Lecture 15: Semidefinite Programming, Duality \& SDP Relaxations

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

June 29, 2023

Overview

- Duality Theory
- Why Relax \& Round?
- Conclusion
- Acknowledgements

Working with Symmetric Matrices

Definition (Frobenius Inner Product)
$A, B \in \mathcal{S}^{m}$, define the Frobenius inner product as

$$
\langle A, B\rangle:=\operatorname{tr}[A B]=\sum_{i, j} A_{i j} B_{i j}
$$

Working with Symmetric Matrices

Definition (Frobenius Inner Product)
$A, B \in \mathcal{S}^{m}$, define the Frobenius inner product as

$$
\langle A, B\rangle:=\operatorname{tr}[A B]=\sum_{i, j} A_{i j} B_{i j}
$$

- This is the "usual inner product" if you think of the matrices as vectors

Working with Symmetric Matrices

Definition (Frobenius Inner Product)
$A, B \in \mathcal{S}^{m}$, define the Frobenius inner product as

$$
\langle A, B\rangle:=\operatorname{tr}[A B]=\sum_{i, j} A_{i j} B_{i j}
$$

- This is the "usual inner product" if you think of the matrices as vectors
- Thus, have the norm

$$
\|A\|_{F}=\sqrt{\langle A, A\rangle}=\sqrt{\sum_{i, j} A_{i j}^{2}}
$$

Working with Symmetric Matrices

Definition (Frobenius Inner Product)

$A, B \in \mathcal{S}^{m}$, define the Frobenius inner product as

$$
\langle A, B\rangle:=\operatorname{tr}[A B]=\sum_{i, j} A_{i j} B_{i j}
$$

- This is the "usual inner product" if you think of the matrices as vectors
- Thus, have the norm

$$
\|A\|_{F}=\sqrt{\langle A, A\rangle}=\sqrt{\sum_{i, j} A_{i j}^{2}}
$$

- With this norm, can talk about the polar dual to a given spectrahedron $S \subseteq \mathcal{S}^{m}$:

$$
S^{\circ}=\left\{Y \in \mathcal{S}^{m} \mid\langle Y, X\rangle \leq 1, \forall X \in S\right\}
$$

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_{i} 's to be diagonal

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_{i} 's to be diagonal
- How is that an LMI though?

Standard Primal Form as LMI

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Example

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{11}+2 x_{12} \\
\text { subject to } & x_{11}+x_{22}=1 \\
& \left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right) \succeq 0
\end{aligned}
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

- If we look at what happens when we multiply $i^{\text {th }}$ equality by a variable y_{i} :

$$
\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}, X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

- If we look at what happens when we multiply $i^{\text {th }}$ equality by a variable y_{i} :

$$
\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}, X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

- Thus, if $\sum_{i=1}^{t} y_{i} A_{i} \preceq C$, then we have:

$$
y^{T} b=\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle \leq\langle C, X\rangle
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

- If we look at what happens when we multiply $i^{t h}$ equality by a variable y_{i} :

$$
\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}, X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

- Thus, if $\sum_{i=1}^{t} y_{i} A_{i} \preceq C$, then we have:

$$
y^{T} b=\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle \leq\langle C, X\rangle
$$

- $y^{T} b$ is a lower bound on the solution to our SDP!

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP
$\begin{aligned} \operatorname{minimize} & \langle C, X\rangle \\ \text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\ & X \succeq 0\end{aligned}$

Dual SDP

$\begin{aligned} \text { maximize } & y^{\top} b \\ \text { subject to } & \sum_{i=1}^{t} y_{i} A_{i} \preceq C\end{aligned}$

Semidefinite Programming Duality

Consider the following SDPs:

$$
\begin{array}{cl}
\text { Primal } & \text { SDP } \\
\text { minimize } & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP

$\operatorname{minimize}$	$\langle C, X\rangle$
subject to	$\left\langle A_{i}, X\right\rangle=b_{i}$
	$X \succeq 0$

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. Then

$$
y^{\top} b \leq\langle C, x\rangle .
$$

Complementary Slackness

Primal SDP
minimize $\langle C, X\rangle$
subject to $\left\langle A_{i}, X\right\rangle=b_{i}$
$X \succeq 0$

Complementary Slackness

Primal SDP

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Dual SDP
maximize $y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$
\left(C-\sum_{i=1}^{t} y_{i} A_{i}\right) X=0
$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Complementary Slackness

Primal SDP

$\operatorname{minimize}$	$\langle C, X\rangle$
subject to	$\left\langle A_{i}, X\right\rangle=b_{i}$
	$X \succeq 0$

Dual SDP
maximize $y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$
\left(C-\sum_{i=1}^{t} y_{i} A_{i}\right) x=0
$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.
Complementary slackness gives us sufficient conditions to check optimality of our solutions.

Strong Duality

Primal SDP
minimize $\langle C, X\rangle$
subject to $\left\langle A_{i}, X\right\rangle=b_{i}$
$X \succeq 0$

Strong Duality

- Strong duality in SDPs is a bit more complex than in LPs.

Strong Duality

Primal SDP

minimize $\langle C, X\rangle$
subject to $\left\langle A_{i}, X\right\rangle=b_{i}$ $X \succeq 0$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!

Strong Duality

Primal SDP

$\begin{aligned} \operatorname{minimize} & \langle C, X\rangle \\ \text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\ & X \succeq 0\end{aligned}$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!

Strong Duality

Primal SDP
\(\begin{aligned} \operatorname{minimize} \& \langle C, X\rangle
subject to \& \left\langle A_{i}, X\right\rangle=b_{i}
\& X \succeq 0\end{aligned}\)

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is strictly feasible if there is feasible solution $X \succ 0$.
- Dual SDP is strictly feasible if there is feasible $\sum_{i=1}^{t} y_{i} A_{i} \prec C$.

Strong Duality

Primal SDP

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Dual SDP
maximize $y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is strictly feasible if there is feasible solution $X \succ 0$.
- Dual SDP is strictly feasible if there is feasible $\sum_{i=1}^{t} y_{i} A_{i} \prec C$.

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

$$
\text { max dual }=\text { min of primal. }
$$

- Duality Theory

- Why Relax \& Round?
- Conclusion
- Acknowledgements

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)
- But we know how to solve LPs. Can we get partial credit in life?

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\operatorname{minimize} g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?
- Yes. Today and next lecture we will see Max-Cut (more generally constraint satisfaction relaxations)

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?
- Yes. Today and next lecture we will see Max-Cut (more generally constraint satisfaction relaxations)
- Very impressive recent theoretical developments! Unique Games Conjecture, Sum-of-Squares, and more!

Example

Maximum Cut (Max-Cut):

$$
G(V, E) \text { graph. }
$$

Cut $S \subseteq V$ and size of cut is

$$
|E(S, \bar{S})|=|\{(u, v) \in E \quad \mid \quad u \in S, v \notin S\}| .
$$

Goal: find cut of maximum size.

Example

Maximum Cut (Max-Cut):

$$
G(V, E) \text { graph. }
$$

Cut $S \subseteq V$ and size of cut is

$$
|E(S, \bar{S})|=|\{(u, v) \in E \quad \mid \quad u \in S, v \notin S\}|
$$

Goal: find cut of maximum size.
Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Example - Weighted Variant

Maximum Cut (Max-Cut):

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Cut $S \subseteq V$ and weight of cut is the sum of weights of edges crossing cut. Goal: find cut of maximum weight.

Integer Linear Program:

$$
\operatorname{maximize} \sum_{e \in E} z_{e} \cdot w_{e}
$$

subject to $x_{u}+x_{v} \geq z_{e}$ for $e=\{u, v\} \in E$

$$
\begin{aligned}
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

[^0]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}

[^1]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.

[^2]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(Q P)
$$

[^3]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(Q P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.

[^4]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(Q P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.
(1) If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done

[^5]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(Q P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.
(1) If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done
(2) If solution has higher dimension, then we have to devise rounding procedure that transforms
high dimensional solutions \rightarrow integral \& 1D solutions
rounded SDP solution value $\geq c \cdot O P T(Q P)$
${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $\operatorname{OPT}($ ILP $)=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$
- G complete graph $\Rightarrow O P T=\frac{1}{2}+\frac{1}{2(n-1)}$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$
- G complete graph $\Rightarrow O P T=\frac{1}{2}+\frac{1}{2(n-1)}$
- Max-Cut NP-hard

Proof that $O P T(I L P) \geq 1 / 2$

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

- Setting $x_{v}=1 / 2, z_{e}=1$ we get $\operatorname{OPT}(L P)$ always $=1$

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

- Setting $x_{v}=1 / 2, z_{e}=1$ we get $\operatorname{OPT}(L P)$ always $=1$
- This relaxation is not helpful! :(

Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Quadratic Program:

$$
\begin{aligned}
& \text { maximize } \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-x_{u} x_{v}\right) \\
& \text { subject to } x_{v}^{2}=1 \text { for } v \in V
\end{aligned}
$$

SDP Relaxation [Delorme, Poljak 1993]

$$
G(V, E, w) \text { weighted graph, }|V|=n \text { and } \sum_{e \in E} w_{e}=1
$$

Semidefinite Program:

$$
\begin{aligned}
\text { maximize } & \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-y_{u}^{T} y_{v}\right) \\
\text { subject to }\left\|y_{v}\right\|_{2}^{2} & =1 \text { for } v \in V \\
y_{v} & \in \mathbb{R}^{d} \text { for } v \in V
\end{aligned}
$$

SDP Relaxation [Delorme, Poljak 1993]

$$
G(V, E, w) \text { weighted graph, }|V|=n \text { and } \sum_{e \in E} w_{e}=1
$$

Semidefinite Program:

$$
\operatorname{maximize} \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-y_{u}^{T} y_{v}\right)
$$

subject to $\left\|y_{v}\right\|_{2}^{2}=1$ for $v \in V$

$$
y_{v} \in \mathbb{R}^{d} \text { for } v \in V
$$

- How is that an SDP?

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!

Next lecture Max-Cut SDP rounding.

- Solve SDP and round the solution
- Deterministic rounding when solutions are nice
- Randomized rounding when things a bit more complicated

Acknowledgement

- Lecture based largely on:
- Lecture 14 of Anupam Gupta and Ryan O'Donnell's Optimization class https://www.cs.cmu.edu/~anupamg/adv-approx/
- See their notes at
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References I

國
Delorme, Charles, and Svatopluk Poljak (1993)
Laplacian eigenvalues and the maximum cut problem.
Mathematical Programming 62.1-3 (1993): 557-574.
Goemans, Michel and Williamson, David 1994
0.879-approximation algorithms for Max Cut and Max 2SAT.

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994

[^0]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^1]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^2]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^3]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^4]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^5]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

