Lecture 18: Multiplicative Weights Update

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 13, 2023

1/81

Overview

Multiplicative Weights Update

Solving Linear Programs

Conclusion

Acknowledgements

2/81

Learning from Experts

@ Setup: investing your co-op money on stock markets (or gambling).
@ Objective: to get rich, but we don’'t know much about stock markets
@ Have access to n experts (news programs, newspapers, social media)

mo SWAGGINS

tacaback comurSwagqing

3/81

Learning from Experts

@ Setup: investing your co-op money on stock markets (or gambling).
o Objective: to get rich, but we don’'t know much about stock markets
@ Have access to n experts (news programs, newspapers, social media)

e Each morning, before market opens, experts predict whether the price

of a stock will go up or down
e By the time market closes, we can check the outcome, who was right

or wrong.

4/81

Learning from Experts

@ Setup: investing your co-op money on stock markets (or gambling).
o Objective: to get rich, but we don’'t know much about stock markets

@ Have access to n experts (news programs, newspapers, social media)
e Each morning, before market opens, experts predict whether the price

of a stock will go up or down
e By the time market closes, we can check the outcome, who was right

or wrong.
@ Experts who were right earn one dollar
o Experts who were wrong lose one dollar

5/81

Learning from Experts

Setup: investing your co-op money on stock markets (or gambling).

Objective: to get rich, but we don’t know much about stock markets

(]

Have access to n experts (news programs, newspapers, social media)
e Each morning, before market opens, experts predict whether the price
of a stock will go up or down
e By the time market closes, we can check the outcome, who was right
or wrong.
@ Experts who were right earn one dollar
o Experts who were wrong lose one dollar

@ Some expert did really well, and if we followed their advice we would
have made a lot of money...

6/81

Learning from Experts

Setup: investing your co-op money on stock markets (or gambling).

(]

Objective: to get rich, but we don’t know much about stock markets

@ Have access to n experts (news programs, newspapers, social media)

e Each morning, before market opens, experts predict whether the price
of a stock will go up or down
e By the time market closes, we can check the outcome, who was right
or wrong.
@ Experts who were right earn one dollar
o Experts who were wrong lose one dollar

@ Some expert did really well, and if we followed their advice we would
have made a lot of money...

(]

Hindsight is 20/20 though. To make money, need to make a decision
on what & how to trade every day.

7/81

Learning from Experts

@ Setup: investing your co-op money on stock markets (or gambling).
o Objective: to get rich, but we don’'t know much about stock markets

@ Have access to n experts (news programs, newspapers, social media)

e Each morning, before market opens, experts predict whether the price

of a stock will go up or down
e By the time market closes, we can check the outcome, who was right
or wrong.

@ Experts who were right earn one dollar
o Experts who were wrong lose one dollar
@ Some expert did really well, and if we followed their advice we would
have made a lot of money...

(]

Hindsight is 20/20 though. To make money, need to make a decision
on what & how to trade every day.

@ Can we hope to do as well as the best expert in hindsight?

8/81

Other Applications

@ Online Learning

9/81

Other Applications

@ Online Learning

@ Experts are weak classifiers, want to choose hypothesis based on these
experts

Boosting (in learning theory)

10/81

Other Applications

@ Online Learning

@ Experts are weak classifiers, want to choose hypothesis based on these
experts

Boosting (in learning theory)

@ Solving linear programs! (today)

11/81

Other Applications

@ Online Learning

@ Experts are weak classifiers, want to choose hypothesis based on these
experts

Boosting (in learning theory)

Solving linear programs! (today)

Game Theory

many more

12/81

Why this Benchmark?

Say we are trading for T days.

Why not want our algorithm to make as much money as a function of T
as we can?

13/81

Why this Benchmark?

Say we are trading for T days.

Why not want our algorithm to make as much money as a function of T
as we can?

e With the benchmark above, guessing correctly (in expectation) T /2
times is trivial (pick your trades at random)

14 /81

Why this Benchmark?

Say we are trading for T days.

Why not want our algorithm to make as much money as a function of T
as we can?

e With the benchmark above, guessing correctly (in expectation) T /2
times is trivial (pick your trades at random)

@ It turns out, T /2 correct guesses (in expectation) is also optimal

15/81

Why this Benchmark?

Say we are trading for T days.

Why not want our algorithm to make as much money as a function of T
as we can?

e With the benchmark above, guessing correctly (in expectation) T /2
times is trivial (pick your trades at random)

@ It turns out, T /2 correct guesses (in expectation) is also optimal
o Worst-case analysis.

16 /81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

17/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.

18/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.
o If we made the right trade, do nothing.

19/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.
o If we made the right trade, do nothing.

@ If our trade was bad, at the end of the trading day discard all experts
that made a mistake that day.

20/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.
o If we made the right trade, do nothing.

@ If our trade was bad, at the end of the trading day discard all experts
that made a mistake that day.

@ Every time we made a bad trade, we discard half of the experts.

o We took majority vote, so at least half the experts also made bad
trades

21/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.

o If we made the right trade, do nothing.

@ If our trade was bad, at the end of the trading day discard all experts
that made a mistake that day.

@ Every time we made a bad trade, we discard half of the experts.

o We took majority vote, so at least half the experts also made bad
trades

@ After log n bad trades, only the expert who is always right will
remain! From then on, we will always be right!

22/81

Warm-up ldea

Say we knew that there was one expert which will be right every time.
What should we do?

@ At each trading day, take majority vote of the opinions of the experts.
o If we made the right trade, do nothing.

@ If our trade was bad, at the end of the trading day discard all experts
that made a mistake that day.

@ Every time we made a bad trade, we discard half of the experts.

o We took majority vote, so at least half the experts also made bad
trades

@ After log n bad trades, only the expert who is always right will
remain! From then on, we will always be right!

Total money we made: > T — logn

Total money best expert made: T

23/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

24/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

@ Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

25/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

@ Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

@ There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

26/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

@ Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

@ There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

@ Let w; : [n] — Ry be a function from each expert to the non-negative
reals, and 0 < e < 1/2
o w;(i) is the weight of expert i at time t

27/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

@ Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

@ There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

@ Let w; : [n] — Ry be a function from each expert to the non-negative
reals, and 0 < e < 1/2
o w;(i) is the weight of expert i at time t

@ In beginning every expert has weight wi(i) =1

28/81

Multiplicative Weights Update Algorithm

@ In general do not have a single expert who is right all the time.

@ Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

@ There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

@ Let w; : [n] — Ry be a function from each expert to the non-negative
reals, and 0 < e < 1/2

o w;(i) is the weight of expert i at time t
@ In beginning every expert has weight wi(i) =1
© If an expert makes a mistake at day t, make wyy1(i) = we(i) - (1 —¢)

29/81

Multiplicative Weights Update Algorithm

© 00

In general do not have a single expert who is right all the time.

Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

Let wy : [n] — R be a function from each expert to the non-negative
reals, and 0 < e < 1/2
o w;(i) is the weight of expert i at time t

In beginning every expert has weight wy (i) =1
If an expert makes a mistake at day t, make we1(i) = we(i) - (1 — ¢)

Each trading day, choose to trade based on weighted majority of the
decisions of the experts

30/81

Multiplicative Weights Update Algorithm
Algorithm:

31/81

Multiplicative Weights Update Algorithm
Algorithm:

© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].

32/81

Multiplicative Weights Update Algorithm
Algorithm:

© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].

o At each time step t, expert takes decision d;(i) € {—1,+1}
o Parameter 0 < e < 1/2

33/81

Multiplicative Weights Update Algorithm
Algorithm:
© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].
o At each time step t, expert takes decision d;(i) € {—1,+1}
o Parameter 0 < e < 1/2
@ Let w; : [n] — R weight function
o wy(i) is the weight of expert i at time t
o In beginning every expert has weight wy (i) =1

34/81

Multiplicative Weights Update Algorithm
Algorithm:

© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].
o At each time step t, expert takes decision d;(i) € {—1,+1}
o Parameter 0 < e < 1/2
@ Let w; : [n] — R weight function
o wy(i) is the weight of expert i at time t
o In beginning every expert has weight wy (i) =1
© At each time step (i.e. fort=1,..., T):

35/81

Multiplicative Weights Update Algorithm
Algorithm:

© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].

o At each time step t, expert takes decision d;(i) € {—1,+1}
o Parameter 0 < e < 1/2

@ Let w; : [n] — R weight function

o wq(f) is the weight of expert i at time ¢

o In beginning every expert has weight wy (i) =1
© At each time step (i.e. fort=1,..., T):

@® Make your decision based on weighted majority:

{+17 if S0 we(i) - de(i) > 0

—1, otherwise

36/81

Multiplicative Weights Update Algorithm
Algorithm:

© Setup: we have a binary decision to make (i.e., {—1,+1}) and we
have access to n experts, indexed by the set [n].

o At each time step t, expert takes decision d;(i) € {—1,+1}
o Parameter 0 < e < 1/2

@ Let w; : [n] — R weight function

o wq(f) is the weight of expert i at time ¢

o In beginning every expert has weight wy (i) =1
© At each time step (i.e. fort=1,..., T):

@® Make your decision based on weighted majority:

{+17 if S0 we(i) - de(i) > 0

—1, otherwise
@ If an expert makes a mistake at time t, make

w1 (1) = we(i) - (1 —€)

37/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

|
Me < 2-(1+e)Me(i) + Zg”

38/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

|
Me < 2-(1+e)Me(i) + Zg”

@ Potential function

39/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

|
Me < 2-(1+e)Me(i) + Zg”

@ Potential function

n

(Dt = E Wt(l)
i=1
@ Intuition:

o If we make mistake, ®;,1 decreases by a multiplicative factor w.r.t. ¢,

40/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

|
Me < 2-(1+e)Me(i) + Zg”

@ Potential function

n

O =) wi(i)

i=1
o Intuition:

o If we make mistake, ®;,1 decreases by a multiplicative factor w.r.t. ¢,

e ®, is monotonically decreasing (so if we get it right, potential does not
increase either)

41/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

|
Me < 2-(1+e)Me(i) + 28"

€

@ Potential function .

(Dt = E Wt(l)
i=1
@ Intuition:

o If we make mistake, ®;,1 decreases by a multiplicative factor w.r.t. ¢,

e ®, is monotonically decreasing (so if we get it right, potential does not
increase either)

o Initially ®; =n
o &, >0 forallt

42/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M.(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

2|
Me < 2-(1+e)Me(i) + Zg"

o Potential function ®; =71 wy(F)

o If we made a mistake, at least half the weight was on the wrong
answer. Thus

b= > w()+(1-2) > w() < (1-3) o,
i right Jj wrong

43/81

Analysis

Theorem (Multiplicative Weights Update)

Let M; be the number of mistakes that our algorithm makes until time t,

and let M.(i) be the number of mistakes that expert i made until time t.
Then, for any expert i € [n], we have:

2|
Me < 2-(1+e)Me(i) + Zg"

o Potential function ®; =71 wy(F)

o If we made a mistake, at least half the weight was on the wrong
answer. Thus

Gea= D wl(i)+(1-2) Y wl) < (1-3) o

Jj wrong

@ Thus,

44 /81

Analysis
@ We have

4581

Analysis

@ We have

e\ M
esn(1-3)

@ On the other hand, have:

n

O =) wi(j) > we(i) = (1 - &)™)

Jj=1

46/81

Analysis

@ We have

@ On the other hand, have:

n

O =) wi(j) > we(i) = (1 - &)™)

j=1

@ Putting (1) and (2) together

Mt .
n~(1 - E) > (1—e)M () = log(1—¢/2)-Mi+log n > M,(i)-log(1—¢)

2

47/81

Analysis

@ Putting (1) and (2) together

Mt .
n~(1 - %) > (1—e)M() = log(1—¢/2)-Mi+log n > M,(i)-log(1—e)

@ Using inequality —x — x? < log(1 — x) < —x for x € (0,1/2), we get:

—£/2- M; +logn > M,(i) - (—& — €°)

48/81

Multiplicative Weights Update - General

The same algorithm and argument above, applied to the setting:

49/81

Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:
@ Setup: have access to n experts, indexed by the set [n].

50/81

Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:

@ Setup: have access to n experts, indexed by the set [n].

o At each time step t, each expert will guess a value m.(i) € [-w, +w].
o Cost of ™ expert answer at time t is m,(i)
o Parameter 0 < e < 1/2

51/81

Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:

@ Setup: have access to n experts, indexed by the set [n].
o At each time step t, each expert will guess a value m.(i) € [-w, +w].
o Cost of ™ expert answer at time t is m,(i)
o Parameter 0 < e < 1/2
@ Let p; : [n] — Ry weight function (normalized to sum to 1)
o py(f) is the weight of expert i at time t
o In beginning every expert has weight p1(i) = 1/n
o Our total cost is >, (pt, me)

52 /81

Multiplicative Weights Update - General

The same algorithm and argument above, applied to the setting:

@ Setup: have access to n experts, indexed by the set [n].
o At each time step t, each expert will guess a value m;(i) € [-w, +w].
o Cost of it expert answer at time t is m,(i)
o Parameter 0 < e < 1/2

@ Let p; : [n] — R weight function (normalized to sum to 1)
o p:(i) is the weight of expert i at time t
o In beginning every expert has weight p;(i) = 1/n
o Our total cost is >, (pt, me)

Which implies update rule is:

wep1 (i) = (1 —€- mt(i)) - we (i)

w

wet1(/)

peta(i) = ®rit

53/81

Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:

@ Setup: have access to n experts, indexed by the set [n].
o At each time step t, each expert will guess a value m.(i) € [-w, +w].
o Cost of ™ expert answer at time t is m,(i)
o Parameter 0 < e < 1/2

@ Let p; : [n] — Ry weight function (normalized to sum to 1)

o p:(i) is the weight of expert i at time t
o In beginning every expert has weight p1(i) = 1/n
o Our total cost is >, (pt, me)

© Our goal is to minimize our total cost: Z;l(pt, me)

54 /81

Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:

@ Setup: have access to n experts, indexed by the set [n].
o At each time step t, each expert will guess a value m.(i) € [-w, +w].
o Cost of ™ expert answer at time t is m,(i)
o Parameter 0 < e < 1/2
@ Let p; : [n] — Ry weight function (normalized to sum to 1)
o py(f) is the weight of expert i at time t
o In beginning every expert has weight p1(i) = 1/n
o Our total cost is >, (pt, me)

© Our goal is to minimize our total cost: Z;l(pt, me)

Theorem (Multiplicative Weights Update)

With the setup above, after t rounds, for any expert i € [n], we have:

T

T T
> o me) < 32 meli) 2 Ime(i)] + L

t=1 t=1 t=1

= = = = = &

Proof of the Theorem

The proof of the theorem in the previous slide simply follows from the
same idea we had together with the following inequality:

1-¢), ifxel0,1
(1—exyz {00 el
(1+e), ifxe[-1,0]
when ¢ € (0,1/2).
Also worth noting the inequalities (from Taylor expansion of In) for

y €(0,1/2):

In(1+y)>y—y?/2>y—y
In(1—y)>—y—y?

56 /81

@ Solving Linear Programs

57/81

Solving Linear Programs
Assume we are given LP in feasibility version:

Ax > b
x>0

58 /81

Solving Linear Programs
Assume we are given LP in feasibility version:

Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.

59 /81

Solving Linear Programs
Assume we are given LP in feasibility version:
Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.

@ Think of x > 0 being the easy constraints to satisfy, whereas Ax > b

are the hard ones

60 /81

Solving Linear Programs
Assume we are given LP in feasibility version:

Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.
@ Think of x > 0 being the easy constraints to satisfy, whereas Ax > b
are the hard ones
Idea:
@ Think of each inequality Ajx > b; as an expert (A; is ith row of A)

61/81

Solving Linear Programs
Assume we are given LP in feasibility version:

Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.
@ Think of x > 0 being the easy constraints to satisfy, whereas Ax > b
are the hard ones
Idea:
@ Think of each inequality Ajx > b; as an expert (A; is ith row of A)
@ Each constraint would like to be the hardest constraint, i.e. the one
that is violated the most by the current proposed solution x(t)

62/81

Solving Linear Programs

Assume we are given LP in feasibility version:

Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.

@ Think of x > 0 being the easy constraints to satisfy, whereas Ax > b
are the hard ones

Idea:
@ Think of each inequality Ajx > b; as an expert (A; is ith row of A)
@ Each constraint would like to be the hardest constraint, i.e. the one
that is violated the most by the current proposed solution x(t)
© More precisely: cost of it constraint

A,‘X - b,‘

63/81

Solving Linear Programs
Assume we are given LP in feasibility version:

Ax > b
x>0

@ Optimization version reduces to feasibility version by binary search.

@ Think of x > 0 being the easy constraints to satisfy, whereas Ax > b
are the hard ones

Idea:
@ Think of each inequality Ajx > b; as an expert (A; is ith row of A)
@ Each constraint would like to be the hardest constraint, i.e. the one
that is violated the most by the current proposed solution x(t)
© More precisely: cost of it constraint

A,‘X - b,‘

© We would like to propose feasible solution (i.e. lower cost of all
constraints). Hard to deal with all constraints at the same time.

64/81

Oracle

Definition (Oracle)

Let A€ R™*" We say that O is an oracle of width w for A if given a

linear constraint
pTAx>p'b, x>0

O(p) will return y > 0 such that

|A,-y = b,| <w Vie [m]

65/81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

e Multiplicative Weights Update (MWU) provides way of combining all
constraints into one constraint!

66 /81

Solving Linear Programs

@ Would like to minimize

min A,'X — b,'
1<i<m
e Multiplicative Weights Update (MWU) provides way of combining all
constraints into one constraint!
e MWU finds probability distribution over experts (normalized weights),
which in our case are the inequalities.

67 /81

Solving Linear Programs
e Would like to minimize

lg]iignm A,'X — b,'
e Multiplicative Weights Update (MWU) provides way of combining all
constraints into one constraint!
e MWU finds probability distribution over experts (normalized weights),
which in our case are the inequalities.
@ Thus, we have to deal with only the constraint p() Ax > p(t)b, where
1

= W (we(1),...,we(n))

p(®)

68 /81

Solving Linear Programs
e Would like to minimize

min A,'X — b,'
1<i<m

e Multiplicative Weights Update (MWU) provides way of combining all

constraints into one constraint!

e MWU finds probability distribution over experts (normalized weights),
which in our case are the inequalities.

@ Thus, we have to deal with only the constraint p() Ax > p(t)b, where
_
> we(i)

o MWU shows that over the long run:

P =

(we(1),...,we(n))

The total violation of our weighted constraints will be close to the
total violation of the worst violated constraint!

69 /81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

70/81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

@ MWU shows that over the long run, for any inequality i € [m]:
T

t=1 < t=1 t=1

T T
(o0, A0 -) < wlogm 3 (A = by e 3 A

bl

71/81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

@ MWU shows that over the long run, for any inequality i € [m]:
T

T T
(o0, A0 -) < wlogm 3 (A = by e 3 A — by

t=1 < t=1 t=1

@ Return solution

XZ%ZX“)

t=1

72/81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

@ MWU shows that over the long run, for any inequality i € [m]:

T T T
-
Z(p(t), Ax() —p) < %W +Z(A;x(t) —b;) +€~Z |Aix(®) — by
t=1 t=1 t=1
@ Return solution
1 T
X = + Z (1)
t=1

o What if there is no x > 0 such that p(t) Ax > p(t)p?
e Farkas' lemma =- the system is infeasible, and we are done!

73/81

Solving Linear Programs
@ Would like to minimize

min A;x — b;
1<i<m

@ MWU shows that over the long run, for any inequality i € [m]:

T T T
-
Z(p(t), Ax() —p) < %W +Z(A;x(t) —b;) +€~Z |Aix(®) — by
t=1 t=1 t=1
@ Return solution
1 T
X = + Z (1)
t=1

e What if there is no x > 0 such that p(t) Ax > p(t)p?

e Farkas' lemma =- the system is infeasible, and we are done!
e Thus, we will assume that above never happens.

74 /81

Theorem

Theorem (Multiplicative Weights Update)

Let 9 > 0 and suppose we are given an oracle with width w for A. The
MWU algorithm either finds a solution y > 0 such that

A,-yzb,-—é ViE[m]

or concludes that the system is infeasible (and outputs a dual solution).
Our algorithm makes O(w? log(m)/42) oracle calls.

75/81

Analysis
@ As we said before, if oracle fails to find a solution, we found a
separating hyperplane and we are done.

76 /81

Analysis
@ As we said before, if oracle fails to find a solution, we found a
separating hyperplane and we are done.
@ Otherwise, we have that MWU algorithm with costs
me(i) = Aix(t) — b; gives us that after T steps
T

T T
S (60, AxO —) < BT LS (e 3 A by
t=1 t=1 t=1

77/81

Analysis

@ As we said before, if oracle fails to find a solution, we found a
separating hyperplane and we are done.

@ Otherwise, we have that MWU algorithm with costs
me(i) = Aix(t) — b; gives us that after T steps
T

T T
S (60, AxO —) < BT LS (e 3 A by
t=1 t=1 t=1

@ Thus, we have

T Aix(t) — b, w log m
Z T . —¢

T.
t=1 €

78/81

Analysis

@ As we said before, if oracle fails to find a solution, we found a
separating hyperplane and we are done.

@ Otherwise, we have that MWU algorithm with costs
me(i) = Aix(t) — b; gives us that after T steps
T

T T
S (60, AxO —) < BT LS (e 3 A by
t=1 t=1 t=1

@ Thus, we have

T Aix(t) — b, w log m
YA e
ot T T €

4. w?-|
o Settinge =0/2wand T = TW o oem

52 we get
T
Aix(®) — b;
Y ——2>-
t=1 T

79/81

Conclusion

@ Online Learning

@ Experts are weak classifiers, want to choose hypothesis based on these
experts
@ Boosting (in learning theory)

Solving linear programs! (today)
Convex Optimization

Computational Geometry

many more

80/81

Acknowledgement

@ Lecture based largely on:

e Lap Chi's notes
e Yaron Singer’s notes
e Elad Hazan's survey on online optimization

@ See Lap Chi's notes at (Lecture 20) https:
//cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf

@ See Yaron's notes https://people.seas.harvard.edu/~yaron/
AM221-S16/lecture_notes/AM221_lecturell.pdf

@ See Elad’s survey at https://arxiv.org/pdf/1909.05207 .pdf

@ See great survey on MWU ar
https://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf

81/81

https://cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf
https://cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf
https://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture11.pdf
https://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture11.pdf
https://arxiv.org/pdf/1909.05207.pdf
https://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf

	Multiplicative Weights Update
	Solving Linear Programs
	Conclusion
	Acknowledgements

