## Lecture 19: Streaming

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

July 13, 2023

#### Overview

- Introduction
  - Data Streaming
  - Basic Examples
- Main Examples
  - Heavy hitters
  - Distinct Elements
  - Weighted Heavy Hitters
- Acknowledgements

In today's world we have to deal with *big data*. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: *streaming*.

• Data stream: massive sequence of data, too large to store in memory.

- Data stream: *massive* sequence of data, too large to store in memory.
  - Network traffic (source/destination)
  - Internet search logs
  - Oatabase transactions
  - sensor networks
  - satellite data feeds

- Data stream: *massive* sequence of data, too large to store in memory.
  - Network traffic (source/destination)
  - Internet search logs
  - Oatabase transactions
  - sensor networks
  - satellite data feeds
- Does not come to us at once.

- Data stream: *massive* sequence of data, too large to store in memory.
  - Network traffic (source/destination)
  - Internet search logs
  - Oatabase transactions
  - sensor networks
  - satellite data feeds
- 2 Does not come to us at once.
- Essentially can only look at each piece of data once (or constantly many times)

In today's world we have to deal with *big data*. But not all big data are created equal. Today we will study one way in which massive data can appear in our lives: *streaming*.

- Data stream: *massive* sequence of data, too large to store in memory.
  - Network traffic (source/destination)
  - Internet search logs
  - Oatabase transactions
  - sensor networks
  - satellite data feeds
- Does not come to us at once.
- Essentially can only look at each piece of data once (or constantly many times)

How can we deal with it/model it? What can we do if we cannot even see the whole input?

# Definition (Basic Data Stream model)

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \ldots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time
- Single or small number of passes over data

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time
- Single or small number of passes over data
- Bounded storage
  - Typically  $\log^c(N)$  for  $c=\mathit{O}(1)$  or  $\mathit{N}^\alpha$  for some  $0<\alpha<1$

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time
- Single or small number of passes over data
- Bounded storage
  - Typically  $\log^c(N)$  for c = O(1) or  $N^{\alpha}$  for some  $0 < \alpha < 1$
- We are allowed to use randomness (almost always necessary)
  - Probabilistic model: our algorithm must succeed most of the time

### Definition (Basic Data Stream model)

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time
- Single or small number of passes over data
- Bounded storage
  - Typically  $\log^c(N)$  for c = O(1) or  $N^{\alpha}$  for some  $0 < \alpha < 1$
- We are allowed to use randomness (almost always necessary)
  - Probabilistic model: our algorithm must succeed most of the time
- (usually) want approximate answers to the true answer

### Definition (Basic Data Stream model)

In the data stream model:

- receive a stream of elements  $a_1, a_2, \dots a_N$  each from a known alphabet  $\Sigma$ . Each element of  $\Sigma$  takes b bits to represent.
  - ullet usually assume that N is known
- ullet Basic operations (comparison, arithmetic, bitwise) take  $\Theta(1)$  time
- Single or small number of passes over data
- Bounded storage
  - Typically  $\log^c(N)$  for c = O(1) or  $N^{\alpha}$  for some  $0 < \alpha < 1$
- We are allowed to use randomness (almost always necessary)
  - Probabilistic model: our algorithm must succeed most of the time
- (usually) want approximate answers to the true answer

Goal: minimize space complexity (in bits) and the processing time.

### Example (Sum of elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from the set  $[-2^b + 1, 2^b 1]$
- Task: maintain the current sum of the elements we have seen so far

### Example (Sum of elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from the set  $[-2^b + 1, 2^b 1]$
- Task: maintain the current sum of the elements we have seen so far

### Example (Median)

- **Input stream:**  $a_1, \ldots, a_N$  be integers from the set  $[-2^b + 1, 2^b 1]$
- Task: maintain the current median of elements we have seen so far

#### Example (Distinct elements)

- **Input stream:**  $a_1, \ldots, a_N$  be integers from the set  $[-2^b + 1, 2^b 1]$
- Task: maintain current # of distinct elements we have seen so far

#### Example (Distinct elements)

- **Input stream:**  $a_1, \ldots, a_N$  be integers from the set  $[-2^b + 1, 2^b 1]$
- Task: maintain current # of distinct elements we have seen so far

### Example (Heavy hitters)

- Input stream:  $a_1, \ldots, a_N$  integers from  $[-2^b+1, 2^b-1]$ ,  $\epsilon>0$
- Task: maintain set of elements that contains elements that have appeared at least  $\epsilon$ -fraction of the time (a.k.a. heavy hitters)
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

Setup: heavy hitters with  $\epsilon = 1/2$ .

• At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.

- At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$ ,  $c \leftarrow 0$  (c is a counter)

- At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$ ,  $c \leftarrow 0$  (c is a counter)
- when element *a<sub>t</sub>* arrives:

- At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$ ,  $c \leftarrow 0$  (c is a counter)
- when element at arrives:
  - If c == 0
    - $\bullet \ \ \mathcal{S}_t = \{a_t\} \ \text{and} \ c \leftarrow 1$

- At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$ ,  $c \leftarrow 0$  (c is a counter)
- when element at arrives:
  - If c == 0
    - $S_t = \{a_t\}$  and  $c \leftarrow 1$
  - Else
    - if  $a_t \in S_{t-1}$ , set  $c \leftarrow c+1$
    - ullet else  $c \leftarrow c-1$  and discard  $a_t$

- At time t, we will maintain set  $S_t$  which contains the element that has appeared at least N/2 times, if any.
- $S_0 = \emptyset$ ,  $c \leftarrow 0$  (c is a counter)
- when element at arrives:
  - If c == 0

• 
$$S_t = \{a_t\}$$
 and  $c \leftarrow 1$ 

- Else
  - if  $a_t \in S_{t-1}$ , set  $c \leftarrow c+1$
  - ullet else  $c \leftarrow c-1$  and discard  $a_t$
- ullet At end of stream, return element in  $S_N$

• If there is no majority element, we could still output a false positive (low hitter), which is fine.

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
  - Every time that we discard a copy of the majority element, we throw away a different element.
  - $\bullet$  Example: stream 3, 1, 2, 1, 1

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
  - Every time that we discard a copy of the majority element, we throw away a different element.
  - Example: stream 3, 1, 2, 1, 1
  - Majority element appears more than half the time, so we cannot throw away all the majority elements

- If there is no majority element, we could still output a false positive (low hitter), which is fine.
- What happens when there is a majority element?
  - Every time that we discard a copy of the majority element, we throw away a different element.
  - Example: stream 3, 1, 2, 1, 1
  - Majority element appears more than half the time, so we cannot throw away all the majority elements
- Space used: O(b) (stored set  $S_t$  which has at most one element and counter)

- Introduction
  - Data Streaming
  - Basic Examples
- Main Examples
  - Heavy hitters
  - Distinct Elements
  - Weighted Heavy Hitters
- Acknowledgements

### Heavy hitters Problem

#### Example (Heavy hitters)

- Input stream:  $a_1, \ldots, a_N$  integers from  $[-2^b + 1, 2^b 1]$ ,  $\epsilon > 0$
- **Task:** maintain set of elements that contains elements that have appeared at least  $\epsilon$ -fraction of the time (a.k.a. *heavy hitters*)
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

# Heavy Hitters Algorithm

## Heavy Hitters Algorithm

- **1** Set  $k = \lceil 1/\epsilon \rceil 1$
- **②** Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).

## Heavy Hitters Algorithm

- **1** Set  $k = \lceil 1/\epsilon \rceil 1$
- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer
- **③** Initialize T[i] ← NaN and C[i] ← 0 for  $i \in [k]$ .

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).
- Set array C of length k where each entry can hold non-negative integer
- **●** Initialize  $T[i] \leftarrow NaN$  and  $C[i] \leftarrow 0$  for  $i \in [k]$ .
- When receive element a<sub>t</sub>:

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b+1, 2^b-1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer
- **③** Initialize T[i] ← NaN and C[i] ← 0 for  $i \in [k]$ .
- When receive element a<sub>t</sub>:
  - **1** If there is  $j \in [k]$  such that  $a_t = T[j]$ , then  $C[j] \leftarrow C[j] + 1$

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b+1, 2^b-1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer
- **③** Initialize T[i] ← NaN and C[i] ← 0 for  $i \in [k]$ .
- When receive element a<sub>t</sub>:
  - If there is  $j \in [k]$  such that  $a_t = T[j]$ , then  $C[j] \leftarrow C[j] + 1$
  - ② Else, if there is  $j \in [k]$  such that C[j] = 0, then  $T[j] \leftarrow a_t$  and  $C[j] \leftarrow 1$

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer
- **③** Initialize T[i] ← NaN and C[i] ← 0 for  $i \in [k]$ .
- **5** When receive element  $a_t$ :
  - If there is  $j \in [k]$  such that  $a_t = T[j]$ , then  $C[j] \leftarrow C[j] + 1$
  - **2** Else, if there is  $j \in [k]$  such that C[j] = 0, then  $T[j] \leftarrow a_t$  and  $C[j] \leftarrow 1$
  - **③** Else make all C[j] ← C[j] 1 and discard  $a_t$

- ② Set array T of length k where each entry T[i] can hold an element of  $\Sigma$  (=  $[-2^b + 1, 2^b 1]$ ).
- ullet Set array C of length k where each entry can hold non-negative integer
- **●** Initialize  $T[i] \leftarrow NaN$  and  $C[i] \leftarrow 0$  for  $i \in [k]$ .
- When receive element a<sub>t</sub>:
  - If there is  $j \in [k]$  such that  $a_t = T[j]$ , then  $C[j] \leftarrow C[j] + 1$
  - **②** Else, if there is  $j \in [k]$  such that C[j] = 0, then  $T[j] \leftarrow a_t$  and  $C[j] \leftarrow 1$
  - **③** Else make all C[j] ← C[j] − 1 and discard  $a_t$
- **o** Return the array T with the counter array C

• For element  $e \in \Sigma$ , let  $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \\ 0, & \text{otherwise.} \end{cases}$ 

• For element  $e \in \Sigma$ , let  $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \\ 0, & \text{otherwise.} \end{cases}$ 

#### Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \le count(e) - est(e) \le \frac{N}{k+1} \le \epsilon N$$

• For element  $e \in \Sigma$ , let  $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \\ 0, & \text{otherwise.} \end{cases}$ 

#### Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \le count(e) - est(e) \le \frac{N}{k+1} \le \epsilon N$$

•  $count(e) \ge est(e)$  because never increase C[j] for e unless we see e

• For element  $e \in \Sigma$ , let  $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \\ 0, & \text{otherwise.} \end{cases}$ 

#### Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \le count(e) - est(e) \le \frac{N}{k+1} \le \epsilon N$$

- $count(e) \ge est(e)$  because never increase C[j] for e unless we see e
- If we don't increase est(e) by 1 when we see an update to e then we decrement k counters and discard current update to e

• For element  $e \in \Sigma$ , let  $est(e) = \begin{cases} C[j], & \text{if } e = T[j] \\ 0, & \text{otherwise.} \end{cases}$ 

#### Lemma

Let count(e) be the number of occurrences of e in stream up to time N.

$$0 \le count(e) - est(e) \le \frac{N}{k+1} \le \epsilon N$$

- $count(e) \ge est(e)$  because never increase C[j] for e unless we see e
- If we don't increase est(e) by 1 when we see an update to e then we decrement k counters and discard current update to e
- So we drop k+1 distinct stream updates, but there are N updates, so we won't increase est(e) by 1 (when we should) at most  $\frac{N}{\nu \perp 1} \leq \epsilon N$  times.

• At any time N, all heavy hitters e are in T

- ullet At any time N, all heavy hitters e are in T
  - For an  $\epsilon$ -heavy hitter e, we have  $count(e) > \epsilon \cdot N$

- At any time N, all heavy hitters e are in T
  - For an  $\epsilon$ -heavy hitter e, we have  $count(e) > \epsilon \cdot N$
  - $est(e) \ge count(e) \epsilon \cdot N > 0$

- At any time N, all heavy hitters e are in T
  - For an  $\epsilon$ -heavy hitter e, we have  $count(e) > \epsilon \cdot N$
  - $est(e) \ge count(e) \epsilon \cdot N > 0$
  - $est(e) > 0 \Rightarrow e$  is in T

- At any time N, all heavy hitters e are in T
  - For an  $\epsilon$ -heavy hitter e, we have  $count(e) > \epsilon \cdot N$
  - $est(e) \ge count(e) \epsilon \cdot N > 0$
  - $est(e) > 0 \Rightarrow e$  is in T
  - Space used is  $O(k \cdot (\log(\Sigma) + \log N)) = O((1/\epsilon) \cdot (b + \log N))$  bits

- Introduction
  - Data Streaming
  - Basic Examples
- Main Examples
  - Heavy hitters
  - Distinct Elements
  - Weighted Heavy Hitters
- Acknowledgements

### Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

Use strongly 2-universal hash function!

• Take strongly 2-universal hash function  $h:[0,m-1] \to [0,m^3]$ .

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

- Take strongly 2-universal hash function  $h: [0, m-1] \rightarrow [0, m^3]$ .
- From hashing lecture, w.h.p. no collisions!

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

- Take strongly 2-universal hash function  $h:[0,m-1] \rightarrow [0,m^3]$ .
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements  $b_1, \ldots, b_D$

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

- Take strongly 2-universal hash function  $h:[0,m-1] \rightarrow [0,m^3]$ .
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements  $b_1, \ldots, b_D$ 
  - If the D hash values  $h(b_1), \ldots, h(b_D)$  are evenly distributed in  $[0, m^3]$ , then  $t^{th}$  smallest hash value should be close to  $\frac{tm^3}{D}$ .

## Example (Distinct elements)

- Input stream:  $a_1, \ldots, a_N$  be integers from  $[0, 2^b 1]$ .  $m := 2^b$
- Task: maintain current # of distinct elements D we have seen so far

- Take strongly 2-universal hash function  $h:[0,m-1] \rightarrow [0,m^3]$ .
- From hashing lecture, w.h.p. no collisions!
- Suppose there are D distinct elements  $b_1, \ldots, b_D$ 
  - If the D hash values  $h(b_1), \ldots, h(b_D)$  are evenly distributed in  $[0, m^3]$ , then  $t^{th}$  smallest hash value should be close to  $\frac{tm^3}{D}$ .
  - If we know that  $t^{th}$  smallest value is T, then  $T \approx \frac{tm^3}{D} \Rightarrow D \approx \frac{tm^3}{T}$



## Distinct Elements - algorithm

- Choose a random hash function h from strongly 2-universal hash family
- For each item a<sub>i</sub> in the stream:
  - Compute  $h(a_i)$
  - update list that stores the *t* smallest hash values
  - ullet After all data has read, let T be  $t^{th}$  smallest hash value in data stream.

Return 
$$Y = \frac{tm^3}{T}$$

• What are our space requirements?

- What are our space requirements?
  - Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)

- What are our space requirements?
  - Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)
  - Need to find good value of t for high probability of success

- What are our space requirements?
  - Not going to store the whole hash table, only store hash function h and t numbers (the t smallest values we have seen)
  - Need to find good value of t for high probability of success

#### Theorem

Setting  $t = O(1/\epsilon^2)$  we have that

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

#### Theorem

Setting  $t = O(1/\epsilon^2)$  we have that  $Y = \frac{tm^3}{T}$  satisfies:

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

#### Theorem

Setting  $t = O(1/\epsilon^2)$  we have that  $Y = \frac{tm^3}{T}$  satisfies:

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

#### Theorem

Setting  $t = O(1/\epsilon^2)$  we have that  $Y = \frac{tm^3}{T}$  satisfies:

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• 
$$Y > (1 + \epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1 + \epsilon) \cdot D} \le \frac{(1 - \epsilon/2) \cdot tm^3}{D}$$

#### Theorem

Setting 
$$t = O(1/\epsilon^2)$$
 we have that  $Y = \frac{tm^3}{T}$  satisfies:

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• 
$$Y > (1 + \epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1 + \epsilon) \cdot D} \le \frac{(1 - \epsilon/2) \cdot tm^3}{D}$$

• At least t hash values smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$ 

#### Theorem

Setting 
$$t = O(1/\epsilon^2)$$
 we have that  $Y = \frac{tm^3}{T}$  satisfies:

$$(1 - \epsilon) \cdot D \le Y \le (1 + \epsilon) \cdot D$$

with constant probability.

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• 
$$Y > (1+\epsilon) \cdot D \Rightarrow T < \frac{tm^3}{(1+\epsilon) \cdot D} \le \frac{(1-\epsilon/2) \cdot tm^3}{D}$$

- At least t hash values smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$
- Random variable  $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• Random variable  $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{\left(1 - \epsilon/2\right) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$ 

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

- Random variable  $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$
- $\mathbb{E}[X_i] = \Pr\left[h(a_i) \le \frac{(1 \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 \epsilon/2) \cdot t}{D}$ Each  $h(a_i)$  uniformly random in  $[0, m^3]$ .

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

- Random variable  $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$
- $\mathbb{E}[X_i] = \Pr\left[h(a_i) \le \frac{(1 \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 \epsilon/2) \cdot t}{D}$ Each  $h(a_i)$  uniformly random in  $[0, m^3]$ .
- If there are D distinct elements,

$$\mathbb{E}\left[ ext{ \# elements with hash value } \leq rac{(1-\epsilon/2)\cdot tm^3}{D}
ight] \leq t(1-\epsilon/2)$$

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

- Random variable  $X_i = \begin{cases} 1, & \text{if } h(a_i) \leq \frac{(1 \epsilon/2) \cdot tm^3}{D} \\ 0, & \text{otherwise} \end{cases}$
- $\mathbb{E}[X_i] = \Pr\left[h(a_i) \le \frac{(1 \epsilon/2) \cdot tm^3}{D}\right] = \frac{(1 \epsilon/2) \cdot t}{D}$ Each  $h(a_i)$  uniformly random in  $[0, m^3]$ .
- If there are D distinct elements,

$$\mathbb{E}\left[ ext{ \# elements with hash value } \leq rac{(1-\epsilon/2)\cdot tm^3}{D}
ight] \leq t(1-\epsilon/2)$$

• but we assumed we have at least *t* such elements! Now need to show that this cannot happen with high probability



Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1 - \epsilon/2)$$

• Probability we will see  $\geq t$  elements smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$ 

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

- Probability we will see  $\geq t$  elements smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$ 
  - $Var[X] = \sum_{i=1}^{D} Var[X_i]$

(pairwise independence)

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

- Probability we will see  $\geq t$  elements smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$ 
  - $Var[X] = \sum_{i=1}^{D} Var[X_i]$

(pairwise independence)

•  $Var[X_i] = \mathbb{E}[(X_i - \mathbb{E}[X_i])^2] = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 \le \mathbb{E}[X_i]$  (indicator variable)

Upper Bound:  $Pr[Y > (1 + \epsilon) \cdot D]$ 

• If there are D distinct elements, let  $X = \sum_{i=1}^{D} X_i$ 

$$\mathbb{E}\left[X\right] \leq t(1-\epsilon/2)$$

- Probability we will see  $\geq t$  elements smaller than  $\frac{(1-\epsilon/2)\cdot tm^3}{D}$ 
  - $Var[X] = \sum_{i=1}^{D} Var[X_i]$

(pairwise independence)

- $Var[X_i] = \mathbb{E}[(X_i \mathbb{E}[X_i])^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_i]^2 \le \mathbb{E}[X_i]$  (indicator variable)
- Chebyshev's inequality:

$$\begin{split} \Pr\left[X > t\right] &= \Pr\left[X > t \cdot (1 - \epsilon/2) + \epsilon \cdot t/2\right] \\ &\leq \Pr\left[|X - \mathbb{E}[X]| > \epsilon \cdot t/2\right] \leq \frac{4 \cdot \mathsf{Var}[X]}{\epsilon^2 t^2} \leq \frac{4}{\epsilon^2 t} \end{split}$$

Lower Bound:  $Pr[Y < (1 - \epsilon) \cdot D]$ .

Similar calculation as previous slide.<sup>1</sup> Practice problem: do this part of the proof.



<sup>&</sup>lt;sup>1</sup>replacing  $1 - \epsilon$  by  $1 + \epsilon$  and using Chebyshev

Lower Bound:  $Pr[Y < (1 - \epsilon) \cdot D]$ .

Similar calculation as previous slide.<sup>1</sup> Practice problem: do this part of the proof.

- $\Pr[Y > (1+\epsilon) \cdot D] \leq \frac{4}{\epsilon^2 t}$
- $\Pr[Y < (1 \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$



 $<sup>^{1}</sup>$ replacing  $1-\epsilon$  by  $1+\epsilon$  and using Chebyshev

Lower Bound:  $Pr[Y < (1 - \epsilon) \cdot D]$ .

Similar calculation as previous slide.<sup>1</sup> Practice problem: do this part of the proof.

- $\Pr[Y > (1+\epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$
- $\Pr[Y < (1 \epsilon) \cdot D] \le \frac{4}{\epsilon^2 t}$
- Setting  $t = 24/\epsilon^2$  gives us

$$\Pr[(1-\epsilon) \cdot D \le Y \le (1+\epsilon) \cdot D] \ge 1 - \frac{8}{\epsilon^2 t} = 2/3$$



 $<sup>^{1}</sup>$ replacing  $1-\epsilon$  by  $1+\epsilon$  and using Chebyshev

• Total space used:  $O\left(\frac{1}{\epsilon^2}\log m\right)$  bits

- Total space used:  $O\left(\frac{1}{\epsilon^2}\log m\right)$  bits
  - we stored  $O(1/\epsilon^2)$  hash values each of  $\log(m)$  bits
  - hash function only requires  $O(\log m)$  bits to store.

- Total space used:  $O\left(\frac{1}{\epsilon^2}\log m\right)$  bits
  - ullet we stored  $O(1/\epsilon^2)$  hash values each of  $\log(m)$  bits
  - hash function only requires  $O(\log m)$  bits to store.
- Running time per operation:  $O(\log(m) + 1/\epsilon^2)$  steps

- Total space used:  $O\left(\frac{1}{\epsilon^2}\log m\right)$  bits
  - we stored  $O(1/\epsilon^2)$  hash values each of  $\log(m)$  bits
  - hash function only requires  $O(\log m)$  bits to store.
- Running time per operation:  $O(\log(m) + 1/\epsilon^2)$  steps
  - compute hash in  $O(\log m)$  time
  - Since we keep track of  $O(1/\epsilon^2)$  elements, and need to update the list, this takes  $O(1/\epsilon^2)$  time (though there are smarter ways)

- Introduction
  - Data Streaming
  - Basic Examples
- Main Examples
  - Heavy hitters
  - Distinct Elements
  - Weighted Heavy Hitters
- Acknowledgements

#### Example (Weighted heavy hitters)

• Input stream:  $(a_1, w_1), \ldots, (a_N, w_N)$  tuples of integers from  $\Sigma = [-2^b + 1, 2^b - 1]$ , parameter  $q \in \mathbb{N}$ 

#### Example (Weighted heavy hitters)

• Input stream:  $(a_1, w_1), \ldots, (a_N, w_N)$  tuples of integers from

$$\Sigma = [-2^b + 1, 2^b - 1]$$
, parameter  $q \in \mathbb{N}$ 

Total weight

$$Q = \sum_{t=1}^{N} w_t$$

#### Example (Weighted heavy hitters)

• Input stream:  $(a_1, w_1), \ldots, (a_N, w_N)$  tuples of integers from

$$\Sigma = [-2^b + 1, 2^b - 1]$$
, parameter  $q \in \mathbb{N}$ 

Total weight

$$Q = \sum_{t=1}^{N} w_t$$

• Total weight of  $e \in \Sigma$ :

$$Q(e) = \sum_{t: a_t = e} w_t$$

#### Example (Weighted heavy hitters)

• Input stream:  $(a_1, w_1), \dots, (a_N, w_N)$  tuples of integers from

$$\Sigma = [-2^b + 1, 2^b - 1]$$
, parameter  $q \in \mathbb{N}$ 

Total weight

$$Q = \sum_{t=1}^{N} w_t$$

• Total weight of  $e \in \Sigma$ :

$$Q(e) = \sum_{t: a_t = e} w_t$$

• Task: find all elements e such that  $Q(e) \ge q$ 

#### Example (Weighted heavy hitters)

- Input stream:  $(a_1, w_1), \ldots, (a_N, w_N)$  tuples of integers from  $\Sigma = [-2^b + 1, 2^b 1]$ , parameter  $a \in \mathbb{N}$ 
  - Total weight

$$Q = \sum_{t=1}^{N} w_t$$

• Total weight of  $e \in \Sigma$ :

$$Q(e) = \sum_{t: a_t = e} w_t$$

- **Task:** find all elements e such that  $Q(e) \geq q$
- Constraint: allowed to also output false positives (low hitters), but not allowed to miss any heavy hitter!

We will see an algorithm that gives us the following guarantees:

We will see an algorithm that gives us the following guarantees:

All heavy hitters are reported

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- ② if  $Q(e) \leq q \epsilon \cdot Q$ , then e is reported with probability at most  $\delta$ 
  - That is, have low probability of reporting a really low hitter

We will see an algorithm that gives us the following guarantees:

- All heavy hitters are reported
- ② if  $Q(e) \leq q \epsilon \cdot Q$ , then e is reported with probability at most  $\delta$ 
  - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

We will see an algorithm that gives us the following guarantees:

- 1 All heavy hitters are reported
- ② if  $Q(e) \leq q \epsilon \cdot Q$ , then e is reported with probability at most  $\delta$ 
  - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

•  $k, \ell$  are parameters to be chosen later

We will see an algorithm that gives us the following guarantees:

- 1 All heavy hitters are reported
- ② if  $Q(e) \leq q \epsilon \cdot Q$ , then e is reported with probability at most  $\delta$ 
  - That is, have low probability of reporting a really low hitter

Use 2-universal hash functions!

- $k, \ell$  are parameters to be chosen later
- Pick k hash functions  $h_1, \ldots, h_k$  where  $h_i : \Sigma \to [0, \ell 1]$

We will see an algorithm that gives us the following guarantees:

- 1 All heavy hitters are reported
- ② if  $Q(e) \leq q \epsilon \cdot Q$ , then e is reported with probability at most  $\delta$ 
  - That is, have low probability of reporting a really low hitter

#### Use 2-universal hash functions!

- $k, \ell$  are parameters to be chosen later
- Pick k hash functions  $h_1, \ldots, h_k$  where  $h_i : \Sigma \to [0, \ell 1]$
- Let's maintain  $k \cdot \ell$  counters  $C_{i,j}$ , where each  $C_{i,j}$  adds the weight of items that are mapped to  $j^{th}$  entry by the  $i^{th}$  hash function. Start with  $C_{i,j} = 0$  for all  $1 \le i \le k$  and  $1 \le j \le \ell$ .

- Given  $(a_t, w_t)$ , for each  $1 \le i \le k$  set  $C_{i,h_i(a_t)} \leftarrow C_{i,h_i(a_t)} + w_t$ .
- At the end,<sup>2</sup> report all elements *e* with

$$\min_{1 \le i \le k} C_{i,h_i(e)} \ge q$$

Data structure as a table:

<sup>&</sup>lt;sup>2</sup>In this version need to do second pass over data. But this can be fixed. Practice problem: fix this so that we can report on the fly.

• Heavy hitter always reported, as all their counters are large

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h_i(e)} < q$ .

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h_i(e)} < q$ .
- If  $Q(e) \le q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h_i(e)} < q$ .
- If  $Q(e) \leq q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h:(e)} < q$ .
- If  $Q(e) \le q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - ullet Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$
  - Contribution from e is  $Q(e) \le q \epsilon \cdot Q$ . So other elements that map to  $h_i(e)$  must have contributed  $\ge \epsilon \cdot Q$ .

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h:(e)} < q$ .
- If  $Q(e) \le q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$
  - Contribution from e is  $Q(e) \le q \epsilon \cdot Q$ . So other elements that map to  $h_i(e)$  must have contributed  $\ge \epsilon \cdot Q$ .
  - Let  $Z_i$  be the value of  $C_{i,h_i(e)}$  that was added by other elements

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h_i(e)} < q$ .
- If  $Q(e) \leq q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$
  - Contribution from e is  $Q(e) \le q \epsilon \cdot Q$ . So other elements that map to  $h_i(e)$  must have contributed  $\ge \epsilon \cdot Q$ .
  - Let  $Z_i$  be the value of  $C_{i,h_i(e)}$  that was added by other elements
  - $h_i$  chosen from 2-universal hash family then probability that another element f is mapped to  $h_i(e)$  is  $\leq 1/\ell$ .

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h_i(e)} < q$ .
- If  $Q(e) \leq q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$
  - Contribution from e is  $Q(e) \le q \epsilon \cdot Q$ . So other elements that map to  $h_i(e)$  must have contributed  $\ge \epsilon \cdot Q$ .
  - Let  $Z_i$  be the value of  $C_{i,h_i(e)}$  that was added by other elements
  - $h_i$  chosen from 2-universal hash family then probability that another element f is mapped to  $h_i(e)$  is  $\leq 1/\ell$ .
  - Thus  $\mathbb{E}[Z_i] \leq Q/\ell$ . By Markov:

$$\Pr[Z_i \ge \epsilon \cdot Q] \le \frac{\mathbb{E}[Z]}{\epsilon \cdot Q} \le \frac{1}{\epsilon \ell}$$

- Heavy hitter always reported, as all their counters are large
- Need to show now that if e is not a heavy hitter, with high probability we will have one counter  $C_{i,h:(e)} < q$ .
- If  $Q(e) \le q \epsilon \cdot Q$ , what is prob. e will be reported as heavy hitter?
  - Look at counter  $C_{i,h_i(e)}$ . Since e is reported, must have  $C_{i,h_i(e)} \geq q$
  - Contribution from e is  $Q(e) \le q \epsilon \cdot Q$ . So other elements that map to  $h_i(e)$  must have contributed  $\ge \epsilon \cdot Q$ .
  - Let  $Z_i$  be the value of  $C_{i,h_i(e)}$  that was added by other elements
  - $h_i$  chosen from 2-universal hash family then probability that another element f is mapped to  $h_i(e)$  is  $\leq 1/\ell$ .
  - Thus  $\mathbb{E}[Z_i] \leq Q/\ell$ . By Markov:

$$\Pr[Z_i \ge \epsilon \cdot Q] \le \frac{\mathbb{E}[Z]}{\epsilon \cdot Q} \le \frac{1}{\epsilon \ell}$$

• Hash functions  $h_i$  chosen independently  $\Rightarrow$ 

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$



We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

111 / 115

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

• Setting  $\ell = 2/\epsilon$  and  $k = \log(\delta)$  we get that probability above  $\leq \delta$ .

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

- Setting  $\ell = 2/\epsilon$  and  $k = \log(\delta)$  we get that probability above  $\leq \delta$ .
- Space requirement for counters  $O(1/\epsilon \cdot \log(1/\delta))$

We have

$$\Pr\left[\min_{1\leq i\leq k} Z_i \geq \epsilon \cdot Q\right] \leq \left(\frac{1}{\epsilon\ell}\right)^k$$

- Setting  $\ell = 2/\epsilon$  and  $k = \log(\delta)$  we get that probability above  $\leq \delta$ .
- Space requirement for counters  $O(1/\epsilon \cdot \log(1/\delta))$
- ullet Space required to store all hash functions and evaluation time  $O(k \cdot \ell)$

#### Acknowledgement

- Lecture based largely on Lap Chi's notes and David Woodruff's notes.
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L05.pdf
- See David's notes at https://www.cs.cmu.edu/~15451-s20/lectures/lec6.pdf