Given an element x , the prover gives a proof (also known as witness) $w \in \{0, 1\}^{poly(|x|)}$
	- Verifier picks a poly-time Turing Machine V and outputs \int TRUE, if $V(x, w) = 1$ FALSE, otherwise

- **1** Two parameters (aside from efficiency):
	- Completeness: *correct* statements have a proof in the system
	- Soundness: *false* statements do not have a proof in the system

- **1** Two parameters (aside from efficiency):
	- Completeness: *correct* statements have a proof in the system
	- Soundness: *false* statements do not have a proof in the system
- ² NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any poly-time Turing Machine
	- Given an element x , the prover gives a proof (also known as witness) $w \in \{0,1\}^{\text{poly}(|x|)}$
	- Verifier picks a deterministic, poly-time Turing Machine V and outputs \int TRUE, if $V(x, w) = 1$ FALSE, otherwise

- **1** Two parameters (aside from efficiency):
	- Completeness: *correct* statements have a proof in the system
	- Soundness: *false* statements *do not have a proof* in the system
- ² NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any poly-time Turing Machine
	- Given an element x , the prover gives a proof (also known as witness) $w \in \{0,1\}^{\text{poly}(|x|)}$
	- Verifier picks a deterministic, poly-time Turing Machine V and outputs \int TRUE, if $V(x, w) = 1$ FALSE, otherwise
	- **Completeness:** $x \in L \Rightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}$ such that $V(x, w) = 1$

- **1** Two parameters (aside from efficiency):
	- Completeness: *correct* statements have a proof in the system
	- Soundness: *false* statements *do not have a proof* in the system
- ² NP as a proof system:
	- $L \subseteq \{0,1\}^n$ is the language, verifier can use any poly-time Turing Machine
	- Given an element x , the prover gives a proof (also known as witness) $w \in \{0,1\}^{\text{poly}(|x|)}$
	- Verifier picks a deterministic, poly-time Turing Machine V and outputs \int TRUE, if $V(x, w) = 1$ FALSE, otherwise
	- **Completeness:** $x \in L \Rightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}$ such that $V(x, w) = 1$
	- **Soundness:** $x \notin L \Rightarrow \forall w \in \{0,1\}^{\text{poly}(|x|)}$ we have $V(x,w) = 0$

What if we allow our verifier to run a randomized algorithm?

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V for which:

1 Given language *L* (the language of correct statements)

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V for which:

52 / 72

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

- **1** Given language L (the language of correct statements)
- ? $x \in L$ ⇒ there exists proof w such that $Pr[V^w(x) = 1] = 1$

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V for which:

- **1** Given language *L* (the language of correct statements)
- ? $x \in L$ ⇒ there exists proof w such that $Pr[V^w(x) = 1] = 1$
- $\textbf{3}\;\times\mathcal{L}\;L \Rightarrow \text{for any "proof" } \textit{w}, \text{ we have } \Pr[\textit{V}^{\textit{w}}(\textit{x})=1] \leq 1/2$

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V for which:

- **1** Given language *L* (the language of correct statements)
- ? $x \in L$ ⇒ there exists proof w such that $Pr[V^w(x) = 1] = 1$
- $\textbf{3}\;\times\mathcal{L}\;L \Rightarrow \text{for any "proof" } \textit{w}, \text{ we have } \Pr[\textit{V}^{\textit{w}}(\textit{x})=1] \leq 1/2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* consists of languages L that have a *randomized poly-time* verifier V such that

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V for which:

 \bullet Given language L (the language of correct statements)

? $x \in L$ ⇒ there exists proof w such that $Pr[V^w(x) = 1] = 1$

 $\textbf{3}\;\times\mathcal{L}\;L \Rightarrow \text{for any "proof" } \textit{w}, \text{ we have } \Pr[\textit{V}^{\textit{w}}(\textit{x})=1] \leq 1/2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* consists of languages L that have a *randomized poly-time* verifier V such that

•
$$
x \in L \Rightarrow \exists
$$
 proof w such that $Pr[V^w(x) = 1] = 1$

? $x \notin L$ ⇒ \forall "proof" w , we have $\mathsf{Pr}[V^w(x) = 1] \leq 1/2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* (PCP) consists of languages *L* that have a randomized poly-time verifier V such that

 $1 \times 1 \Rightarrow$ there exists proof w such that $\Pr[V^w(x) = 1] = 1$

 $2\!\!\rightarrow$ $\!\!\times$ $\!\not\in$ $\!L$ \Rightarrow for any proof w , we have $\Pr[V^w(x) = 1] \leq 1/2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* (PCP) consists of languages L that have a randomized poly-time verifier V such that

- $1 \times 1 \Rightarrow$ there exists proof w such that $\Pr[V^w(x) = 1] = 1$
- $2\!\!\rightarrow$ $\!\!\times$ $\!\not\in$ $\!L$ \Rightarrow for any proof w , we have $\Pr[V^w(x) = 1] \leq 1/2$
- $PCP[r(n), q(n)]$ consists of all languages $L \in PCP$ such that, on inputs x of length n

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* (PCP) consists of languages L that have a randomized poly-time verifier V such that

- $1 \times 1 \Rightarrow$ there exists proof w such that $\Pr[V^w(x) = 1] = 1$
- $2\!\!\rightarrow$ $\!\!\times$ $\!\not\in$ $\!L$ \Rightarrow for any proof w , we have $\Pr[V^w(x) = 1] \leq 1/2$
- $PCP[r(n), q(n)]$ consists of all languages $L \in PCP$ such that, on inputs x of length n
	- **1** Uses $O(r(n))$ random bits
	- 2 Examines $O(q(n))$ bits of a proof w

Note that *n* does not depend on w , only on x .

Definition (Probabilistic Checkable Proofs (PCPs))

The class of *Probabilistic Checkable Proofs* (PCP) consists of languages L that have a randomized poly-time verifier V such that

- \textbf{D} $x \in L \Rightarrow$ there exists proof w such that $\Pr[V^w(x) = 1] = 1$
- $2\!\!\rightarrow$ $\!\!\times$ $\!\not\in$ $\!L$ \Rightarrow for any proof w , we have $\Pr[V^w(x) = 1] \leq 1/2$
- $PCP[r(n), q(n)]$ consists of all languages $L \in PCP$ such that, on inputs x of length n
	- **1** Uses $O(r(n))$ random bits
	- 2 Examines $O(q(n))$ bits of a proof w

Note that *n* does not depend on w , only on x .

Theorem (PCP theorem [\[AS'98,](#page-71-0) [ALMSS'98\]](#page-71-1)) PCP [$log n, 1$] = NP

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

Definition (Max 3SAT)

- **Input:** a 3CNF formula φ on boolean variables x_1, \ldots, x_n and m clauses
- **Output:** the maximum number of clauses of φ which can be simultaneously satisfied.

Theorem

- **1** The PCP theorem implies that there is an $\varepsilon > 0$ such that there is no polynomial time $(1 + \varepsilon)$ -approximation algorithm for Max 3SAT, unless $P = NP$.
- **2** Moreover, if Max 3SAT is hard to approximate within a factor of $(1 + \varepsilon)$, then the PCP theorem holds.
	- In other words, the PCP theorem and the hardness of approximation of Max 3SAT are equivalent.

1 Let us assume the PCP theorem holds.

- Let $L \in PCP[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant

1 Let us assume the PCP theorem holds.

- Let $L \in PCP[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
- ² We now describe a reduction from L to Max 3SAT which has a gap.

- **1** Let us assume the PCP theorem holds.
	- Let $L \in PCP[\log n, 1]$ be an NP-complete problem.
	- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
- ² We now describe a reduction from L to Max 3SAT which has a gap.
- **3** Given an instance x of problem L, we construct 3CNF formula φ_x with m clauses such that, for some ε we have
	- $x \in L \Rightarrow \varphi_x$ is satisfiable
	- $x \notin L \Rightarrow$ no assignment satisfies more than $(1 \varepsilon) \cdot m$ clauses of φ_x

- **1** Let us assume the PCP theorem holds.
	- Let $L \in PCP[\log n, 1]$ be an NP-complete problem.
	- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
- ² We now describe a reduction from L to Max 3SAT which has a gap.
- **3** Given an instance x of problem L, we construct 3CNF formula φ_x with m clauses such that, for some ε we have
	- $x \in L \Rightarrow \varphi_x$ is satisfiable
	- $x \notin L \Rightarrow$ no assignment satisfies more than $(1 \varepsilon) \cdot m$ clauses of φ_x

 \bullet Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.

- \bullet Enumerate all random inputs R for the verifier V.
	- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
	- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.

- \bullet Enumerate all random inputs R for the verifier V.
	- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
	- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.

66 / 72

- **2** Simulate the computation f_R of the verifier for different random inputs R and witnesses w as a Boolean formula.
	- \bullet Can be done with a CNF of size 29
	- Converting to 3CNF we get a formula of size $q \cdot 2^q$

- \bullet Enumerate all random inputs R for the verifier V.
	- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
	- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.
- **2** Simulate the computation f_R of the verifier for different random inputs R and witnesses w as a Boolean formula.
	- \bullet Can be done with a CNF of size 29
	- Converting to 3CNF we get a formula of size $q \cdot 2^q$
- **3** Let φ_x be the 3CNF we get by putting together all the 3CNFs constructed above

- \bullet Enumerate all random inputs R for the verifier V.
	- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
	- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.
- **2** Simulate the computation f_R of the verifier for different random inputs R and witnesses w as a Boolean formula.
	- \bullet Can be done with a CNF of size 29
	- Converting to 3CNF we get a formula of size $q \cdot 2^q$
- **3** Let φ_x be the 3CNF we get by putting together all the 3CNFs constructed above
- \bigodot If $x \in L$ then there is a witness w such that $V(x, w)$ accepts for every random string R. In this case, φ_x is satisfiable!

- \bullet Enumerate all random inputs R for the verifier V.
	- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is $poly(n)$.
	- For each R, V chooses q positions i_1^R, \ldots, i_q^R and a boolean function $f_R: \{0,1\}^q \rightarrow \{0,1\}$ and accepts iff $f_R(w_{i_1^R}, \ldots, w_{i_q^R}) = 1$.
- **2** Simulate the computation f_R of the verifier for different random inputs R and witnesses w as a Boolean formula.
	- \bullet Can be done with a CNF of size 29
	- Converting to 3CNF we get a formula of size $q \cdot 2^q$
- **3** Let φ_x be the 3CNF we get by putting together all the 3CNFs constructed above
- \bigodot If $x \in L$ then there is a witness w such that $V(x, w)$ accepts for every random string R. In this case, φ_x is satisfiable!
- **If** $x \notin L$ then the verifier says NO for half of the random strings R.
	- For each such random string, at least one of its clauses fails

• Thus at least
$$
\varepsilon = \frac{1}{2 \cdot q \cdot 2^q}
$$
 of the clauses of φ_x fails.

Conclusion

- Important to study hardness of approximation for NP-hard problems
- Different hard problems have different approximation parameters
- For hardness of approximation, need more *robust reductions* between combinatorial problems
- Proof systems, in particular *Probabilistic Checkable Proofs*, allows us to get such strong reductions
- Many more applications in computer science and industry!
	- Program Checking (for software engineering)
	- Zero-knowledge proofs in cryptocurrencies
	- many more...

Acknowledgement

- Lecture based largely on:
	- Section's 1-3 of Luca's survey [\[Trevisan 2004\]](#page-71-2)
	- [\[Motwani & Raghavan 2007,](#page-71-3) Chapter 7]
- See Luca's survey <https://arxiv.org/pdf/cs/0409043>

References I

Trevisan, Luca (2004)

Inapproximability of combinatorial optimization problems.

arXiv preprint cs/0409043 (2004).

Motwani, Rajeev and Raghavan, Prabhakar (2007) Randomized Algorithms

Arora, Sanjeev, and Shmuel Safra (1998)

Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.

Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy (1998)

Proof verification and the hardness of approximation problems.

Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.