Properition: If
$$T_{k}^{P} \in \Sigma_{k}^{P}$$
 then $PH = \Sigma_{k}^{P}$.
Aivnillarly, if $\Sigma_{k}^{P} \in T_{k}^{P}$ then $PH = T_{k}^{P}$.
Theorem $(karp - Lipton): NP \in P_{poly} \Rightarrow PH = \Sigma_{2}^{P}$.
Proof: By above proposition, enough to prove that
 $NP \subseteq P_{poly} \Rightarrow T_{2}^{P} \in \Sigma_{2}^{P}$.
In particular, suffices to show $T_{2}SAT \in \Sigma_{2}^{P}$.
 $T_{2}SAT := \{\langle \varphi \rangle \} 2CNF \mid \forall u \in \{0,1\}^{N} \exists v \in \{0,1\}^{N} \text{ s.t. } \emptyset(a,v) = 1\}$
 $NP \in P_{poly} \Rightarrow \exists c \in \mathbb{N} \text{ and } a \text{ circuit family } C = \{Cnl_{n2}, in \\ SEZE(n^{C}) \text{ s.t. for every } 2CNF \emptyset \text{ and} \\ u \in \{0,1\}^{N} Cn(\emptyset, u) = L \text{ iff } \exists v \in \{0,1\}^{N} \text{ s.t.} \\ \emptyset(u,v) = L$.
From the family C, we can construct eincuit family $T^{1} := \{F_{n}\}_{n22}$
in SEZE(n^{2c}) s.t. $T_{n}(\emptyset, u)$ outputs a satisfying ansignment v
in core one exists.
Nek that $NP \leq P_{poly}$ simply guarantees the existence of T

Note that $NP \leq P_{Ipsly}$ simply granamics in $CP \leq (n^{2c})$. However we can use the \exists quantifier in $\sum_{l}^{P} \pm 0$ "guess" P as follows: bet $\forall \in IN$ be s.t. $s_{p}(n) \leq \vartheta \cdot n^{2c} \quad \forall n \in IN \cdot$ Then, consider the following language in \sum_{l}^{P} :

Note that $\varphi \in \Pi_2 SAT \implies \varphi \in L$, as we can take $\omega = \Gamma_n$ and $\Gamma_n(\varphi_i u)$ always outputs a satisfying assignment to $\varphi(u_i -)$. Now, if $\varphi \notin \Pi_2 SAT$ then $\exists u \in \{0_i\}^n$ s.t. no $v \in \{0_i\}^n$ satisfies $\varphi(u_i -) \implies \varphi \notin L$. $\therefore \Pi_2 SAT \leq pL \implies \Pi_2^p = \Sigma_2^p$.