Lecture 20: Hardness of Approximation

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 18, 2023

1/76

Overview

@ Background and Motivation
e Why Hardness of Approximation?
o How do we prove Hardness of Approximation?
e Hardness of Approximation - Example

@ Proofs & Hardness of Approximation

@ Conclusion

@ Acknowledgements

2/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

3/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

4/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer

5/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

6/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).

7/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation

8/76

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation
@ Important to know the limits of efficient algorithms!

9/76

Background and Motivation

e How do we prove Hardness of Approximation?

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

10/76

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

11/76

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

12/76

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we

usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

13/76

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we

usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

14 /76

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

15/76

How do we Prove Hardness of Approximation?

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE
@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a VERY-MUCH-NO instance of
CLIQUE

16 /76

Background and Motivation

e Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

17/76

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function

d:XXX—>]R20

18/76

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX— RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of

distances traveled .
tf

> d(pi,pit1)

i=0

19/76

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

@ QOutput: find a cycle that reaches all points in X of shortest length.

20/76

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

21/76

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

@ One of the famous NP-complete problems

22/76

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

23/76

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.

24/76

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

25/76

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

26/76

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

© In our case, let's reduce it to the Hamiltonian Cycle Problem

If there is an algorithm M which solves TSP without repetitions with
a-approximation, then P = NP.

27/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

28/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that

29/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

30/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(1+a)-|V|, f{uv}€E

o w(u,v)=

31/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

o w(u,v)=

32/76

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

@ If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|

o w(u,v)=

33/76

Hardness of Approximation

o

Q

Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|

o w(u,v)=

Thus, M on input H will output a Hamiltonian Cycle of G, if G has
one, or it will output a solution with value > (1 + «) - |V/|

34/76

@ Proofs & Hardness of Approximation

35/76

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}poly(\><\) st. V(x,y)=1

36/76

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that for every x € {0,1}*, we have

Pr [M(x,R)=L(x)] >2/3
Re{0,1}pely(Ix])

37/76

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that for every x € {0,1}*, we have
Pr [M(x,R) = L(x)] >2/3
Re{0,1}pely(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

xel= [M(x,R)=1]>2/3

Pr
Re{0,1}pely(Ix])

x¢L= Pr [M(x,R)=1]=0
Re{0,1}pely(Ix])

38/76

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that for every x € {0,1}*, we have
Pr [M(x,R) = L(x)] >2/3
Re{0,1}pely(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

xel= [M(x,R)=1]>2/3

Pr
Re{0,1}poly(Ix])
x¢L= Pr [M(x,R)=1]=0
Re{0,1}pely(Ix])

@ co-RP: languages L C {0,1}* s.t. L € RP

39/76

Examples of Problems in Complexity Classes

Do
40/76

Examples of Problems in Complexity Classes

Do
41/76

Proof Systems
A proof system looks like this:

42/76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification

43/76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

44/76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

© A prover writes down a proof of the statement

4576

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.

46 /76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
© NP as a proof system:

o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

47/76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

o Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}poly(|X|)

48/76

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
= {071}pdy0XD
o Verifier picks a poly-time Turing Machine V' and outputs
TRUE, if V(x,w) =1
FALSE, otherwise

49/76

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

50/76

Proof Systems - Completeness and Soundness

How good is a proof system?

© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing

Machine
o Given an element x, the prover gives a proof (also known as witness)

w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs

TRUE, if V(x,w) =1
FALSE, otherwise

51/76

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
w e {071}pdy0XD
o Verifier picks a deterministic, poly-time Turing Machine V and outputs
TRUE, if V(x,w) =1
FALSE, otherwise
o Completeness: x € L = 3w € {0,1}PY(X) such that V(x,w) =1

52/76

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}pol(Ix))
o Verifier picks a deterministic, poly-time Turing Machine V and outputs
{TRUE, if V(x,w) =1

FALSE, otherwise

Completeness: x € L = 3w € {0,1}PY(XD) such that V(x,w) =1
Soundness: x ¢ L = Yw € {0,1}P°Y(IX) we have V(x,w) = 0

53/76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

54 /76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)

55/76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1

56 /76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1
@ x ¢ L = for any proof w, we have Pr[V¥(x) =1] <1/2

57/76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1
@ x ¢ L = for any proof w, we have Pr[V¥(x) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

58 /76

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistic proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V"(x) =1] =1
@ x ¢ L = for any proof w, we have Pr[V¥(x) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V¥(x) =1] < 1/2

59 /76

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

60 /76

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

61/76

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

@ Uses O(r(n)) random bits
@ Examines O(q(n)) bits of a proof w

Note that n does not depend on w, only on x.

62/76

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V¥(x) =1] =1
@ x & L = for any proof w, we have Pr[V"(x) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs x of length n

@ Uses O(r(n)) random bits
@ Examines O(q(n)) bits of a proof w

Note that n does not depend on w, only on x.

Theorem (PCP theorem [AS'98, ALMSS'98])

PCP[log n, 1] = NP

63/76

PCP and Approximability of Max 3SAT

Definition (Max 3SAT)
@ Input: a 3CNF formula ¢ on boolean variables xi,...,x, and m
clauses

@ Output: the maximum number of clauses of ¢ which can be
simultaneously satisfied.

| A

Theorem

@ The PCP theorem implies that there is an € > 0 such that there is no
polynomial time (1 + ¢)-approximation algorithm for Max 3SAT,
unless P = NP.

@ Moreover, if Max 3SAT is hard to approximate within a factor of
(1+¢), then the PCP theorem holds.

@ In other words, the PCP theorem and the hardness of approximation
of Max 3SAT are equivalent.

64/76

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

65/76

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

@ We now describe a reduction from L to Max 3SAT which has a gap.

66 /76

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have

e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 —) - m clauses of @y

67/76

PCP and Approximability of Max 3SAT

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have
e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 —) - m clauses of @y
@ Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
iR

such random inputs is poly(n).
o For each R, V chooses g positions ift, ... ig and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wir, ..., w;x) = L.

h

68/76

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

+lq
fr : {0,1}9 — {0,1} and accepts iff fr(wi, ..., W,-‘f) =1

1

69 /76

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.

e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

70/76

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

iy
fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

71/76

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!

72/76

PCP and Approximability of Max 3SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wir, ..., w;r) = 1.
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size q - 29
© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!
@ If x & L then the verifier says NO for half of the random strings R.
e For each such random string, at least one of its clauses fails

e Thus at least € = of the clauses of ¢, fails.

2.q-24

73/76

Conclusion

@ Important to study hardness of approximation for NP-hard problems

@ Different hard problems have different approximation parameters

@ For hardness of approximation, need more robust reductions between
combinatorial problems

@ Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

@ Many more applications in computer science and industry!

e Program Checking (for software engineering)
e Zero-knowledge proofs in cryptocurrencies
@ many more...

74/76

Acknowledgement

@ Lecture based largely on:

o Section’s 1-3 of Luca’s survey [Trevisan 2004]
o [Motwani & Raghavan 2007, Chapter 7]

@ See Luca's survey https://arxiv.org/pdf/cs/0409043

75/76

https://arxiv.org/pdf/cs/0409043

References |

ﬁ Trevisan, Luca (2004)
Inapproximability of combinatorial optimization problems.
arXiv preprint cs/0409043 (2004).

ﬁ Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms

ﬁ Arora, Sanjeev, and Shmuel Safra (1998)
Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.

ﬁ Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy
(1998)
Proof verification and the hardness of approximation problems.
Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.

76 /76

	Background and Motivation
	Why Hardness of Approximation?
	How do we prove Hardness of Approximation?
	Hardness of Approximation - Example

	Proofs & Hardness of Approximation
	Conclusion
	Acknowledgements

