Lecture 23: Distributed Algorithms

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 27, 2023

1/66

Overview

Distributed Computing: The Models

Consensus with Byzantine Failures

Conclusion

Acknowledgements

2/66

What are Distributed Algorithms?

@ Algorithms which run on a network, or multiprocessors within a
computer which share memory

3/66

What are Distributed Algorithms?

@ Algorithms which run on a network, or multiprocessors within a
computer which share memory
@ Problems they solve:
o Resource Management
Data Management and Transmission
Synchronization
Consensus

"]
o
]
@ many more

4/66

What are Distributed Algorithms?

@ Algorithms which run on a network, or multiprocessors within a
computer which share memory
@ Problems they solve:

o Resource Management

e Data Management and Transmission
e Synchronization

e Consensus

@ many more

@ Challenges in this setting:

e Concurrent Activity
o Uncertainty of order of events
e Failure and recovery of processors or channels

5/66

What are Distributed Algorithms?

@ Algorithms which run on a network, or multiprocessors within a
computer which share memory
@ Problems they solve:
o Resource Management
e Data Management and Transmission
e Synchronization
e Consensus
@ many more
@ Challenges in this setting:
e Concurrent Activity
o Uncertainty of order of events
e Failure and recovery of processors or channels
@ Many models
o Memory & Communication: shared memory, message-passing
e Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
e Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption

6/66

Synchronous Model

@ processors are vertices of directed graph

o Memory: each processor has its own memory

e Communication: each processor can send messages to its outgoing
neighbours

e Timing: processors communicate in synchronous rounds

e Failures: may or may not have failures (different settings today)

7/66

Synchronous Model

@ processors are vertices of directed graph

Memory: each processor has its own memory

Communication: each processor can send messages to its outgoing
neighbours

Timing: processors communicate in synchronous rounds

Failures: may or may not have failures (different settings today)

@ 2 is the message alphabet, plus special symbol L

8/66

Synchronous Model

@ processors are vertices of directed graph

o Memory: each processor has its own memory

e Communication: each processor can send messages to its outgoing
neighbours

e Timing: processors communicate in synchronous rounds

e Failures: may or may not have failures (different settings today)

@ 2 is the message alphabet, plus special symbol L

@ For each vertex i € [n], a processor consists of:

e S5; = non-empty set of states

@ 0; = a start state

o i S;xouti — XU {1} Message function
o 7 S x (XU{LP)™M = S; Transition function

9/66

Synchronous Model

@ processors are vertices of directed graph

o Memory: each processor has its own memory

e Communication: each processor can send messages to its outgoing
neighbours

e Timing: processors communicate in synchronous rounds

e Failures: may or may not have failures (different settings today)

@ 2 is the message alphabet, plus special symbol L

@ For each vertex i € [n], a processor consists of:

e S; = non-empty set of states

@ 0; = a start state

o ui:Sixout; »XU{L} Message function

o TS x (ZU{L})r — S Transition function
o Complexity Measure: number of rounds (total data communicated)

needed to solve problem
e processors have unlimited internal resources (i.e., can compute
anything)
e For today, will assume each processor deterministic

10/66

Example: Leader Election (i.e. breaking symmetry)

@ Input: network of processors

@ Output: want to distinguish exactly one process, as the leader

11/66

Example: Leader Election (i.e. breaking symmetry)

@ Input: network of processors
o Output: want to distinguish exactly one process, as the leader

@ Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

12/66

Example: Leader Election (i.e. breaking symmetry)

@ Input: network of processors
o Output: want to distinguish exactly one process, as the leader
@ Motivation: leader can take charge of
e communication
e coordination
o allocating resources
e other tasks
@ Simple case: ring network, bi-directional communication
@ processors numbered clockwise (but they don't know their numbers)

13/66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of
e communication
e coordination
o allocating resources
e other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

14 /66

Example: Leader Election (i.e. breaking symmetry)

@ Input: network of processors
o Output: want to distinguish exactly one process, as the leader

@ Motivation: leader can take charge of

e communication

e coordination

o allocating resources
o other tasks

@ Simple case: ring network, bi-directional communication
@ processors numbered clockwise (but they don't know their numbers)

@ Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

@ To show this, simply look at execution and check that all processors
will always be at identical states.

15/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)

16 /66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)

o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.

17/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)
o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
o When processor receives UID, compares it with its own
if it is bigger, pass it on
if smaller, discard
equal = processor declares itself leader
leader then notifies everyone else (by message relaying in network)

18/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)
o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
o When processor receives UID, compares it with its own
if it is bigger, pass it on
if smaller, discard
equal = processor declares itself leader
leader then notifies everyone else (by message relaying in network)

@ Algorithm terminates, and elects leader with largest UID

19/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)
o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
o When processor receives UID, compares it with its own
if it is bigger, pass it on
if smaller, discard
equal = processor declares itself leader
leader then notifies everyone else (by message relaying in network)

@ Algorithm terminates, and elects leader with largest UID

@ After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

20/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)

o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.

o When processor receives UID, compares it with its own

if it is bigger, pass it on

if smaller, discard

equal = processor declares itself leader

leader then notifies everyone else (by message relaying in network)

@ Algorithm terminates, and elects leader with largest UID
@ After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)
o Complexity:
o Number of rounds: O(n)
e Communication: O(n?)

21/66

Leader Election: Algorithm

@ Let's assume that each processor also has a unique ID (UID)
@ But they don't know size of the network (i.e. n)

o Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.

o When processor receives UID, compares it with its own

if it is bigger, pass it on

if smaller, discard

equal = processor declares itself leader

leader then notifies everyone else (by message relaying in network)

@ Algorithm terminates, and elects leader with largest UID

@ After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

o Complexity:

o Number of rounds: O(n)
o Communication: O(n?)

e Can reduce communication to O(nlog n) by successively doubling
(see reference)

22/66

@ Consensus with Byzantine Failures

23 /66

Consensus Problem - Setup

@ Several generals and their armies surround an enemy city

24/66

Consensus Problem - Setup

@ Several generals and their armies surround an enemy city

@ Generals want to plan a coordinated attack to an enemy

25 /66

Consensus Problem - Setup

@ Several generals and their armies surround an enemy city
@ Generals want to plan a coordinated attack to an enemy

@ Some generals may not have their armies ready...

26/66

Consensus Problem - Setup

Several generals and their armies surround an enemy city
Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

e Unreliable, as messenger can get lost or captured
o Routes between bases are undirected graph, known to all generals
e know bound on time it takes for message to be delivered successfully

27 /66

Consensus Problem - Setup

Several generals and their armies surround an enemy city
Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases
e Unreliable, as messenger can get lost or captured
o Routes between bases are undirected graph, known to all generals
e know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

28/66

Consensus Problem - Setup

Several generals and their armies surround an enemy city
Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases
e Unreliable, as messenger can get lost or captured
o Routes between bases are undirected graph, known to all generals
e know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

29/66

Consensus Problem - Setup

@ Several generals and their armies surround an enemy city
@ Generals want to plan a coordinated attack to an enemy
@ Some generals may not have their armies ready...
°

Generals can communicate by sending messengers to others' bases

o Unreliable, as messenger can get lost or captured
o Routes between bases are undirected graph, known to all generals
e know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack
Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don't attack)

Output: all should have same decision bit b satisfying weak validity.
1

o if all processors start with bit 0, then 0 is only allowed decision
o if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

!Strong validity: if at least one general has bit 0, then O-is only allowed decision
30/66

Consensus Problem - Byzantine Failures

@ Unbounded message failures = impossible, even for 2 generals
@ In the end — have to make a decision without communicating

31/66

Consensus Problem - Byzantine Failures
@ Unbounded message failures = impossible, even for 2 generals
@ In the end — have to make a decision without communicating
@ Not very illuminating.
What if we allow only a finite number of failures?

32/66

Consensus Problem - Byzantine Failures

Unbounded message failures = impossible, even for 2 generals

In the end — have to make a decision without communicating

Not very illuminating.
What if we allow only a finite number of failures?
Two types of failures:
o Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
e Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

33/66

Consensus Problem - Byzantine Failures

Unbounded message failures = impossible, even for 2 generals

In the end — have to make a decision without communicating

Not very illuminating.
What if we allow only a finite number of failures?
Two types of failures:
o Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
e Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don't
attack). Faulty processors can behave arbitrarily.

34/66

Consensus Problem - Byzantine Failures

Unbounded message failures = impossible, even for 2 generals

In the end — have to make a decision without communicating

Not very illuminating.
What if we allow only a finite number of failures?
Two types of failures:
o Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
e Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don't

attack). Faulty processors can behave arbitrarily.

@ Output: all non-faulty processors should terminate and have

@ Agreement. same decision bit b

@ Weak Validity: if all non-faulty processors start with bit a, then b must
be equal to a.

35/66

Consensus Problem - Byzantine Failures

@ Unbounded message failures = impossible, even for 2 generals
@ In the end — have to make a decision without communicating
@ Not very illuminating.
What if we allow only a finite number of failures?
o Two types of failures:
o Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
e Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.
o Input: Each processor has one bit of input. 1 (attack) or 0 (don't
attack). Faulty processors can behave arbitrarily.
@ Output: all non-faulty processors should terminate and have
@ Agreement. same decision bit b
@ Weak Validity: if all non-faulty processors start with bit a, then b must
be equal to a.
e Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).
36 /66

Byzantine Consensus - Complete Graph

@ Assume all vertices can talk to any other vertex (“broadcast” setting)

37/66

Byzantine Consensus - Complete Graph

@ Assume all vertices can talk to any other vertex (“broadcast” setting)

e First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

38/66

Byzantine Consensus - Complete Graph

@ Assume all vertices can talk to any other vertex (“broadcast” setting)

e First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

o Well, that didn’t work - violated the agreement property!

39/66

Byzantine Consensus - Complete Graph

@ Assume all vertices can talk to any other vertex (“broadcast” setting)

e First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

o Well, that didn’t work - violated the agreement property!

@ New ldea: make all nodes gossip!

Each node now will keep track of what each node has told another

and so on...
@ At each round, each vertex broadcasts its knowledge
@ After a number of rounds, everyone must make a decision

40/66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn't work - violated the agreement property!
New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge
After a number of rounds, everyone must make a decision
Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

41/66

Byzantine Consensus - Bad Example
o 3 vertices {vi, vo,v3}, 1 faulty vertex

@ Scenario 1: v, v» good with value 1, v3 faulty with value 0

© Round 1: all vertices truthful

@ Round 2: v3 lies to vy, saying that v, said 0, all other communications
truthful

© Validity = v, v» must decide 1

42/66

Byzantine Consensus - Bad Example
o 3 vertices {vi, vo,v3}, 1 faulty vertex

@ Scenario 2: vy, v3 good with value 0, v; faulty with value 1

© Round 1: all vertices truthful

@ Round 2: v; lies to v3, saying that v, said 1, all other communications
truthful

© Validity = v, v3 must decide 0

43/66

Byzantine Consensus - Bad Example

@ 3 vertices {v1, va, v3}, 1 faulty vertex
@ Scenario 3: vy, v3 good with values 1,0 (resp.), v» faulty with value 0

@ Round 1: v, tells vy its value is 1, tells v3 its value is 0
@ Round 2: all truthful

44 /66

Byzantine Consensus - Bad Example

@ 3 vertices {vi, vz, v3}, 1 faulty vertex
@ Scenario 1: vy, v» good with value 1, v3 faulty with value 0
© Round 1: all vertices truthful
@ Round 2: v3 lies to vy, saying that v, said 0, all other communications
truthful
© Validity = vi, v» must decide 1

@ Scenario 2: vy, v3 good with value 0, v; faulty with value 1
@ Round 1: all vertices truthful
@ Round 2: vy lies to v3, saying that v, said 1, all other communications
truthful
© Validity = v, v3 must decide 0
@ Scenario 3: vy, v3 good with values 1,0 (resp.), v» faulty with value 0
@ Round 1: v, tells vy its value is 1, tells v3 its value is 0
© Round 2: all truthful
@ Scenarios 1 and 3 identical to vy, so it must return 1 (validity)
@ Scenarios 2 and 3 identical to vs, so it must return 0 (validity)
o Contradicts agreement in Scenario 3!

45 /66

Byzantine Consensus - Algorithm

@ Assumption:> n > 3f (number of bad vertices < third total vertices)

2t turns out that n < 3f = no algorithm can reach consensus!
46 /66

Byzantine Consensus - Algorithm

@ Assumption:> n > 3f (number of bad vertices < third total vertices)

@ How to perfectly gossip?

2t turns out that n < 3f = no algorithm can reach consensus!
47/66

Byzantine Consensus - Algorithm

@ Assumption:> n > 3f (number of bad vertices < third total vertices)
@ How to perfectly gossip?

o Data structure: Exponential Information Gathering (EIG) tree T, ¢

o Depth: f+1 (so f + 2 node levels)
e Each tree node at level k + 1 labeled by string i1z - - - ix (is # i)

2t turns out that n < 3f = no algorithm can reach consensus!
48/66

Byzantine Consensus - Algorithm
@ Assumption:> n > 3f (number of bad vertices < third total vertices)

@ How to perfectly gossip?
o Data structure: Exponential Information Gathering (EIG) tree T, ¢
o Depth: f+1 (so f + 2 node levels)
e Each tree node at level k + 1 labeled by string i1z - - - ix (is # i)
e Node iifp - - - iy will store value v if the following happens: i told you
that jx_1 told ik that ix_» told ix_1 ... that i; told i that its initial

value was v

2]t turns out that n < 3f = no algorithm can reach consensus!
49/66

Byzantine Consensus - EIG Algorithm

© Each vertex has own EIG tree T, ¢, with root labeled by its own value

50 /66

Byzantine Consensus - EIG Algorithm

© Each vertex has own EIG tree T, ¢, with root labeled by its own value
@ Relay messages for f + 1 rounds

o At round r, each vertex sends the values of level r of its EIG tree
o Each vertex decorates values of its (r + 1) level with values from
messages

51/66

Byzantine Consensus - EIG Algorithm

© Each vertex has own EIG tree T, ¢, with root labeled by its own value
@ Relay messages for f + 1 rounds

o At round r, each vertex sends the values of level r of its EIG tree
o Each vertex decorates values of its (r + 1) level with values from
messages

© After f 4+ 1 rounds, redecorate tree bottom-up, taking strict majority
of children (otherwise set value of tree node to L)

52/66

EIG Algorithm - Example
en=4 =1

@ p3 is faulty, initial values are py = pp =1, p3 =ps =0
@ round 1: p3 lies to po and py

@ round 2: ps3 lies to pp about p; and lies to p; about p»

53/66

EIG Algorithm - Analysis

Lemma (Consistency of Non-Faulty Messages)

If i, j, k are non-faulty, then T;(x) = Tj(x) whenever label x ends with k.

54/66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

55 /66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

@ Base case: if x is the label of leaf, previous lemma handles it.

56 /66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

@ Base case: if x is the label of leaf, previous lemma handles it.
@ Inductive step: |x| =t < f

e By induction, if £ is a non-faulty element the new value of T;(x o ¢) is
the same for any i € [n].

57/66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

@ Base case: if x is the label of leaf, previous lemma handles it.
@ Inductive step: |x| =t < f

e By induction, if £ is a non-faulty element the new value of T;(x o ¢) is
the same for any i € [n].

o So label x has same labeled children across trees (if x, honest)

58 /66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

@ Base case: if x is the label of leaf, previous lemma handles it.
@ Inductive step: |x| =t < f

e By induction, if £ is a non-faulty element the new value of T;(x o ¢) is
the same for any i € [n].

o So label x has same labeled children across trees (if x, honest)
o Number of children of x:

=n—t>3f —f=2f

59 /66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i, j the new values of T;(x) and Tj(x) are the same.

@ Base case: if x is the label of leaf, previous lemma handles it.
@ Inductive step: |x| =t < f

e By induction, if £ is a non-faulty element the new value of T;(x o ¢) is
the same for any i € [n].

o So label x has same labeled children across trees (if x, honest)
o Number of children of x:

=n—t>3f —f=2f

e At most f are faulty. By taking majority, we get that new values
Ti(x) = Tj(x)

60 /66

EIG Algorithm - Analysis

So far we have managed to prove:
@ Termination: after f + 1 rounds, all of them will decide.
e every label x which has no faulty processor is able to update its value

61/66

EIG Algorithm - Analysis

So far we have managed to prove:
@ Termination: after f + 1 rounds, all of them will decide.
e every label x which has no faulty processor is able to update its value

@ Validity: if all nodes start with b, then each label x with no faulty
processor will be updated to b

e proof analogous to the proof of previous lemma
e just note that all values will be b, as it is value being propagated by
non-faulty nodes

62/66

EIG Algorithm - Analysis

So far we have managed to prove:
@ Termination: after f + 1 rounds, all of them will decide.
e every label x which has no faulty processor is able to update its value
@ Validity: if all nodes start with b, then each label x with no faulty
processor will be updated to b
e proof analogous to the proof of previous lemma
e just note that all values will be b, as it is value being propagated by
non-faulty nodes
© Agreement: all nodes must agree on same value
o By first lemma, all values in the leaves x are consistent across
processors so long as x ends on a non-faulty process
e By second lemma, majority will cause all values in nodes from level r
ending in non-faulty nodes to be the same across processors
o Induction and n > 3f ensures that labels in level 1 will look the same
on non-faulty nodes = agreement

63 /66

Conclusion

@ Today we learned about distributed computation

e It is cool
@ Widely used in practice
o Cryptocurrencies - all of them need to solve Byzantine Agreement!
Happening at UW: Sergey Gorbunov (Algorand & Axelar)

o Other peer-to-peer systems
e Multi-core programming

Happening at UW: Trevor Brown
e Biology (social insect colony algorithms)
@ many more...
@ Learned an (inefficient) algorithm for Byzantine Agreement (check
out the more efficient one in [Attiya and Welch 2004])

64/66

Acknowledgement

@ Lecture based largely on:
e Nancy Lynch's 6.852 Fall 2015 course - lectures 1 and 6
o Lecture 1l
https://learning-modules.mit.edu/service/materials/groups/
103042/files/271154f5-ea0f-41a0-9ed9-6£83a5222d8b/1ink?
errorRedirect=/,2Fmaterials%2Findex.html&download=true
o Lecture 6
https://learning-modules.mit.edu/service/materials/groups/
103042/files/95f71f5e-7791-4ala-aeb5-e3d97afb167f/1ink?
errorRedirect=),2Fmaterials’2Findex.html&download=true

65 /66

https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true

References |

[@ Attiya, H. and Welch, J., 2004.
Distributed computing: fundamentals, simulations, and advanced topics (Vol. 19).
John Wiley & Sons.

66 /66

	Distributed Computing: The Models
	Consensus with Byzantine Failures
	Conclusion
	Acknowledgements

