Lecture 20: Hardness of Approximation

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 18, 2023

1/76



Overview

@ Background and Motivation
e Why Hardness of Approximation?
o How do we prove Hardness of Approximation?
e Hardness of Approximation - Example

@ Proofs & Hardness of Approximation

@ Conclusion

@ Acknowledgements

2/76



Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
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@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation
@ Important to know the limits of efficient algorithms!
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How do we Prove Hardness of Approximation?

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE
@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a VERY-MUCH-NO instance of
CLIQUE
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Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function

d:XXX—>]R20
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Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
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@ For any path pg — p1 — -+ — p: in X, length of the path is sum of

distances traveled .
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Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX— ]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
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@ QOutput: find a cycle that reaches all points in X of shortest length.
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Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX— ]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

@ One of the famous NP-complete problems
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Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
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Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

© In our case, let's reduce it to the Hamiltonian Cycle Problem

If there is an algorithm M which solves TSP without repetitions with
a-approximation, then P = NP.
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Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.
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@ If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
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Hardness of Approximation

o

Q

Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|

o w(u,v)=

Thus, M on input H will output a Hamiltonian Cycle of G, if G has
one, or it will output a solution with value > (1 + «) - |V/|
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@ Proofs & Hardness of Approximation
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Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}poly(\><\) st. V(x,y)=1
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@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that for every x € {0,1}*, we have
Pr [M(x,R) = L(x)] >2/3
Re{0,1}pely(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

xel= [M(x,R)=1]>2/3

Pr
Re{0,1}poly(Ix])
x¢L= Pr [M(x,R)=1]=0
Re{0,1}pely(Ix])

@ co-RP: languages L C {0,1}* s.t. L € RP
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Examples of Problems in Complexity Classes
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Proof Systems
A proof system looks like this:
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A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

o Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}poly(|X|)
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Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
= {071}pdy0XD
o Verifier picks a poly-time Turing Machine V' and outputs
TRUE, if V(x,w) =1
FALSE, otherwise
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Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
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Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs
{TRUE, if V(x,w) =1

FALSE, otherwise

Completeness: x € L = 3w € {0,1}PY(XD) such that V(x,w) =1
Soundness: x ¢ L = Yw € {0,1}P°Y(IX) we have V(x,w) = 0
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Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?
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What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
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for which:
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Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2
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Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n
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Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

@ Uses O(r(n)) random bits
@ Examines O(q(n)) bits of a proof w

Note that n does not depend on w, only on x.

62/76



Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

@ Uses O(r(n)) random bits
@ Examines O(q(n)) bits of a proof w

Note that n does not depend on w, only on x.

Theorem (PCP theorem [AS'98, ALMSS'98])

PCP[log n, 1] = NP
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PCP and Approximability of Max 3SAT

Definition (Max 3SAT)
@ Input: a 3CNF formula ¢ on boolean variables xi,...,x, and m
clauses

@ Output: the maximum number of clauses of ¢ which can be
simultaneously satisfied.

| A

Theorem

@ The PCP theorem implies that there is an € > 0 such that there is no
polynomial time (1 + ¢)-approximation algorithm for Max 3SAT,
unless P = NP.

@ Moreover, if Max 3SAT is hard to approximate within a factor of
(1+¢), then the PCP theorem holds.

@ In other words, the PCP theorem and the hardness of approximation
of Max 3SAT are equivalent.
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PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant
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PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

@ We now describe a reduction from L to Max 3SAT which has a gap.
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@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have

e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 — ) - m clauses of @y
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@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have
e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 — ) - m clauses of @y
@ Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
iR

such random inputs is poly(n).
o For each R, V chooses g positions ift, ... ig and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wir, ..., w;x) = L.

h
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© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

+lq
fr : {0,1}9 — {0,1} and accepts iff fr(wi, ..., W,-‘f) =1

1
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© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.

e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29
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© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

iy
fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above
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© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!
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© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wir, ..., w;r) = 1.
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size q - 29
© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!
@ If x & L then the verifier says NO for half of the random strings R.
e For each such random string, at least one of its clauses fails

e Thus at least € = of the clauses of ¢, fails.

2.q-24
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Conclusion

@ Important to study hardness of approximation for NP-hard problems

@ Different hard problems have different approximation parameters

@ For hardness of approximation, need more robust reductions between
combinatorial problems

@ Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

@ Many more applications in computer science and industry!

e Program Checking (for software engineering)
e Zero-knowledge proofs in cryptocurrencies
@ many more...
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@ Lecture based largely on:

o Section’s 1-3 of Luca’s survey [Trevisan 2004]
o [Motwani & Raghavan 2007, Chapter 7]

@ See Luca's survey https://arxiv.org/pdf/cs/0409043
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