Lecture 21: Matrix Multiplication \& Exponent of Linear Algebra

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

July 20, 2023

Overview

- Administrivia
- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Conclusion
- Computing Partial Derivatives

Rate this course!

Please log in to

https://perceptions.uwaterloo.ca/

- This would really help me figuring out what worked and what didn't for the course
- And let the school know if I was a good boy this term!
- Teaching this course is also a learning experience for me:)

How can I learn more?

Consider taking more advanced courses next term! See graduate course openings at:

- Current graduate course offerings for next term!
https://cs.uwaterloo.ca/current-graduate-students/courses
- Or, try out some of the research opportunities at UW!
https://cs.uwaterloo.ca/computer-science/ current-undergraduate-students/research-opportunities/ undergraduate-research-assistantship-ura-program
https://cs.uwaterloo.ca/current-undergraduate-students/ research-opportunities/undergraduate-research-fellowship-urf

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

- Running time: $O\left(n^{3}\right)$

Can we do better?

Matrix Multiplication

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- Output: product $C=A B$
- Naive algorithm:

Compute n matrix vector multiplications.

- Running time: $O\left(n^{3}\right)$

Can we do better?

- Strassen 1969: YES!
- Idea: divide matrix into blocks, and reduce number of multiplications needed!

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

Strassen's Algorithm

- Suppose that $n=2^{k}$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that $C=A B$. Divide them into blocks of size $n / 2$:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, \quad S_{2}=S_{1}-A_{11}, \quad S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, \quad T_{3}=B_{22}-B_{12}, \quad T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$
- $C_{22}=A_{21} B_{12}+A_{22} B_{22}=P_{1}+P_{5}+P_{6}+P_{7}$

Strassen's Algorithm

- Define following matrices:

$$
\begin{aligned}
& S_{1}=A_{21}+A_{22}, S_{2}=S_{1}-A_{11}, S_{3}=A_{11}-A_{21}, S_{4}=A_{12}-S_{2} \\
& T_{1}=B_{12}-B_{11}, \quad T_{2}=B_{22}-T_{1}, T_{3}=B_{22}-B_{12}, T_{4}=T_{2}-B_{21}
\end{aligned}
$$

- Compute the following 7 products:

$$
\begin{gathered}
P_{1}=A_{11} B_{11}, \quad P_{2}=A_{12} B_{21}, P_{3}=S_{4} B_{22}, P_{4}=A_{22} T_{4} \\
P_{5}=S_{1} T_{1}, P_{6}=S_{2} T_{2}, P_{7}=S_{3} T_{3}
\end{gathered}
$$

- $C_{11}=A_{11} B_{11}+A_{12} B_{21}=P_{1}+P_{2}$
- $C_{12}=A_{11} B_{12}+A_{12} B_{22}=P_{1}+P_{3}+P_{5}+P_{6}$
- $C_{21}=A_{21} B_{11}+A_{22} B_{21}=P_{1}-P_{4}+P_{6}+P_{7}$
- $C_{22}=A_{21} B_{12}+A_{22} B_{22}=P_{1}+P_{5}+P_{6}+P_{7}$
- Correctness follows from the computations

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
(2) 7 multiplications
S_{i}, T_{i} 's P_{i} 's
(3) 10 additions

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
S_{i}, T_{i} 's
(2) 7 multiplications P_{i} 's
(3) 10 additions
- Recurrence:

$$
M M(n) \leq 7 \cdot M M(n / 2)+18 \cdot c \cdot(n / 2)^{2}
$$

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
S_{i}, T_{i} 's
(2) 7 multiplications P_{i} 's
(3) 10 additions
- Recurrence:

$$
\begin{aligned}
& M M(n) \leq 7 \cdot M M(n / 2)+18 \cdot c \cdot(n / 2)^{2} \\
& M M\left(2^{k}\right) \leq 7 \cdot M M\left(2^{k-1}\right)+18 \cdot c \cdot 2^{2 k-2}
\end{aligned}
$$

Analysis of Strassen's Algorithm

- To compute $A B=C$ we used:
(1) 8 additions
S_{i}, T_{i} 's
(2) 7 multiplications P_{i} 's
(3) 10 additions
- Recurrence:

$$
\begin{aligned}
& M M(n) \leq 7 \cdot M M(n / 2)+18 \cdot c \cdot(n / 2)^{2} \\
& M M\left(2^{k}\right) \leq 7 \cdot M M\left(2^{k-1}\right)+18 \cdot c \cdot 2^{2 k-2}
\end{aligned}
$$

- Could also use Master theorem to get $M M(n)=O\left(n^{\log 7}\right) \approx O\left(n^{2.807}\right)$

Matrix Multiplication Exponent

- We can define ω (or $\omega_{\text {mult }}$) as the matrix multiplication exponent.
(1) If an algorithm for $n \times n$ matrix multiplication has running time $O\left(n^{\alpha}\right)$, then $\omega \leq \alpha$.
(2) For any $\varepsilon>0$, there is an algorithm for $n \times n$ matrix multiplication running in time $O\left(n^{\omega+\varepsilon}\right)$

Matrix Multiplication Exponent

- We can define ω (or $\omega_{\text {mult }}$) as the matrix multiplication exponent.
(1) If an algorithm for $n \times n$ matrix multiplication has running time $O\left(n^{\alpha}\right)$, then $\omega \leq \alpha$.
(2) For any $\varepsilon>0$, there is an algorithm for $n \times n$ matrix multiplication running in time $O\left(n^{\omega+\varepsilon}\right)$
- As we will see today, ω is a fundamental constant in computer science!

Matrix Multiplication Exponent

- We can define ω (or $\omega_{\text {mult }}$) as the matrix multiplication exponent.
(1) If an algorithm for $n \times n$ matrix multiplication has running time $O\left(n^{\alpha}\right)$, then $\omega \leq \alpha$.
(2) For any $\varepsilon>0$, there is an algorithm for $n \times n$ matrix multiplication running in time $O\left(n^{\omega+\varepsilon}\right)$
- As we will see today, ω is a fundamental constant in computer science!
- Currently we know $2 \leq \omega<2.376$

Open Question

What is the right value of ω ?

Historical Remarks

- Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!

Historical Remarks

- Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!
- Motivated work on better algorithms for all other linear algebraic problems

Historical Remarks

- Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!
- Motivated work on better algorithms for all other linear algebraic problems
- introduced complexity of computation of bilinear functions and the study of complexity of tensor decompositions
- Administrivia
- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Conclusion
- Computing Partial Derivatives

The Exponent of Linear Algebra

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{\text {mult }}:=\omega$
- How fundamental is the exponent of matrix multiplication?

The Exponent of Linear Algebra

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{\text {mult }}:=\omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_{P} for a problem P
$\omega_{\text {determinant }}, \omega_{\text {inverse }}, \omega_{\text {linear system }}, \quad \omega_{\text {characteristic polynomial }}$

The Exponent of Linear Algebra

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{\text {mult }}:=\omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_{P} for a problem P

$$
\omega_{\text {determinant }}, \quad \omega_{\text {inverse }}, \quad \omega_{\text {linear system }}, \quad \omega_{\text {characteristic polynomial }}
$$

- As we will see today (and in homework):

$$
\omega=\omega_{\text {inverse }}=\omega_{\text {determinant }}
$$

The Exponent of Linear Algebra

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{\text {mult }}:=\omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_{P} for a problem P

$$
\omega_{\text {determinant }}, \quad \omega_{\text {inverse }}, \quad \omega_{\text {linear system }}, \quad \omega_{\text {characteristic polynomial }}
$$

- As we will see today (and in homework):

$$
\omega=\omega_{\text {inverse }}=\omega_{\text {determinant }}
$$

- More generally, all of these ω_{P} 's are related to ω !

Matrix multiplication exponent fundamental to linear algebra!

- Administrivia
- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Conclusion
- Computing Partial Derivatives

Matrix inverse vs matrix multiplication

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this?

If we can invert matrices quickly, then we can multiply two matrices quickly.

Matrix inverse vs matrix multiplication

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this?

If we can invert matrices quickly, then we can multiply two matrices quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$
A=\left(\begin{array}{lll}
I & A & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right)
$$

Matrix inverse vs matrix multiplication

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this?

If we can invert matrices quickly, then we can multiply two matrices quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$
A=\left(\begin{array}{lll}
I & A & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right)
$$

- Then

$$
A^{-1}=\left(\begin{array}{ccc}
I & -A & A B \\
0 & I & -B \\
0 & 0 & I
\end{array}\right)
$$

Matrix inverse vs matrix multiplication

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this?

If we can invert matrices quickly, then we can multiply two matrices quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$
A=\left(\begin{array}{lll}
I & A & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right)
$$

- Then

$$
A^{-1}=\left(\begin{array}{ccc}
I & -A & A B \\
0 & I & -B \\
0 & 0 & I
\end{array}\right)
$$

- So if we could invert in time T, then we can multiply two matrices in time $O(T)$.

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion "If we can multiply two matrices fast, we can also invert them fast."

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
"If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n=2^{k}$, divide matrix M into blocks of size $n / 2$

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
"If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n=2^{k}$, divide matrix M into blocks of size $n / 2$

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
"If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n=2^{k}$, divide matrix M into blocks of size $n / 2$

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
l & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible

- How do we compute this?

Similar to how we would invert regular matrices! Just pay attention to non-commutativity.

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

- To invert M, we needed to:
- Invert A

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

- To invert M, we needed to:
- Invert A
- Compute $S:=D-C A^{-1} B$

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

- To invert M, we needed to:
- Invert A
- Compute $S:=D-C A^{-1} B$
- Invert S

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
I & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

- To invert M, we needed to:
- Invert A
- Compute $S:=D-C A^{-1} B$
- Invert S
- perform constant number of multiplications above

Runtime Analysis

- The inverse of M in block form is given by:

$$
M^{-1}=\left(\begin{array}{cc}
l & -A^{-1} B S^{-1} \\
0 & S^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
A^{-1} & 0 \\
-C A^{-1} & I
\end{array}\right)
$$

Assuming A and $S:=D-C A^{-1} B$ are invertible.

- To invert M, we needed to:
- Invert A
- Compute $S:=D-C A^{-1} B$
- Invert S
- perform constant number of multiplications above
- Recurrence relation:

$$
I(n) \leq 2 \cdot I(n / 2)+C \cdot(n / 2)^{\omega}
$$

Solving Recurrence

- Recurrence relation:

$$
I(n) \leq 2 \cdot I(n / 2)+C \cdot(n / 2)^{\omega}
$$

- We know that $2 \leq \omega<3$
ω is a constant

Solving Recurrence

- Recurrence relation:

$$
I(n) \leq 2 \cdot I(n / 2)+C \cdot(n / 2)^{\omega}
$$

- We know that $2 \leq \omega<3$
ω is a constant
- Recurrence relation:

$$
I\left(2^{k}\right) \leq 2 \cdot I\left(2^{k-1}\right)+C \cdot 2^{\omega(k-1)}
$$

Solving Recurrence

- Recurrence relation:

$$
I(n) \leq 2 \cdot I(n / 2)+C \cdot(n / 2)^{\omega}
$$

- We know that $2 \leq \omega<3$
ω is a constant
- Recurrence relation:

$$
I\left(2^{k}\right) \leq 2 \cdot I\left(2^{k-1}\right)+C \cdot 2^{\omega(k-1)}
$$

- Thus

$$
\begin{aligned}
I(n)=I\left(2^{k}\right) & \leq 2^{k} \cdot I(1)+C \cdot \sum_{j=0}^{k-1} 2^{\omega j} \\
& \leq C^{\prime} \cdot\left(2^{k}+\frac{2^{\omega k}-1}{2^{\omega}-1}\right) \\
& \leq C^{\prime \prime} \cdot 2^{\omega k}=C^{\prime \prime} n^{\omega}
\end{aligned}
$$

Determinant vs Matrix Multiplication

- One can similarly prove that $\omega_{\text {determinant }} \leq \omega$
- This is your homework! :)
- Administrivia
- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Conclusion
- Computing Partial Derivatives

Determinant of a Matrix

- Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$
\operatorname{det}(M) \sum_{\sigma \in S_{n}}(-1)^{\sigma} \cdot \prod_{i=1}^{n} M_{i \sigma(i)}
$$

Determinant of a Matrix

- Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$
\operatorname{det}(M) \sum_{\sigma \in S_{n}}(-1)^{\sigma} \cdot \prod_{i=1}^{n} M_{i \sigma(i)}
$$

- Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i, j) \in[n]^{2}$, the (i, j)-minor of M, denoted $M^{(i, j)}$ is given by

Remove $i^{\text {th }}$ row and $j^{\text {th }}$ column of M

Determinant of a Matrix

- Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$
\operatorname{det}(M) \sum_{\sigma \in S_{n}}(-1)^{\sigma} \cdot \prod_{i=1}^{n} M_{i \sigma(i)}
$$

- Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i, j) \in[n]^{2}$, the (i, j)-minor of M, denoted $M^{(i, j)}$ is given by

$$
\text { Remove } i^{\text {th }} \text { row and } j^{\text {th }} \text { column of } M
$$

- Determinant has a very special decomposition by minors: given any row i, we have

$$
\operatorname{det}(M)=\sum_{j=1}^{n}(-1)^{i+j} M_{i, j} \cdot \operatorname{det}\left(M^{(i, j)}\right)
$$

known as Laplace Expansion

Determinant of a Matrix

- Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$
\operatorname{det}(M) \sum_{\sigma \in S_{n}}(-1)^{\sigma} \cdot \prod_{i=1}^{n} M_{i \sigma(i)}
$$

- Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i, j) \in[n]^{2}$, the (i, j)-minor of M, denoted $M^{(i, j)}$ is given by

$$
\text { Remove } i^{\text {th }} \text { row and } j^{t h} \text { column of } M
$$

- Determinant has a very special decomposition by minors: given any row i, we have

$$
\operatorname{det}(M)=\sum_{j=1}^{n}(-1)^{i+j} M_{i, j} \cdot \operatorname{det}\left(M^{(i, j)}\right)
$$

known as Laplace Expansion

- Determinants of minors are very much related to derivatives of the determinant of M

$$
\operatorname{det}\left(M^{(i, j)}\right)=(-1)^{i+j} \partial_{i, j} \operatorname{det}(M)
$$

Determinant and Inverse

- The determinant is intrinsically related to the inverse of a matrix.

Determinant and Inverse

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the adjugate matrix

$$
N_{i, j}=(-1)^{i+j} \operatorname{det}\left(M^{(j, i)}\right)
$$

Determinant and Inverse

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the adjugate matrix

$$
N_{i, j}=(-1)^{i+j} \operatorname{det}\left(M^{(j, i)}\right)
$$

- Note that

$$
M N=\operatorname{det}(M) \cdot I
$$

Determinant and Inverse

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the adjugate matrix

$$
N_{i, j}=(-1)^{i+j} \operatorname{det}\left(M^{(j, i)}\right)
$$

- Note that

$$
M N=\operatorname{det}(M) \cdot I
$$

- Entries of the adjugate (determinants of minors) are very much related to derivatives of the determinant of M

$$
\operatorname{det}\left(M^{(i, j)}\right)=(-1)^{i+j} \partial_{i, j} \operatorname{det}(M)
$$

Determinant and Inverse

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the adjugate matrix

$$
N_{i, j}=(-1)^{i+j} \operatorname{det}\left(M^{(j, i)}\right)
$$

- Note that

$$
M N=\operatorname{det}(M) \cdot I
$$

- Entries of the adjugate (determinants of minors) are very much related to derivatives of the determinant of M

$$
\operatorname{det}\left(M^{(i, j)}\right)=(-1)^{i+j} \partial_{i, j} \operatorname{det}(M)
$$

- So, if we knew how to compute the determinant AND ALL its partial derivatives, we could:
(1) Compute the adjugate
(2) Compute the inverse

Computing the Determinant

- Suppose we have an algorithm which computes the determinant in $O\left(n^{\alpha}\right)$ operations

Computing the Determinant

- Suppose we have an algorithm which computes the determinant in $O\left(n^{\alpha}\right)$ operations
- Can compute the determinant and all its partial derivatives in $O\left(n^{\alpha}\right)$ operations!

Computing the Determinant

- Suppose we have an algorithm which computes the determinant in $O\left(n^{\alpha}\right)$ operations
- Can compute the determinant and all its partial derivatives in $O\left(n^{\alpha}\right)$ operations!
- Compute the inverse by simply dividing $\operatorname{det}\left(M^{(i, j)}\right) / \operatorname{det}(M)$

Conclusion

- Today we learned how fundamental matrix multiplication is in symbolic computation and linear algebra
- Used fast computation of partial derivatives to compute the inverse from the determinant
- Administrivia
- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Conclusion
- Computing Partial Derivatives

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator
- gates compute polynomial (rational function) in natural way

Algebraic Circuits - base ring R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
- input gates labelled by variables x_{1}, \ldots, x_{n} or elements of R
- other gates labelled,$+ \times, \div$
- \div gate takes two inputs, which are labelled numerator/denominator
- gates compute polynomial (rational function) in natural way
- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$

Partial Derivatives

- if $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the partial derivatives

$$
\partial_{1} f, \partial_{2} f, \ldots, \partial_{n} f
$$

are such that

$$
\partial_{i} x_{j}^{d}=\left\{\begin{array}{l}
d x_{j}^{d-1}, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\partial_{i} f
$$

is computed as above considering all other variables "constant"

Partial Derivatives

- if $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the partial derivatives

$$
\partial_{1} f, \partial_{2} f, \ldots, \partial_{n} f
$$

are such that

$$
\partial_{i} x_{j}^{d}=\left\{\begin{array}{l}
d x_{j}^{d-1}, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\partial_{i} f
$$

is computed as above considering all other variables "constant"

- Example: $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}-x_{1} x_{2}^{3}$

$$
\partial_{1} f=2 x_{1} x_{2}-x_{2}^{3} \quad \partial_{2} f=x_{1}^{2}-3 x_{1} x_{2}^{2}
$$

Partial Derivatives

- if $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ the partial derivatives

$$
\partial_{1} f, \partial_{2} f, \ldots, \partial_{n} f
$$

are such that

$$
\partial_{i} x_{j}^{d}=\left\{\begin{array}{l}
d x_{j}^{d-1}, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
\partial_{i} f
$$

is computed as above considering all other variables "constant"

- Example: $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}-x_{1} x_{2}^{3}$

$$
\partial_{1} f=2 x_{1} x_{2}-x_{2}^{3} \quad \partial_{2} f=x_{1}^{2}-3 x_{1} x_{2}^{2}
$$

- How fast can we compute partial derivatives?

Computing Partial Derivatives

- If f can be computed using L operations,,$+- \times$, then we can compute ALL partial derivatives simultaneously

$$
\partial_{1} f, \ldots, \partial_{n} f
$$

performing $4 L$ operations!

Computing Partial Derivatives

- If f can be computed using L operations,,$+- \times$, then we can compute ALL partial derivatives simultaneously

$$
\partial_{1} f, \ldots, \partial_{n} f
$$

performing $4 L$ operations!

- This is very remarkable, since partial derivatives ubiquitous in computational tasks!
(1) gradient descent methods
(2) Newton iteration

Computing Partial Derivatives

- If f can be computed using L operations,,$+- \times$, then we can compute ALL partial derivatives simultaneously

$$
\partial_{1} f, \ldots, \partial_{n} f
$$

performing $4 L$ operations!

- This is very remarkable, since partial derivatives ubiquitous in computational tasks!
(1) gradient descent methods
(2) Newton iteration
- Algorithm we will see today discovered independently in Machine Learning - known as backpropagation

Computing Partial Derivatives

- We are going to use the chain rule:

$$
\partial_{i} f\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\sum_{j=1}^{m}\left(\partial_{j} f\right)\left(g_{1}, g_{2}, \ldots, g_{m}\right) \cdot \partial_{i} g_{j}
$$

Computing Partial Derivatives

- We are going to use the chain rule:

$$
\partial_{i} f\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\sum_{j=1}^{m}\left(\partial_{j} f\right)\left(g_{1}, g_{2}, \ldots, g_{m}\right) \cdot \partial_{i} g_{j}
$$

- But wait, doesn't the chain rule makes us compute $2 m$ partial derivatives?

Computing Partial Derivatives

- We are going to use the chain rule:

$$
\partial_{i} f\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\sum_{j=1}^{m}\left(\partial_{j} f\right)\left(g_{1}, g_{2}, \ldots, g_{m}\right) \cdot \partial_{i} g_{j}
$$

- But wait, doesn't the chain rule makes us compute $2 m$ partial derivatives?
- Main intuitions:
(1) if each function we have has m being constant (depend on constant \# of variables), then chain rule is cheap!

Computing Partial Derivatives

- We are going to use the chain rule:

$$
\partial_{i} f\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\sum_{j=1}^{m}\left(\partial_{j} f\right)\left(g_{1}, g_{2}, \ldots, g_{m}\right) \cdot \partial_{i} g_{j}
$$

- But wait, doesn't the chain rule makes us compute $2 m$ partial derivatives?
- Main intuitions:
(1) if each function we have has m being constant (depend on constant \# of variables), then chain rule is cheap!
(2) many of the partial derivatives along the computation will either be zero or have already been computed!

Computing Partial Derivatives

- We are going to use the chain rule:

$$
\partial_{i} f\left(g_{1}, g_{2}, \ldots, g_{m}\right)=\sum_{j=1}^{m}\left(\partial_{j} f\right)\left(g_{1}, g_{2}, \ldots, g_{m}\right) \cdot \partial_{i} g_{j}
$$

- But wait, doesn't the chain rule makes us compute $2 m$ partial derivatives?
- Main intuitions:
(1) if each function we have has m being constant (depend on constant \# of variables), then chain rule is cheap!
(2) many of the partial derivatives along the computation will either be zero or have already been computed!
(3) Have to compute partial derivatives "in reverse"

Example

- Consider the following computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

Example

- Consider the following computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Doing the direct method - i.e. computing all partial derivatives per operation:

Computation	∂_{1}	∂_{2}	∂_{3}	∂_{4}
$P_{1}=x_{1}+x_{2}$	1	1	0	0
$P_{2}=x_{1}+x_{3}$	1	0	1	0
$P_{3}=P_{1} P_{2}$	$P_{2} \cdot \partial_{1} P_{1}+P_{1} \cdot \partial_{1} P_{2}$	$P_{2} \cdot \partial_{2} P_{1}$	$P_{1} \cdot \partial_{3} P_{2}$	0
$P_{4}=x_{4} P_{3}$	$x_{4} \cdot \partial_{1} P_{3}$	$x_{4} \cdot \partial_{2} P_{3}$	$x_{4} \cdot \partial_{3} P_{3}$	P_{3}

Example

- Consider the following computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Doing the direct method - i.e. computing all partial derivatives per operation:

Computation	∂_{1}	∂_{2}	∂_{3}	∂_{4}
$P_{1}=x_{1}+x_{2}$	1	1	0	0
$P_{2}=x_{1}+x_{3}$	1	0	1	0
$P_{3}=P_{1} P_{2}$	$P_{2} \cdot \partial_{1} P_{1}+P_{1} \cdot \partial_{1} P_{2}$	$P_{2} \cdot \partial_{2} P_{1}$	$P_{1} \cdot \partial_{3} P_{2}$	0
$P_{4}=x_{4} P_{3}$	$x_{4} \cdot \partial_{1} P_{3}$	$x_{4} \cdot \partial_{2} P_{3}$	$x_{4} \cdot \partial_{3} P_{3}$	P_{3}

- Now let's see how to "do it in reverse"

Example - reverse mode

- Consider the computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

Example - reverse mode

- Consider the computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Replacing first computation with a new variable y, we get:

$$
Q_{2}=x_{1}+x_{3}, \quad Q_{3}=y \cdot Q_{2}, \quad Q_{4}=x_{4} \cdot Q_{3}
$$

Example - reverse mode

- Consider the computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Replacing first computation with a new variable y, we get:

$$
Q_{2}=x_{1}+x_{3}, \quad Q_{3}=y \cdot Q_{2}, \quad Q_{4}=x_{4} \cdot Q_{3}
$$

- Suppose we had an algebraic circuit computing all the partial derivatives of this circuit (including the extra variable y)

Example - reverse mode

- Consider the computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Replacing first computation with a new variable y, we get:

$$
Q_{2}=x_{1}+x_{3}, \quad Q_{3}=y \cdot Q_{2}, \quad Q_{4}=x_{4} \cdot Q_{3}
$$

- Suppose we had an algebraic circuit computing all the partial derivatives of this circuit (including the extra variable y)
- Can transform the circuit above into one that computes all partial derivatives of P_{4} by using the chain rule!

Example - reverse mode

- Consider the computation:

$$
P_{1}=x_{1}+x_{2}, P_{2}=x_{1}+x_{3}, P_{3}=P_{1} \cdot P_{2}, P_{4}=x_{4} \cdot P_{3}
$$

- Replacing first computation with a new variable y, we get:

$$
Q_{2}=x_{1}+x_{3}, \quad Q_{3}=y \cdot Q_{2}, \quad Q_{4}=x_{4} \cdot Q_{3}
$$

- Suppose we had an algebraic circuit computing all the partial derivatives of this circuit (including the extra variable y)
- Can transform the circuit above into one that computes all partial derivatives of P_{4} by using the chain rule!
- Note that

$$
Q_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, y=P_{1}\right)=P_{4}
$$

Computing Partial Derivatives - Proof

- Note that

$$
Q_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, y=P_{1}\right)=P_{4}
$$

- By chain rule, we have
$1 \leq i \leq 4$

$$
\begin{aligned}
\partial_{i} P_{4}= & \sum_{j=1}^{4}\left(\partial_{j} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} x_{j}\right) \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

Computing Partial Derivatives - Proof

- Note that

$$
Q_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, y=P_{1}\right)=P_{4}
$$

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \sum_{j=1}^{4}\left(\partial_{j} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} x_{j}\right) \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right) \\
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

Computing Partial Derivatives - Proof

- Note that

$$
Q_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, y=P_{1}\right)=P_{4}
$$

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \sum_{j=1}^{4}\left(\partial_{j} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} x_{j}\right) \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right) \\
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!!

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!
- By induction, we know a circuit of size $\leq 4(L-1)$ which computes ALL the $\partial_{i} Q_{4}$

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!
- By induction, we know a circuit of size $\leq 4(L-1)$ which computes ALL the $\partial_{i} Q_{4}$
- P_{1} is of the form

$$
\alpha x_{i}+\beta x_{j}, \quad x_{i} x_{j}, \quad \alpha x_{i}+\beta
$$

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!
- By induction, we know a circuit of size $\leq 4(L-1)$ which computes ALL the $\partial_{i} Q_{4}$
- P_{1} is of the form

$$
\alpha x_{i}+\beta x_{j}, \quad x_{i} x_{j}, \quad \alpha x_{i}+\beta
$$

- So we can compute P_{1} and ALL its derivatives with ≤ 4 operations

Computing Partial Derivatives - Proof

- By chain rule, we have

$$
1 \leq i \leq 4
$$

$$
\begin{aligned}
\partial_{i} P_{4}= & \left(\partial_{i} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot 1 \\
& +\left(\partial_{y} Q_{4}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, P_{1}\right) \cdot\left(\partial_{i} P_{1}\right)
\end{aligned}
$$

- Crucial remark: note that P_{1} depends on at most 2 variables!
- By induction, we know a circuit of size $\leq 4(L-1)$ which computes ALL the $\partial_{i} Q_{4}$
- P_{1} is of the form

$$
\alpha x_{i}+\beta x_{j}, \quad x_{i} x_{j}, \quad \alpha x_{i}+\beta
$$

- So we can compute P_{1} and ALL its derivatives with ≤ 4 operations
- So circuit computing ALL $\partial_{i} P_{4}$ derivatives has size

$$
\leq 4(L-1)+4=4 L
$$

Computing Partial Derivatives - Picture

