
Lecture 21: Matrix Multiplication & Exponent of
Linear Algebra

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 20, 2023

1 / 100



Overview

Administrivia

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Conclusion

Computing Partial Derivatives

2 / 100



Rate this course!

Please log in to

https://perceptions.uwaterloo.ca/

This would really help me figuring out what worked and what didn’t
for the course

And let the school know if I was a good boy this term!

Teaching this course is also a learning experience for me :)

3 / 100

https://perceptions.uwaterloo.ca/


How can I learn more?

Consider taking more advanced courses next term!
See graduate course openings at:

Current graduate course offerings for next term!

https://cs.uwaterloo.ca/current-graduate-students/courses

Or, try out some of the research opportunities at UW!

https://cs.uwaterloo.ca/computer-science/

current-undergraduate-students/research-opportunities/

undergraduate-research-assistantship-ura-program

https://cs.uwaterloo.ca/current-undergraduate-students/

research-opportunities/undergraduate-research-fellowship-urf

4 / 100

https://cs.uwaterloo.ca/current-graduate-students/courses
https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/current-undergraduate-students/research-opportunities/undergraduate-research-fellowship-urf
https://cs.uwaterloo.ca/current-undergraduate-students/research-opportunities/undergraduate-research-fellowship-urf


Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

5 / 100



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

6 / 100



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

7 / 100



Matrix Multiplication

Input: matrices A,B ∈ Fn×n

Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.

Running time: O(n3)

Can we do better?

Strassen 1969: YES!

Idea: divide matrix into blocks, and reduce number of multiplications
needed!

8 / 100



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

9 / 100



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

10 / 100



Strassen’s Algorithm
Suppose that n = 2k

Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n/2:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

11 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

12 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

13 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

14 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

15 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

16 / 100



Strassen’s Algorithm

Define following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 − B11, T2 = B22 − T1, T3 = B22 − B12, T4 = T2 − B21

Compute the following 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4

P5 = S1T1, P6 = S2T2, P7 = S3T3

C11 = A11B11 + A12B21 = P1 + P2

C12 = A11B12 + A12B22 = P1 + P3 + P5 + P6

C21 = A21B11 + A22B21 = P1 − P4 + P6 + P7

C22 = A21B12 + A22B22 = P1 + P5 + P6 + P7

Correctness follows from the computations

17 / 100



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

MM(2k) ≤ 7 ·MM(2k−1) + 18 · c · 22k−2

Could also use Master theorem to get MM(n) = O(nlog 7) ≈ O(n2.807)

18 / 100



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

MM(2k) ≤ 7 ·MM(2k−1) + 18 · c · 22k−2

Could also use Master theorem to get MM(n) = O(nlog 7) ≈ O(n2.807)

19 / 100



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

MM(2k) ≤ 7 ·MM(2k−1) + 18 · c · 22k−2

Could also use Master theorem to get MM(n) = O(nlog 7) ≈ O(n2.807)

20 / 100



Analysis of Strassen’s Algorithm

To compute AB = C we used:
1 8 additions Si ,Ti ’s
2 7 multiplications Pi ’s
3 10 additions Cij ’s

Recurrence:

MM(n) ≤ 7 ·MM(n/2) + 18 · c · (n/2)2

MM(2k) ≤ 7 ·MM(2k−1) + 18 · c · 22k−2

Could also use Master theorem to get MM(n) = O(nlog 7) ≈ O(n2.807)

21 / 100



Matrix Multiplication Exponent

We can define ω (or ωmult) as the matrix multiplication exponent.
1 If an algorithm for n× n matrix multiplication has running time O(nα),

then ω ≤ α.
2 For any ε > 0, there is an algorithm for n × n matrix multiplication

running in time O(nω+ε)

As we will see today, ω is a fundamental constant in computer
science!

Currently we know 2 ≤ ω < 2.376

Open Question

What is the right value of ω?

22 / 100



Matrix Multiplication Exponent

We can define ω (or ωmult) as the matrix multiplication exponent.
1 If an algorithm for n× n matrix multiplication has running time O(nα),

then ω ≤ α.
2 For any ε > 0, there is an algorithm for n × n matrix multiplication

running in time O(nω+ε)

As we will see today, ω is a fundamental constant in computer
science!

Currently we know 2 ≤ ω < 2.376

Open Question

What is the right value of ω?

23 / 100



Matrix Multiplication Exponent

We can define ω (or ωmult) as the matrix multiplication exponent.
1 If an algorithm for n× n matrix multiplication has running time O(nα),

then ω ≤ α.
2 For any ε > 0, there is an algorithm for n × n matrix multiplication

running in time O(nω+ε)

As we will see today, ω is a fundamental constant in computer
science!

Currently we know 2 ≤ ω < 2.376

Open Question

What is the right value of ω?

24 / 100



Historical Remarks

Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

Motivated work on better algorithms for all other linear algebraic
problems

introduced complexity of computation of bilinear functions and the
study of complexity of tensor decompositions

25 / 100



Historical Remarks

Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

Motivated work on better algorithms for all other linear algebraic
problems

introduced complexity of computation of bilinear functions and the
study of complexity of tensor decompositions

26 / 100



Historical Remarks

Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

Motivated work on better algorithms for all other linear algebraic
problems

introduced complexity of computation of bilinear functions and the
study of complexity of tensor decompositions

27 / 100



Administrivia

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Conclusion

Computing Partial Derivatives

28 / 100



The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm

We also learned about ωmult := ω

How fundamental is the exponent of matrix multiplication?

We can similarly define ωP for a problem P

ωdeterminant , ωinverse , ωlinear system, ωcharacteristic polynomial

As we will see today (and in homework):

ω = ωinverse = ωdeterminant

More generally, all of these ωP ’s are related to ω!

Matrix multiplication exponent fundamental to linear algebra!

29 / 100



The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm

We also learned about ωmult := ω

How fundamental is the exponent of matrix multiplication?

We can similarly define ωP for a problem P

ωdeterminant , ωinverse , ωlinear system, ωcharacteristic polynomial

As we will see today (and in homework):

ω = ωinverse = ωdeterminant

More generally, all of these ωP ’s are related to ω!

Matrix multiplication exponent fundamental to linear algebra!

30 / 100



The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm

We also learned about ωmult := ω

How fundamental is the exponent of matrix multiplication?

We can similarly define ωP for a problem P

ωdeterminant , ωinverse , ωlinear system, ωcharacteristic polynomial

As we will see today (and in homework):

ω = ωinverse = ωdeterminant

More generally, all of these ωP ’s are related to ω!

Matrix multiplication exponent fundamental to linear algebra!

31 / 100



The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm

We also learned about ωmult := ω

How fundamental is the exponent of matrix multiplication?

We can similarly define ωP for a problem P

ωdeterminant , ωinverse , ωlinear system, ωcharacteristic polynomial

As we will see today (and in homework):

ω = ωinverse = ωdeterminant

More generally, all of these ωP ’s are related to ω!

Matrix multiplication exponent fundamental to linear algebra!

32 / 100



Administrivia

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Conclusion

Computing Partial Derivatives

33 / 100



Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

A =

I A 0
0 I B
0 0 I


Then

A−1 =

I −A AB
0 I −B
0 0 I


So if we could invert in time T , then we can multiply two matrices in
time O(T ).

34 / 100



Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

A =

I A 0
0 I B
0 0 I



Then

A−1 =

I −A AB
0 I −B
0 0 I


So if we could invert in time T , then we can multiply two matrices in
time O(T ).

35 / 100



Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

A =

I A 0
0 I B
0 0 I


Then

A−1 =

I −A AB
0 I −B
0 0 I



So if we could invert in time T , then we can multiply two matrices in
time O(T ).

36 / 100



Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

A =

I A 0
0 I B
0 0 I


Then

A−1 =

I −A AB
0 I −B
0 0 I


So if we could invert in time T , then we can multiply two matrices in
time O(T ).

37 / 100



Matrix Multiplication vs Matrix Inversion
Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.

Let n = 2k , divide matrix M into blocks of size n/2

M =

(
A B
C D

)
The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible

How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.

38 / 100



Matrix Multiplication vs Matrix Inversion
Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.

Let n = 2k , divide matrix M into blocks of size n/2

M =

(
A B
C D

)

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible

How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.

39 / 100



Matrix Multiplication vs Matrix Inversion
Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.

Let n = 2k , divide matrix M into blocks of size n/2

M =

(
A B
C D

)
The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible

How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.

40 / 100



Matrix Multiplication vs Matrix Inversion
Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.

Let n = 2k , divide matrix M into blocks of size n/2

M =

(
A B
C D

)
The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible

How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.

41 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A

Compute S := D − CA−1B
Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

42 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A

Compute S := D − CA−1B
Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

43 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A
Compute S := D − CA−1B

Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

44 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A
Compute S := D − CA−1B
Invert S

perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

45 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A
Compute S := D − CA−1B
Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

46 / 100



Runtime Analysis

The inverse of M in block form is given by:

M−1 =

(
I −A−1BS−1

0 S−1

)
·
(

A−1 0
−CA−1 I

)
Assuming A and S := D − CA−1B are invertible.

To invert M, we needed to:

Invert A
Compute S := D − CA−1B
Invert S
perform constant number of multiplications above

Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

47 / 100



Solving Recurrence
Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

We know that 2 ≤ ω < 3 ω is a constant

Recurrence relation:

I (2k) ≤ 2 · I (2k−1) + C · 2ω(k−1)

Thus

I (n) = I (2k) ≤ 2k · I (1) + C ·
k−1∑
j=0

2ωj

≤ C ′ ·
(
2k +

2ωk − 1

2ω − 1

)
≤ C ′′ · 2ωk = C ′′nω

48 / 100



Solving Recurrence
Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

We know that 2 ≤ ω < 3 ω is a constant

Recurrence relation:

I (2k) ≤ 2 · I (2k−1) + C · 2ω(k−1)

Thus

I (n) = I (2k) ≤ 2k · I (1) + C ·
k−1∑
j=0

2ωj

≤ C ′ ·
(
2k +

2ωk − 1

2ω − 1

)
≤ C ′′ · 2ωk = C ′′nω

49 / 100



Solving Recurrence
Recurrence relation:

I (n) ≤ 2 · I (n/2) + C · (n/2)ω

We know that 2 ≤ ω < 3 ω is a constant

Recurrence relation:

I (2k) ≤ 2 · I (2k−1) + C · 2ω(k−1)

Thus

I (n) = I (2k) ≤ 2k · I (1) + C ·
k−1∑
j=0

2ωj

≤ C ′ ·
(
2k +

2ωk − 1

2ω − 1

)
≤ C ′′ · 2ωk = C ′′nω

50 / 100



Determinant vs Matrix Multiplication

One can similarly prove that ωdeterminant ≤ ω

This is your homework! :)

51 / 100



Administrivia

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Conclusion

Computing Partial Derivatives

52 / 100



Determinant of a Matrix
Given matrix M ∈ Fn×n, the determinant is

det(M)
∑
σ∈Sn

(−1)σ ·
n∏

i=1

Miσ(i)

Given matrix M ∈ Fn×n, and (i , j) ∈ [n]2, the (i , j)-minor of M,
denoted M(i ,j) is given by

Remove i th row and j th column of M

Determinant has a very special decomposition by minors: given any
row i , we have

det(M) =
n∑

j=1

(−1)i+jMi ,j · det(M(i ,j))

known as Laplace Expansion
Determinants of minors are very much related to derivatives of the
determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

53 / 100



Determinant of a Matrix
Given matrix M ∈ Fn×n, the determinant is

det(M)
∑
σ∈Sn

(−1)σ ·
n∏

i=1

Miσ(i)

Given matrix M ∈ Fn×n, and (i , j) ∈ [n]2, the (i , j)-minor of M,
denoted M(i ,j) is given by

Remove i th row and j th column of M

Determinant has a very special decomposition by minors: given any
row i , we have

det(M) =
n∑

j=1

(−1)i+jMi ,j · det(M(i ,j))

known as Laplace Expansion
Determinants of minors are very much related to derivatives of the
determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

54 / 100



Determinant of a Matrix
Given matrix M ∈ Fn×n, the determinant is

det(M)
∑
σ∈Sn

(−1)σ ·
n∏

i=1

Miσ(i)

Given matrix M ∈ Fn×n, and (i , j) ∈ [n]2, the (i , j)-minor of M,
denoted M(i ,j) is given by

Remove i th row and j th column of M

Determinant has a very special decomposition by minors: given any
row i , we have

det(M) =
n∑

j=1

(−1)i+jMi ,j · det(M(i ,j))

known as Laplace Expansion

Determinants of minors are very much related to derivatives of the
determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

55 / 100



Determinant of a Matrix
Given matrix M ∈ Fn×n, the determinant is

det(M)
∑
σ∈Sn

(−1)σ ·
n∏

i=1

Miσ(i)

Given matrix M ∈ Fn×n, and (i , j) ∈ [n]2, the (i , j)-minor of M,
denoted M(i ,j) is given by

Remove i th row and j th column of M

Determinant has a very special decomposition by minors: given any
row i , we have

det(M) =
n∑

j=1

(−1)i+jMi ,j · det(M(i ,j))

known as Laplace Expansion
Determinants of minors are very much related to derivatives of the
determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

56 / 100



Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = (−1)i+j det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse

57 / 100



Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = (−1)i+j det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse

58 / 100



Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = (−1)i+j det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse

59 / 100



Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = (−1)i+j det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse

60 / 100



Determinant and Inverse

The determinant is intrinsically related to the inverse of a matrix.

In particular, let N ∈ Fn×n be the adjugate matrix

Ni ,j = (−1)i+j det(M(j ,i))

Note that
MN = det(M) · I

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(M(i ,j)) = (−1)i+j∂i ,j det(M)

So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

1 Compute the adjugate
2 Compute the inverse

61 / 100



Computing the Determinant

Suppose we have an algorithm which computes the determinant in
O(nα) operations

Can compute the determinant and all its partial derivatives in O(nα)
operations!

Compute the inverse by simply dividing det(M(i ,j))/ det(M)

62 / 100



Computing the Determinant

Suppose we have an algorithm which computes the determinant in
O(nα) operations

Can compute the determinant and all its partial derivatives in O(nα)
operations!

Compute the inverse by simply dividing det(M(i ,j))/ det(M)

63 / 100



Computing the Determinant

Suppose we have an algorithm which computes the determinant in
O(nα) operations

Can compute the determinant and all its partial derivatives in O(nα)
operations!

Compute the inverse by simply dividing det(M(i ,j))/ det(M)

64 / 100



Conclusion

Today we learned how fundamental matrix multiplication is in
symbolic computation and linear algebra

Used fast computation of partial derivatives to compute the inverse
from the determinant

65 / 100



Administrivia

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Conclusion

Computing Partial Derivatives

66 / 100



Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R

other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)

67 / 100



Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R

other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)

68 / 100



Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator

gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)

69 / 100



Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)

70 / 100



Algebraic Circuits - base ring R

Models the amount of operations needed to compute polynomial

Algebraic Circuit: directed acyclic graph Φ with

input gates labelled by variables x1, . . . , xn or elements of R
other gates labelled +,×,÷
÷ gate takes two inputs, which are labelled numerator/denominator
gates compute polynomial (rational function) in natural way

circuit size: number of edges in the circuit, denoted by S(Φ)

71 / 100



Partial Derivatives

if f (x1, . . . , xn) ∈ F[x1, . . . , xn] the partial derivatives

∂1f , ∂2f , . . . , ∂nf

are such that

∂ix
d
j =

{
dxd−1

j , if i = j

0, otherwise

and
∂i f

is computed as above considering all other variables “constant”

Example: f (x1, x2) = x21x2 − x1x
3
2

∂1f = 2x1x2 − x32 ∂2f = x21 − 3x1x
2
2

How fast can we compute partial derivatives?

72 / 100



Partial Derivatives

if f (x1, . . . , xn) ∈ F[x1, . . . , xn] the partial derivatives

∂1f , ∂2f , . . . , ∂nf

are such that

∂ix
d
j =

{
dxd−1

j , if i = j

0, otherwise

and
∂i f

is computed as above considering all other variables “constant”

Example: f (x1, x2) = x21x2 − x1x
3
2

∂1f = 2x1x2 − x32 ∂2f = x21 − 3x1x
2
2

How fast can we compute partial derivatives?

73 / 100



Partial Derivatives

if f (x1, . . . , xn) ∈ F[x1, . . . , xn] the partial derivatives

∂1f , ∂2f , . . . , ∂nf

are such that

∂ix
d
j =

{
dxd−1

j , if i = j

0, otherwise

and
∂i f

is computed as above considering all other variables “constant”

Example: f (x1, x2) = x21x2 − x1x
3
2

∂1f = 2x1x2 − x32 ∂2f = x21 − 3x1x
2
2

How fast can we compute partial derivatives?

74 / 100



Computing Partial Derivatives

If f can be computed using L operations +,−,×, then we can
compute ALL partial derivatives simultaneously

∂1f , . . . , ∂nf

performing 4L operations!

This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

1 gradient descent methods
2 Newton iteration

Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation

75 / 100



Computing Partial Derivatives

If f can be computed using L operations +,−,×, then we can
compute ALL partial derivatives simultaneously

∂1f , . . . , ∂nf

performing 4L operations!

This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

1 gradient descent methods
2 Newton iteration

Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation

76 / 100



Computing Partial Derivatives

If f can be computed using L operations +,−,×, then we can
compute ALL partial derivatives simultaneously

∂1f , . . . , ∂nf

performing 4L operations!

This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

1 gradient descent methods
2 Newton iteration

Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation

77 / 100



Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!

2 many of the partial derivatives along the computation will either be
zero or have already been computed!

3 Have to compute partial derivatives “in reverse”

78 / 100



Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!

2 many of the partial derivatives along the computation will either be
zero or have already been computed!

3 Have to compute partial derivatives “in reverse”

79 / 100



Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!

2 many of the partial derivatives along the computation will either be
zero or have already been computed!

3 Have to compute partial derivatives “in reverse”

80 / 100



Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!
2 many of the partial derivatives along the computation will either be

zero or have already been computed!

3 Have to compute partial derivatives “in reverse”

81 / 100



Computing Partial Derivatives

We are going to use the chain rule:

∂i f (g1, g2, . . . , gm) =
m∑
j=1

(∂j f )(g1, g2, . . . , gm) · ∂igj

But wait, doesn’t the chain rule makes us compute 2m partial
derivatives?

Main intuitions:
1 if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!
2 many of the partial derivatives along the computation will either be

zero or have already been computed!
3 Have to compute partial derivatives “in reverse”

82 / 100



Example

Consider the following computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Doing the direct method - i.e. computing all partial derivatives per
operation:

Computation ∂1 ∂2 ∂3 ∂4
P1 = x1 + x2 1 1 0 0
P2 = x1 + x3 1 0 1 0
P3 = P1P2 P2 · ∂1P1 + P1 · ∂1P2 P2 · ∂2P1 P1 · ∂3P2 0
P4 = x4P3 x4 · ∂1P3 x4 · ∂2P3 x4 · ∂3P3 P3

Now let’s see how to “do it in reverse”

83 / 100



Example

Consider the following computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Doing the direct method - i.e. computing all partial derivatives per
operation:

Computation ∂1 ∂2 ∂3 ∂4
P1 = x1 + x2 1 1 0 0
P2 = x1 + x3 1 0 1 0
P3 = P1P2 P2 · ∂1P1 + P1 · ∂1P2 P2 · ∂2P1 P1 · ∂3P2 0
P4 = x4P3 x4 · ∂1P3 x4 · ∂2P3 x4 · ∂3P3 P3

Now let’s see how to “do it in reverse”

84 / 100



Example

Consider the following computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Doing the direct method - i.e. computing all partial derivatives per
operation:

Computation ∂1 ∂2 ∂3 ∂4
P1 = x1 + x2 1 1 0 0
P2 = x1 + x3 1 0 1 0
P3 = P1P2 P2 · ∂1P1 + P1 · ∂1P2 P2 · ∂2P1 P1 · ∂3P2 0
P4 = x4P3 x4 · ∂1P3 x4 · ∂2P3 x4 · ∂3P3 P3

Now let’s see how to “do it in reverse”

85 / 100



Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · Q2, Q4 = x4 · Q3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

86 / 100



Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · Q2, Q4 = x4 · Q3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

87 / 100



Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · Q2, Q4 = x4 · Q3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

88 / 100



Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · Q2, Q4 = x4 · Q3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

89 / 100



Example - reverse mode

Consider the computation:

P1 = x1 + x2, P2 = x1 + x3, P3 = P1 · P2, P4 = x4 · P3

Replacing first computation with a new variable y , we get:

Q2 = x1 + x3, Q3 = y · Q2, Q4 = x4 · Q3

Suppose we had an algebraic circuit computing all the partial
derivatives of this circuit (including the extra variable y)

Can transform the circuit above into one that computes all partial
derivatives of P4 by using the chain rule!

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

90 / 100



Computing Partial Derivatives - Proof

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =
4∑

j=1

(∂jQ4)(x1, x2, x3, x4,P1) · (∂ixj)

+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!!

91 / 100



Computing Partial Derivatives - Proof

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =
4∑

j=1

(∂jQ4)(x1, x2, x3, x4,P1) · (∂ixj)

+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!!

92 / 100



Computing Partial Derivatives - Proof

Note that
Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =
4∑

j=1

(∂jQ4)(x1, x2, x3, x4,P1) · (∂ixj)

+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!!

93 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

94 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

95 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

96 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

97 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

98 / 100



Computing Partial Derivatives - Proof

By chain rule, we have 1 ≤ i ≤ 4

∂iP4 =(∂iQ4)(x1, x2, x3, x4,P1) · 1
+ (∂yQ4)(x1, x2, x3, x4,P1) · (∂iP1)

Crucial remark: note that P1 depends on at most 2 variables!

By induction, we know a circuit of size ≤ 4(L− 1) which computes
ALL the ∂iQ4

P1 is of the form
αxi + βxj , xixj , αxi + β

So we can compute P1 and ALL its derivatives with ≤ 4 operations

So circuit computing ALL ∂iP4 derivatives has size

≤ 4(L− 1) + 4 = 4L

99 / 100



Computing Partial Derivatives - Picture

100 / 100


	Administrivia
	Matrix Multiplication
	The Exponent of Linear Algebra
	Matrix Inversion
	Determinant and Matrix Inverse
	Conclusion
	Computing Partial Derivatives

