Proppnition: If
$$
\Pi_{k}^{P} \in \Sigma_{k}^{P}
$$
 than $PH \in \Sigma_{k}^{P}$.
\nAim:**l** and Π_{0}^{P} , $\Pi_{k}^{P} \in \Pi_{k}^{P}$ then $PH \in \Pi_{k}^{P}$.
\nTheorem (Karp-Lipten): $NP \in P_{poly} \Rightarrow PH = \Sigma_{2}^{P}$.
\nProve: By above proposition, enough to prove that
\n $NP \in P_{poly} \Rightarrow \Pi_{2}^{P} \in \Sigma_{2}^{P}$.
\nIn particular, **which** to show $\Pi_{2}SAT \in \Sigma_{2}^{P}$
\n $\Pi_{2}SAT := \{ \langle \emptyset \rangle \text{ and } \Pi_{1}SAT \in \Sigma_{2}^{P}$
\n $\Pi_{2}SAT := \{ \langle \emptyset \rangle \text{ and } \Pi_{2}G \text{ and } \Pi_{1}SAT \in \Sigma_{2}^{P}$
\n $MP \in P_{poly} \Rightarrow \exists \text{ each and a circuit family } C = \{C_{n}|_{n>1}^{P}$.
\n $MP \in P_{poly} \Rightarrow \exists \text{ each and a circuit family } C = \{C_{n}|_{n>1}^{P}$.
\n $CP = \{N_{1}^{P}$ and Q_{n}^{P} are not a circuit.

Note that NP = Prody simply guarantees in creation of in SIZE (n^{2c}). However we can use the 3 quantifier in Σ^P_ν to "guess" \vec{r} as follows: for Δ_L is g
for Δ_L is g Δ_T Δ_T $(n) \le \delta \cdot n^{2c}$ $\forall n \in \mathbb{N}$. Bet $\sigma \in \mathbb{N}$ of the following language in Σ_2^P :

$$
L := \left\{ \begin{matrix} (p') & \frac{3}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{matrix} \right\} \xrightarrow{3}{\omega \in \{0,1\}}^{\text{3}{\text{max}}} \text{ where } \omega \in \{0,1\}^{\text{max}} \text{ is } \omega \text{ and } \omega \text{ is } \omega \text{ and } \omega \text{ is } \omega \text{ and } \omega \text{ is } \omega \text{
$$

Note that $\phi \in \Pi_2 SAT \implies \phi \in L$, as we can take $w = P_n$ and $P_n(\phi, u)$ always out put a satisfying onignment to $p(u,-)$. Now, if $\phi \notin \mathbb{T}_2$ SAT thm $\exists u \in \{0,1\}^n$ s.1. $n \in V \in \{0,1\}^n$ satisfies $\phi(u,-) \Rightarrow \phi \notin L$. \therefore π_{2} SAT \leq_{P} $L \Rightarrow \pi_{2}^{P} = \sum_{i} P_{i}$ $\mathsf{\Pi}$