Lecture 23: Distributed Algorithms

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 27, 2023

イロン イロン イヨン イヨン 三日

1/66

Overview

- Distributed Computing: The Models
- Consensus with Byzantine Failures
- Conclusion
- Acknowledgements

• Algorithms which run on a network, or multiprocessors within a computer which share memory

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
 - Resource Management
 - Data Management and Transmission
 - Synchronization
 - Consensus
 - many more

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
 - Resource Management
 - Data Management and Transmission
 - Synchronization
 - Consensus
 - many more
- Challenges in this setting:
 - Concurrent Activity
 - Uncertainty of order of events
 - Failure and recovery of processors or channels

- Algorithms which run on a network, or multiprocessors within a computer which share memory
- Problems they solve:
 - Resource Management
 - Data Management and Transmission
 - Synchronization
 - Consensus
 - many more
- Challenges in this setting:
 - Concurrent Activity
 - Uncertainty of order of events
 - Failure and recovery of processors or channels
- Many models
 - Memory & Communication: shared memory, message-passing
 - *Timing*: synchronous (rounds), asynchronous, partially synchronous (bounds on message delay, processor speeds, clock rates)
 - Failures: processor (stop, Byzantine), communication (message loss/altered), system state corruption

- processors are vertices of directed graph
 - *Memory*: each processor has its own memory
 - *Communication*: each processor can send messages to its *outgoing* neighbours
 - Timing: processors communicate in synchronous rounds
 - Failures: may or may not have failures (different settings today)

- processors are vertices of directed graph
 - *Memory*: each processor has its own memory
 - *Communication*: each processor can send messages to its *outgoing* neighbours
 - Timing: processors communicate in synchronous rounds
 - Failures: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp

- processors are vertices of directed graph
 - Memory: each processor has its own memory
 - *Communication*: each processor can send messages to its *outgoing* neighbours
 - Timing: processors communicate in synchronous rounds
 - Failures: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp
- For each vertex $i \in [n]$, a processor consists of:
 - $S_i =$ non-empty set of states
 - σ_i = a start state

•
$$\mu_i : S_i \times out_i \rightarrow \Sigma \cup \{\bot\}$$

• $\tau_i: S_i \times (\Sigma \cup \{\bot\})^{in_i} \to S_i$

Message function Transition function

9/66

イロト 不得 トイヨト イヨト 二日

- processors are vertices of directed graph
 - *Memory*: each processor has its own memory
 - *Communication*: each processor can send messages to its *outgoing* neighbours
 - *Timing*: processors communicate in synchronous rounds
 - *Failures*: may or may not have failures (different settings today)
- Σ is the message alphabet, plus special symbol \perp
- For each vertex $i \in [n]$, a processor consists of:
 - S_i = non-empty set of states
 - $\sigma_i = a$ start state
 - $\mu_i : S_i \times out_i \to \Sigma \cup \{\bot\}$ Message function
 - $\tau_i: S_i \times (\Sigma \cup \{\bot\})^{in_i} \to S_i$

Transition function

- Complexity Measure: number of rounds (total data communicated) needed to solve problem
 - processors have unlimited internal resources (i.e., can compute anything)
 - For today, will assume each processor deterministic

- Input: network of processors
- Output: want to distinguish exactly one process, as the *leader*

- Input: network of processors
- Output: want to distinguish exactly one process, as the *leader*
- Motivation: leader can take charge of
 - communication
 - coordination
 - allocating resources
 - other tasks

- Input: network of processors
- Output: want to distinguish exactly one process, as the *leader*
- Motivation: leader can take charge of
 - communication
 - coordination
 - allocating resources
 - other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)

- Input: network of processors
- Output: want to distinguish exactly one process, as the *leader*
- Motivation: leader can take charge of
 - communication
 - coordination
 - allocating resources
 - other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)
- Fact: all processors identical (same set of states and transition functions) and deterministic then it is *impossible* to elect a leader!

- Input: network of processors
- Output: want to distinguish exactly one process, as the *leader*
- Motivation: leader can take charge of
 - communication
 - coordination
 - allocating resources
 - other tasks
- Simple case: ring network, bi-directional communication
- processors numbered clockwise (but they don't know their numbers)
- Fact: all processors identical (same set of states and transition functions) and deterministic then it is *impossible* to elect a leader!
- To show this, simply look at execution and check that all processors will always be at identical states.

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
 - When processor receives UID, compares it with its own
 - if it is bigger, pass it on
 - if smaller, discard
 - equal \Rightarrow processor declares itself leader
 - leader then notifies everyone else (by message relaying in network)

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
 - When processor receives UID, compares it with its own
 - if it is bigger, pass it on
 - if smaller, discard
 - equal \Rightarrow processor declares itself leader
 - leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
 - When processor receives UID, compares it with its own
 - if it is bigger, pass it on
 - if smaller, discard
 - equal \Rightarrow processor declares itself leader
 - leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After *n* rounds, element with maximum UID will declare itself the leader (and no other processor will)

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
 - When processor receives UID, compares it with its own
 - if it is bigger, pass it on
 - if smaller, discard
 - equal \Rightarrow processor declares itself leader
 - leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After *n* rounds, element with maximum UID will declare itself the leader (and no other processor will)
- Complexity:
 - Number of rounds: O(n)
 - Communication: $O(n^2)$

- Let's assume that each processor also has a unique ID (UID)
- But they don't know size of the network (i.e. *n*)
 - Idea: each processor sends its UID in a message, to be relayed step-by-step around the ring.
 - When processor receives UID, compares it with its own
 - if it is bigger, pass it on
 - if smaller, discard
 - equal \Rightarrow processor declares itself leader
 - leader then notifies everyone else (by message relaying in network)
- Algorithm terminates, and elects leader with largest UID
- After *n* rounds, element with maximum UID will declare itself the leader (and no other processor will)
- Complexity:
 - Number of rounds: O(n)
 - Communication: $O(n^2)$
- Can reduce communication to $O(n \log n)$ by successively doubling (see reference)

• Distributed Computing: The Models

• Consensus with Byzantine Failures

Conclusion

Acknowledgements

• Several generals and their armies surround an enemy city

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
 - Unreliable, as messenger can get lost or captured
 - Routes between bases are undirected graph, known to all generals
 - know bound on time it takes for message to be delivered successfully

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
 - Unreliable, as messenger can get lost or captured
 - Routes between bases are undirected graph, known to all generals
 - know bound on time it takes for message to be delivered successfully
- For them to attack, all generals must agree to attack

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
 - Unreliable, as messenger can get lost or captured
 - Routes between bases are undirected graph, known to all generals
 - know bound on time it takes for message to be delivered successfully
- For them to attack, *all generals* must <u>agree to attack</u>
- Model: synchronous model, arbitrary number of message failures.

- Several generals and their armies surround an enemy city
- Generals want to plan a coordinated attack to an enemy
- Some generals may not have their armies ready...
- Generals can communicate by sending messengers to others' bases
 - Unreliable, as messenger can get lost or captured
 - Routes between bases are undirected graph, known to all generals
 - know bound on time it takes for message to be delivered successfully
- For them to attack, *all generals* must agree to attack
- Model: synchronous model, arbitrary number of message failures.
- Input: Each processor has one bit. 1 (attack) or 0 (don't attack)
- **Output**: all should have *same decision bit b* satisfying *weak validity*.
 - if all processors start with bit 0, then 0 is only allowed decision 1
 - if all start with 1 and *all messages successfully delivered*, then 1 is the only allowed decision.

¹Strong validity: if at least one general has bit 0, then 0 is only allowed decision $9 \circ 0$

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- $\bullet\,$ In the end $\to\,$ have to make a decision without communicating

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- $\bullet\,$ In the end $\rightarrow\,$ have to make a decision without communicating
- Not very illuminating.

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- $\bullet\,$ In the end $\to\,$ have to make a decision without communicating
- Not very illuminating.

- Two types of failures:
 - Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
 - *Byzantine Failures*: some generals <u>dishonest</u>. Similar to malicious attacker in a network.

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- $\bullet\,$ In the end $\to\,$ have to make a decision without communicating
- Not very illuminating.

- Two types of failures:
 - Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
 - *Byzantine Failures*: some generals <u>dishonest</u>. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- ullet In the end \to have to make a decision without communicating
- Not very illuminating.

- Two types of failures:
 - Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
 - *Byzantine Failures*: some generals <u>dishonest</u>. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.
- Output: all non-faulty processors should terminate and have
 - Agreement: same decision bit b
 - Weak Validity: if all non-faulty processors start with bit a, then b must be equal to a.

- Unbounded message failures \Rightarrow impossible, even for 2 generals
- $\bullet\,$ In the end $\to\,$ have to make a decision without communicating
- Not very illuminating.

- Two types of failures:
 - Stopping Failures: all generals honest, but some may not be able to communicate at all (node crash in network)
 - *Byzantine Failures*: some generals <u>dishonest</u>. Similar to malicious attacker in a network.
- Input: Each processor has one bit of input. 1 (attack) or 0 (don't attack). Faulty processors can behave arbitrarily.
- Output: all non-faulty processors should terminate and have
 - Agreement: same decision bit b
 - Weak Validity: if all non-faulty processors start with bit a, then b must be equal to a.
- Complexity measures: *number of rounds* & *communication* (# messages exchanged in bit-size).

• Assume all vertices can talk to any other vertex ("broadcast" setting)

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work violated the *agreement* property!

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work violated the *agreement* property!
- New Idea: make all nodes gossip!
 Each node now will keep track of what each node has told another and so on...
- At each round, each vertex broadcasts its knowledge
- After a number of rounds, everyone must make a decision

- Assume all vertices can talk to any other vertex ("broadcast" setting)
- First attempt: simply send our value to other nodes (if non-faulty), then take majority.
- Well, that didn't work violated the *agreement* property!
- New Idea: make all nodes gossip!
 Each node now will keep track of what each node has told another and so on...
- At each round, each vertex broadcasts its knowledge
- After a number of rounds, everyone must make a decision
- Does this work?
- How many rounds do we need?
- How many Byzantine failures can it tolerate?

- 3 vertices $\{v_1, v_2, v_3\}$, 1 faulty vertex
- Scenario 1: v_1 , v_2 good with value 1, v_3 faulty with value 0
 - Round 1: all vertices truthful
 - **2** Round 2: v_3 lies to v_1 , saying that v_2 said 0, all other communications truthful
 - 3 Validity $\Rightarrow v_1, v_2$ must decide 1

- 3 vertices $\{v_1, v_2, v_3\}$, 1 faulty vertex
- Scenario 2: v_2 , v_3 good with value 0, v_1 faulty with value 1
 - Round 1: all vertices truthful
 - **2** Round 2: v_1 lies to v_3 , saying that v_2 said 1, all other communications truthful
 - 3 Validity $\Rightarrow v_2, v_3$ must decide 0

- 3 vertices $\{v_1, v_2, v_3\}$, 1 faulty vertex
- Scenario 3: v_1 , v_3 good with values 1, 0 (resp.), v_2 faulty with value 0
 - **1** Round 1: v_2 tells v_1 its value is 1, tells v_3 its value is 0
 - 2 Round 2: all truthful

- 3 vertices $\{v_1, v_2, v_3\}$, 1 faulty vertex
- Scenario 1: v_1 , v_2 good with value 1, v_3 faulty with value 0
 - Round 1: all vertices truthful
 - **2** Round 2: v_3 lies to v_1 , saying that v_2 said 0, all other communications truthful
 - I Validity $\Rightarrow v_1, v_2$ must decide 1
- Scenario 2: v_2 , v_3 good with value 0, v_1 faulty with value 1
 - Round 1: all vertices truthful
 - **2** Round 2: v_1 lies to v_3 , saying that v_2 said 1, all other communications truthful
 - 3 Validity $\Rightarrow v_2, v_3$ must decide 0
- Scenario 3: v₁, v₃ good with values 1, 0 (resp.), v₂ faulty with value 0
 Round 1: v₂ tells v₁ its value is 1, tells v₃ its value is 0
 Round 2: all truthful
- Scenarios 1 and 3 identical to v_1 , so it must return 1
- Scenarios 2 and 3 identical to v_3 , so it must return 0
- Contradicts agreement in Scenario 3!

45 / 66

(validity)

(validity)

イロト 不得 トイヨト イヨト ヨー うらつ

• Assumption: n > 3f (number of bad vertices < third total vertices)

²It turns out that $n \leq 3f \Rightarrow$ no algorithm can reach consensus \rightarrow (\equiv) ((\equiv) (\equiv) ((\equiv) (((

- Assumption:² n > 3f (number of bad vertices < third total vertices)
- How to perfectly gossip?

² It turns out that $n \leq 3f \Rightarrow$ no algorithm can reach consensus! $\triangleright \in \mathbb{P} \land \mathbb{P} \land \mathbb{P} \land \mathbb{P}$ 47/66

- Assumption:² n > 3f (number of bad vertices < third total vertices)
- How to perfectly gossip?
- Data structure: Exponential Information Gathering (EIG) tree $T_{n,f}$
 - Depth: f + 1 (so f + 2 node levels)
 - Each tree node at level k + 1 labeled by string $i_1 i_2 \cdots i_k$ $(i_a \neq i_b)$

²It turns out that $n \leq 3f \Rightarrow$ no algorithm can reach consensuse \rightarrow (E) (E) (E) (C)

- Assumption:² n > 3f (number of bad vertices < third total vertices)
- How to perfectly gossip?
- Data structure: *Exponential Information Gathering* (EIG) tree $T_{n,f}$
 - Depth: f + 1 (so f + 2 node levels)
 - Each tree node at level k + 1 labeled by string $i_1 i_2 \cdots i_k$ $(i_a \neq i_b)$
 - Node $i_1 i_2 \cdots i_k$ will store value v if the following happens: i_k told you that i_{k-1} told i_k that i_{k-2} told i_{k-1} ... that i_1 told i_2 that its initial value was v

²It turns out that $n \leq 3f \Rightarrow$ no algorithm can reach consensus!

() Each vertex has own EIG tree $T_{n,f}$, with root labeled by its own value

- **(**) Each vertex has own EIG tree $T_{n,f}$, with root labeled by its own value
- **2** Relay messages for f + 1 rounds
 - At round r, each vertex sends the values of level r of its EIG tree
 - Each vertex decorates values of its (r + 1)th level with values from messages

- **(**) Each vertex has own EIG tree $T_{n,f}$, with root labeled by its own value
- 2 Relay messages for f + 1 rounds
 - At round r, each vertex sends the values of level r of its EIG tree
 - Each vertex decorates values of its (r + 1)th level with values from messages
- After f + 1 rounds, redecorate tree bottom-up, taking strict majority of children (otherwise set value of tree node to ⊥)

EIG Algorithm - Example

- *n* = 4, *f* = 1
- p_3 is faulty, initial values are $p_1 = p_2 = 1$, $p_3 = p_4 = 0$
- round 1: p_3 lies to p_2 and p_4
- round 2: p_3 lies to p_2 about p_1 and lies to p_1 about p_2

Lemma (Consistency of Non-Faulty Messages)

If i, j, k are non-faulty, then $T_i(x) = T_j(x)$ whenever label x ends with k.

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

• Base case: if x is the label of leaf, previous lemma handles it.

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x| = t \le f$
 - By induction, if ℓ is a non-faulty element the new value of T_i(x ℓ) is the same for any i ∈ [n].

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x| = t \le f$
 - By induction, if ℓ is a non-faulty element the new value of T_i(x ℓ) is the same for any i ∈ [n].
 - So label x has same labeled children across trees (if x_{ℓ} honest)

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x| = t \le f$
 - By induction, if ℓ is a non-faulty element the new value of T_i(x ℓ) is the same for any i ∈ [n].
 - So label x has same labeled children across trees (if x_{ℓ} honest)
 - Number of children of *x*:

$$= n - t > 3f - f = 2f$$

59 / 66

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j the new values of $T_i(x)$ and $T_j(x)$ are the same.

- Base case: if x is the label of leaf, previous lemma handles it.
- Inductive step: $|x| = t \le f$
 - By induction, if ℓ is a non-faulty element the new value of T_i(x ℓ) is the same for any i ∈ [n].
 - So label x has same labeled children across trees (if x_{ℓ} honest)
 - Number of children of *x*:

$$= n - t > 3f - f = 2f$$

• At most f are faulty. By taking majority, we get that new values $T_i(x) = T_j(x)$

So far we have managed to prove:

- **1** Termination: after f + 1 rounds, all of them will decide.
 - every label x which has no faulty processor is able to update its value

So far we have managed to prove:

- **1 Termination**: after f + 1 rounds, all of them will decide.
 - every label x which has no faulty processor is able to update its value
- Validity: if all nodes start with b, then each label x with no faulty processor will be updated to b
 - proof analogous to the proof of previous lemma
 - just note that all values will be *b*, as it is value being propagated by non-faulty nodes

So far we have managed to prove:

- Termination: after f + 1 rounds, all of them will decide.
 - every label x which has no faulty processor is able to update its value
- Validity: if all nodes start with b, then each label x with no faulty processor will be updated to b
 - proof analogous to the proof of previous lemma
 - just note that all values will be *b*, as it is value being propagated by non-faulty nodes
- Agreement: all nodes must agree on same value
 - By first lemma, all values in the leaves x are consistent across processors so long as x ends on a non-faulty process
 - By second lemma, majority will cause all values in nodes from level *r* ending in non-faulty nodes to be *the same* across processors
 - Induction and n > 3f ensures that labels in level 1 will look the same on non-faulty nodes ⇒ agreement

Conclusion

- Today we learned about distributed computation
- It is cool
- Widely used in practice
 - Cryptocurrencies all of them need to solve Byzantine Agreement! Happening at UW: Sergey Gorbunov (Algorand & Axelar)
 - Other peer-to-peer systems
 - Multi-core programming

Happening at UW: Trevor Brown

- Biology (social insect colony algorithms)
- many more...
- Learned an (inefficient) algorithm for Byzantine Agreement (check out the more efficient one in [Attiya and Welch 2004])

Acknowledgement

- Lecture based largely on:
 - Nancy Lynch's 6.852 Fall 2015 course lectures 1 and 6
 - Lecture 1

https://learning-modules.mit.edu/service/materials/groups/ 103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link? errorRedirect=%2Fmaterials%2Findex.html&download=true

• Lecture 6

https://learning-modules.mit.edu/service/materials/groups/ 103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link? errorRedirect=%2Fmaterials%2Findex.html&download=true

References I

Attiya, H. and Welch, J., 2004.

Distributed computing: fundamentals, simulations, and advanced topics (Vol. 19). John Wiley & Sons.