Lecture 14: Positive Semidefinite Matrices \& Semidefinite Programming

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

June 27, 2023

Overview

- Positive Semidefinite Matrices
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Application: Control Theory
- Conclusion
- Acknowledgements

Symmetric Matrices \& Spectral Theorem

- A matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ is symmetric if $S_{i j}=S_{j i}$ for all $i, j \in[n]$.

Symmetric Matrices \& Spectral Theorem

- A matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ is symmetric if $S_{i j}=S_{j i}$ for all $i, j \in[n]$.
- $\lambda \in \mathbb{C}$ is an eigenvalue of S if there exists $u \in \mathbb{C}^{n}$ such that $S u=\lambda u$. The vector u is an eigenvector of S corresponding to λ.

Symmetric Matrices \& Spectral Theorem

- A matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ is symmetric if $S_{i j}=S_{j i}$ for all $i, j \in[n]$.
- $\lambda \in \mathbb{C}$ is an eigenvalue of S if there exists $u \in \mathbb{C}^{n}$ such that $S u=\lambda u$. The vector u is an eigenvector of S corresponding to λ.
- Spectral theorem: any symmetric matrix in $\operatorname{Mat}(n, \mathbb{R})$ has n real eigenvalues (counting with multiplicity), as well as an orthonormal basis (in \mathbb{R}^{n}) for the eigenvectors.

Symmetric Matrices \& Spectral Theorem

- A matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ is symmetric if $S_{i j}=S_{j i}$ for all $i, j \in[n]$.
- $\lambda \in \mathbb{C}$ is an eigenvalue of S if there exists $u \in \mathbb{C}^{n}$ such that $S u=\lambda u$. The vector u is an eigenvector of S corresponding to λ.
- Spectral theorem: any symmetric matrix in $\operatorname{Mat}(n, \mathbb{R})$ has n real eigenvalues (counting with multiplicity), as well as an orthonormal basis (in \mathbb{R}^{n}) for the eigenvectors.
- In other words, we can write

$$
S=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

where $\lambda_{i} \in \mathbb{R}$ and $u_{i} \in \mathbb{R}^{n}$ such that $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}$.

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{\top} S x \geq 0$ for all $x \in \mathbb{R}^{n}$

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{T} S x \geq 0$ for all $x \in \mathbb{R}^{n}$
(9) $S=L D L^{\top}$, where D is diagonal and non-negative, and L is unit lower-triangular

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{T} S x \geq 0$ for all $x \in \mathbb{R}^{n}$
(9) $S=L D L^{\top}$, where D is diagonal and non-negative, and L is unit lower-triangular
(5) S is in the convex hull of the set

$$
\left\{u u^{T} \mid u \in \mathbb{R}^{n}\right\}
$$

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{\top} S x \geq 0$ for all $x \in \mathbb{R}^{n}$
(9) $S=L D L^{\top}$, where D is diagonal and non-negative, and L is unit lower-triangular
(6) S is in the convex hull of the set

$$
\left\{u u^{T} \mid u \in \mathbb{R}^{n}\right\}
$$

(0 $S=U^{T} D U$, where D is diagonal and non-negative and $U \in \operatorname{Mat}(n, \mathbb{R})$ is orthonormal matrix (that is, $U^{T} U=I$).

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{\top} S x \geq 0$ for all $x \in \mathbb{R}^{n}$
(9) $S=L D L^{\top}$, where D is diagonal and non-negative, and L is unit lower-triangular
(5) S is in the convex hull of the set

$$
\left\{u u^{T} \mid u \in \mathbb{R}^{n}\right\}
$$

(0 $S=U^{T} D U$, where D is diagonal and non-negative and $U \in \operatorname{Mat}(n, \mathbb{R})$ is orthonormal matrix (that is, $U^{T} U=I$).
(3) Any principal minor of S has non-negative determinant

Characterizations of Positive Semidefinite Matrices

- If a symmetric matrix $S \in \operatorname{Mat}(n, \mathbb{R})$ only has non-negative eigenvalues, we say that S is positive semidefinite (PSD), and we write $S \succeq 0$.
- There are several equivalent characterizations of PSD matrices:
(1) all eigenvalues of S are non-negative
(2) $S=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times n}$, where $d \leq n$
(3) $x^{\top} S x \geq 0$ for all $x \in \mathbb{R}^{n}$
(9) $S=L D L^{\top}$, where D is diagonal and non-negative, and L is unit lower-triangular
(3) S is in the convex hull of the set

$$
\left\{u u^{T} \mid u \in \mathbb{R}^{n}\right\}
$$

(0) $S=U^{T} D U$, where D is diagonal and non-negative and $U \in \operatorname{Mat}(n, \mathbb{R})$ is orthonormal matrix (that is, $U^{T} U=I$).
(3) Any principal minor of S has non-negative determinant

- Practice problem: prove that these are all equivalent!
- Positive Semidefinite Matrices
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Application: Control Theory
- Conclusion
- Acknowledgements

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming
- More general case: Semidefinite Programming
(1) $A_{1}, \ldots, A_{n}, B \in \mathcal{S}^{m}$ are $m \times m$ symmetric matrices

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming
- More general case:

Semidefinite Programming
(1) $A_{1}, \ldots, A_{n}, B \in \mathcal{S}^{m}$ are $m \times m$ symmetric matrices
(2) Constraints:

$$
x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B
$$

(3) Minimize linear function $c^{T} x$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

Semidefinite Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n} \\
& A_{i}, B \in \mathcal{S}^{m}(\mathbb{R}) \text { (fixed matrices) }
\end{aligned}
$$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

Semidefinite Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n} \\
& A_{i}, B \in \mathcal{S}^{m}(\mathbb{R}) \text { (fixed matrices) }
\end{aligned}
$$

Where we use $C \succeq D$ to denote that $C-D \succeq 0$ (i.e., $C-D$ is PSD).

How does it generalize Linear Programming?

Linear Programming

minimize $c^{T} x$
subject to $A x \geq b$
$x \in \mathbb{R}^{n}$

How does it generalize Linear Programming?

Linear Programming

Semidefinite Programming

$$
\begin{array}{rlrl}
\operatorname{minimize} & c^{\top} x & \operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b & \text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n} & x \in \mathbb{R}^{n}
\end{array}
$$

How does it generalize Linear Programming?

Linear Programming

Semidefinite Programming

$$
\begin{array}{rlrl}
\operatorname{minimize} & c^{\top} x & \operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \geq b & \text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n} & x \in \mathbb{R}^{n}
\end{array}
$$

Set A_{i} 's to be diagonal matrices, and $B=\operatorname{diag}\left(b_{1}, \ldots, b_{m}\right)$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
- equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
- robust optimization
- statistics and ML
- continuous games
- software verification
- filter design
- quantum computation and information
- automated theorem proving
- packing problems
- many more

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
- equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
- robust optimization
- statistics and ML
- continuous games
- software verification
- filter design
- quantum computation and information
- automated theorem proving
- packing problems
- many more
- See more here

```
            https://windowsontheory.org/2016/08/27/
proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
```


Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?
(9) How do we design efficient algorithms that find optimal solutions to Semidefinite Programs?
- Positive Semidefinite Matrices
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Application: Control Theory
- Conclusion
- Acknowledgements

Spectrahedra
 To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$
A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \succeq 0
$$

where A_{0}, \ldots, A_{n} are symmetric matrices.

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$
A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \succeq 0
$$

where A_{0}, \ldots, A_{n} are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Example of Spectrahedron

Polyhedron:

Example of Spectrahedron

Circle:

Example of Spectrahedron

Hyperbola:

Example of Spectrahedron

Elliptic curve:

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^{n}$ is a projected spectrahedron if it has the form:
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{t}\right.$ s.t. $\left.\sum_{i=1}^{n} A_{i} x_{i}+\sum_{j=1}^{t} B_{j} y_{j} \succeq C, \quad A_{i}, B_{j}, C \in \mathcal{S}^{m}\right\}$

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^{n}$ is a projected spectrahedron if it has the form:
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{t}\right.$ s.t. $\left.\sum_{i=1}^{n} A_{i} x_{i}+\sum_{j=1}^{t} B_{j} y_{j} \succeq C, \quad A_{i}, B_{j}, C \in \mathcal{S}^{m}\right\}$

Example of Projected Spectrahedron

Projection of hyperbola:

Example of Projected Spectrahedron

Projection quadratic cone intersected with halfspace:

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?
- Symmetric Gaussian Elimination!

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?
- Symmetric Gaussian Elimination!
- We will use following characterizations of PSDness of symmetric $A \in \mathcal{S}^{m}$
(1) all eigenvalues of A are non-negative
(2) $A=L D L^{T}$ for some L lower triangular and unit diagonal, D diagonal and non-negative
(3) $z^{T} A z \geq 0$ for any $z \in \mathbb{R}^{m}$
(9) Any principal minor of A has non-negative determinant

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
- Our algorithm runs in time strongly polynomial.
- Positive Semidefinite Matrices
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Application: Control Theory
- Conclusion
- Acknowledgements

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$

[^0]
Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $t \rightarrow \infty$, under what conditions will $x(t)$ remain bounded? Or go to zero?
${ }^{1}$ When A non-negative and x_{0} non-negative we have Markov chains.

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $t \rightarrow \infty$, under what conditions will $x(t)$ remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $t \rightarrow \infty$, under what conditions will $x(t)$ remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.
- System is stable iff $\left|\lambda_{i}(A)\right|<1$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

- To make these monotonically decreasing, we need:

$$
\begin{aligned}
V(x(t+1)) \leq V(x(t)) & \Leftrightarrow x(t+1)^{T} P x(t+1)-x(t)^{T} P x(t) \leq 0 \\
& \Leftrightarrow x(t)^{T} A^{T} P A x(t)-x(t)^{T} P x(t) \leq 0 \\
& \Leftrightarrow A^{T} P A-P \preceq 0
\end{aligned}
$$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

- To make these monotonically decreasing, we need:

$$
\begin{aligned}
V(x(t+1)) \leq V(x(t)) & \Leftrightarrow x(t+1)^{T} P x(t+1)-x(t)^{T} P x(t) \leq 0 \\
& \Leftrightarrow x(t)^{T} A^{T} P A x(t)-x(t)^{T} P x(t) \leq 0 \\
& \Leftrightarrow A^{T} P A-P \preceq 0
\end{aligned}
$$

Theorem

Given matrix $A \in \mathbb{R}^{m \times m}$, the following conditions are equivalent:
(1) All eigenvalues of A are inside unit circle, i.e. $\left|\lambda_{i}(A)\right|<1$
(2) There is $P \in \mathcal{S}^{m}$ such that

$$
P \succ 0, \quad A^{T} P A-P \prec 0
$$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want $P \succ 0$ such that

$$
(A+B K)^{T} P(A+B K)-P \prec 0
$$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want $P \succ 0$ such that

$$
(A+B K)^{T} P(A+B K)-P \prec 0
$$

- Wait, this ain't no SDP! But we can make it into SDP with some matrix manipulations.

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming
- Semidefinite Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (Max-Cut in next lecture!)
- Applications in Control Theory
- many more!

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming
- Semidefinite Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (Max-Cut in next lecture!)
- Applications in Control Theory
- many more!
- Check out connections to Sum of Squares and a bold ${ }^{2}$ attempt to have one algorithm to solve all problems! (i.e., one algorithm to rule them all)

```
            https://windowsontheory.org/2016/08/27/
    proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
    2}\mathrm{ pun intended
```


Acknowledgement

- Lecture based largely on:
- [Blekherman, Parrilo, Thomas 2012, Chapter 2]

References I

R
Blekherman, Grigoriy and Parrilo, Pablo and Thomas, Rekha (2012) Convex Algebraic Geometry

[^0]: ${ }^{1}$ When A non-negative and x_{0} non-negative we have Markov chains.

