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Ads

DIVERSE CAREERS IN COMPUTING
PANEL AND NETWORKING SESSION

The endless opportunities in tech can be quite Apply your software skill to
overwhelming! UW WiCS will be hosting a Careersin  « Cybersecurity (OpenText)
Tech workshop with panelists who work in a variety of ~ « Medical devices (OrientaMed startup)
applications of computer science. We have speakers « Bank technology analytics (Scotiabank)

who can talk about computing careers in security, * VR/XR (Unity Technologies)
data science, software development, trading, and o Trading (HRT)
more!

The Panel will be followed by a reception where
E [=] JUNE @ 4:00PM- attendees can talk with panelists over appetizers ’

2023 6:00PM ) )
r Please register through Eventbrite to attend!
w5 ooro-ne Open to AL students

Register using the QR code!

WOMEN IN COMPUTER SCIENCE
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Two-player games

Setup:
@ Two players (Alice and Bob)

@ Each player has a (finite) set of strategies Sa = {1,..., m} and
Sg=A{1,...,n}
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Two-player games

Setup:
@ Two players (Alice and Bob)
@ Each player has a (finite) set of strategies Sa = {1,..., m} and
Sg=A{1,...,n}
o Payoff matrices A, B € R™*" for Alice and Bob, respectively

o If Alice plays i and Bob plays j, then
o Alice gets Aj;
o Bob gets Bj

@ Example: battle of the sexes game

Football | Opera
Football | (2,1) (0,0)
Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices
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Nash Equilibrium
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, /) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:
o A,‘j > Akj for all k € 5S4

Q B,'j > Bj, for all £ € Sg

10/60



Nash Equilibrium

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, /) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:
o A,‘j > Akj for all k € 5S4

Q B,'j > Bj, for all £ € Sg

Football | Opera
Football | (2,1) (0,0)
Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices

11/60



Nash Equilibrium

Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i, /) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:
o A,‘j > Akj for all k € 5S4

Q B,'j > Bj, for all £ € Sg

Football | Opera
Football | (2,1) (0,0)
Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices

Silent | Snitch
Silent | (-1,-1) | (-10,0)
Snitch | (0,-10) | (-5,-5)

Table: Prisoner's dilemma 12/60



Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are Sp = {1,..., n}, her mixed strategies are:

Ap:={xeR"| x>0and |x|s =1}
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S. If Alice's strategies are Sp = {1,..., n}, her mixed strategies are:

Ap:={xeR"| x>0and |x|s =1}

@ Models situation where players choose their strategy “at random”

e Payoffs for each player defined as expected gain. That is, (x,y) is the
profile of mixed strategies used by Alice and Bob, we have:

va(x,y) = Z Ajxiy; = xT Ay
(iJ)ESaxSp

ve(x,y)= Y. Bjxiyj=x'By
(i,j)ESAXSB
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:
Definition ((Mixed) Nash Equilibrium)

A strategy profile x € A,y € Ap is called a (mixed) Nash equilibrium if

the strategy played by each player is optimal, given the strategy of the
other player. That is:

Q@ x"Ay > zTAy forall z€ Aph
Q XTBy > xTBw for all w € Ap
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:
Definition ((Mixed) Nash Equilibrium)

A strategy profile x € A,y € Ap is called a (mixed) Nash equilibrium if

the strategy played by each player is optimal, given the strategy of the
other player. That is:

Q@ x"Ay > zTAy forall z€ Aph
Q XTBy > xTBw for all w € Ap

Jump left | Jump right
kick left (-1,1) (1-1)
kick right (1,-1) (-1,1)

Table: Penalty Kick
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:
Definition ((Mixed) Nash Equilibrium)

A strategy profile x € A,y € Ap is called a (mixed) Nash equilibrium if

the strategy played by each player is optimal, given the strategy of the
other player. That is:

Q@ x"Ay > zTAy forall z€ Aph
Q XTBy > xTBw for all w € Ap

Jump left | Jump right
kick left (-1,1) (1-1)
kick right (1,-1) (-1,1)

Table: Penalty Kick

@ Zero-Sum Game: payoff matrices satisfy A= —B
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:
Definition ((Mixed) Nash Equilibrium)

A strategy profile x € A,y € Ap is called a (mixed) Nash equilibrium if

the strategy played by each player is optimal, given the strategy of the
other player. That is:

Q@ x"Ay > zTAy forall z€ Aph
Q XTBy > xTBw for all w € Ap

Jump left | Jump right
kick left (-1,1) (1-1)
kick right (1,-1) (-1,1)

Table: Penalty Kick

@ Zero-Sum Game: payoff matrices satisfy A= —B
@ No pure Nash Equilibrium!
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:
Definition ((Mixed) Nash Equilibrium)

A strategy profile x € A,y € Ap is called a (mixed) Nash equilibrium if

the strategy played by each player is optimal, given the strategy of the
other player. That is:

Q@ x"Ay > zTAy forall z€ Aph
Q XTBy > xTBw for all w € Ap

Jump left | Jump right
kick left (-1,1) (1-1)
kick right (1,-1) (-1,1)

Table: Penalty Kick

@ Zero-Sum Game: payoff matrices satisfy A= —B
@ No pure Nash Equilibrium!

@ One mixed Nash equilibrium: x =y = (1/2,1/2)
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Von Neumann’'s Minimax Theorem

In a zero-sum game, for any payoff matrix A € R™*":

max min x' Ay = min max x' Ay
XEAp yEAR yEAB XEA,
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max min x' Ay = min max x' Ay

XEA, yEAR YEAB xEAp
For given x € Ax: For given y € Ag:
min x" Ay = min(x" A); max x " Ay = max(Ay);
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Von Neumann’'s Minimax Theorem

In a zero-sum game, for any payoff matrix A € R™*":

max min x' Ay = min max x' Ay

XEAA yEAB

yEAB XEA,

For given x € Ax:

min x" Ay = min(x" A);
y€hp Jj€SE

Left hand side can be written as

max s
st. s<(x"A); forjcSg
e
i€Sa
x>0

For given y € Ag:

max x " Ay = max(Ay);
XEAp i€Sa

Right hand side can be written as

min ¢

s.t. t> (Ay),- for i € Sx
> yi=1
JjE€SB

y>0

26 /60



Proof of Duality
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@ Learning Theory - Boosting
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Learning Theory

Consider classification problem over X
@ Set of hypothesis # := {h: X — {0,1}}
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Learning Theory

Consider classification problem over X
@ Set of hypothesis # := {h: X — {0,1}}
e Each x € X has a correct value ¢(x) € {0,1}
@ Data is sampled from unknown distribution g € Ay
o Weak learning assumption:

For any distribution g € Ay, there is a hypothesis h € H which is
wrong less than half the time.
1—
Jy>0, Vg€ Ay, 3heH, Prlh(x)# c(x)] < T'V
x~q
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Learning Theory

Consider classification problem over X
@ Set of hypothesis # := {h: X — {0,1}}
e Each x € X has a correct value ¢(x) € {0,1}
@ Data is sampled from unknown distribution g € Ay
o Weak learning assumption:

For any distribution g € Ay, there is a hypothesis h € H which is

wrong less than half the time.
1—
Iy >0, Vg€ Ay, 3he M, Prlhx)+#c(x)] < T'V
x~q

@ Surprisingly, weak learning assumption implies something much
stronger: it is possible to combine classifiers in H to construct a
classifier that is always right (known as strong learning).
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Boosting

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p € A such that the weighed majority classifier

1, if Y pp-h(x) > 1/2

p(x) == heM
0, otherwise

is always correct. That is, cp(x) = c(x) for all x € X
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Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p € A such that the weighed majority classifier

1, if Y pp-h(x) > 1/2

p(x) == heM
0, otherwise

is always correct. That is, cp(x) = c(x) for all x € X

o Let M e {—1,1}™*" where m = |X| and n = |H]|.

+1, if classifier hj wrong on x;
Mj; = _
—1, otherwise
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Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p € A such that the weighed majority classifier

1, if Y pp-h(x) > 1/2

p(x) == heM
0, otherwise

is always correct. That is, cp(x) = c(x) for all x € X

o Let M e {—1,1}™*" where m = |X| and n = |H]|.

+1, if classifier hj wrong on x;

Mj; = _
—1, otherwise

o Weak learning:

1—v
D G Oh()ex) S —5—

. 2
1<i<n
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Boosting - Proof

Let M e {—1,1}7*", Weak learning:

where m = |X| and n = |H|. 1—~

, Z G~ Oy(x)e(xr) = >

M {—H, if h; wrong on Xx; 1<i<n
i = T

—1, otherwise
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Boosting - Proof

Let M e {—1,1}7*", Weak learning:

where m = |X| and n = |H|. 1—v

_ > 4 Inayteta) <

M {—i—l, if h; wrong on Xx; 1<i<n
i = o

—1, otherwise

@ Note that M,'J' =2 6hj(x,-)7éc(x,-) -1
q"Mej<—y = q Mp<-—y

for any p € Ay.
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Boosting - Proof

Let M e {—1,1}7*", Weak learning:

where m = |X| and n = |H|. 1—

5 <17

_ E 4 hj(xi)#e(xi) = "o

M {4—17 if h; wrong on Xx; 1<i<n
i = o

—1, otherwise
@ Note that M,'J' =2 6hj(x,-)7éc(x,-) -1
q"Mej<— = q'Mp< —y

for any p € Ay.
@ By minimax, we have:

max min ¢’ Mp= min max q' Mp < —~
qEAx pEAY pEAy qEA X
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Boosting - Proof

Let M e {—1,1}7*", Weak learning:

where m = |X| and n = |H|. 1—~

G Ony(x)el) = 5
M {-l—l, if h; wrong on Xx; 1;,-;,, ki el 2
i = T

—1, otherwise
@ Note that M,’j =2 5hj(x,-)7éc(x,-) -1
q"Mej<— = q'Mp< —y

for any p € Ay.
@ By minimax, we have:

max min ¢’ Mp= min max q' Mp < —~
qEAx pEAY pEAy qEA X

@ In particular, right hand side implies weighted classifier given by
optimum solution p* always correct.
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Proof of Correctness of Classifier

Do
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@ Combinatorics - Bipartite Matching
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Bipartite Matching

e Given a bipartite graph G(LU R, E), does it have a perfect matching?
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fast parallel algorithm for matching.
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e Given a bipartite graph G(LU R, E), does it have a perfect matching?

@ We saw in lecture 7 that we can randomly isolate a perfect matching,
if one exists

@ Can we remove the randomness in that process? This would lead to a
fast parallel algorithm for matching.

@ Breakthrough result of [Fenner, Gurjar and Thierauf 2019]
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Bipartite Matching

Given a bipartite graph G(LLI R, E), does it have a perfect matching?

@ We saw in lecture 7 that we can randomly isolate a perfect matching,
if one exists

@ Can we remove the randomness in that process? This would lead to a
fast parallel algorithm for matching.

Breakthrough result of [Fenner, Gurjar and Thierauf 2019]

We will see just a piece of the proof
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Bipartite Matching & Circulation

@ Given an even cycle C = (e, e,. .., ex), we say that the circulation
of C is given by

circ(C) = |w(er) — w(e2) + ... + w(ex—1) — w(ex)|
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Bipartite Matching & Circulation

@ Given an even cycle C = (e, e,. .., ex), we say that the circulation
of C is given by

circ(C) = |w(er) — w(e2) + ... + w(ex—1) — w(ex)|

e Lemma: if we assign weights w(e;) such that circ(C) # 0 for each
cycle C of the bipartite graph G, then we get that the minimum
weight PM is unique!
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Bipartite Matching & Circulation

@ Given an even cycle C = (e, e,. .., ex), we say that the circulation
of C is given by

circ(C) = |w(er) — w(e2) + ... + w(ex—1) — w(ex)|

e Lemma: if we assign weights w(e;) such that circ(C) # 0 for each
cycle C of the bipartite graph G, then we get that the minimum
weight PM is unique!

@ The approach of [Fenner, Gurjar and Thierauf 2019] is to construct a
set of weights which make all circulations non-zero!

e To do that, they iteratively construct a weight assignment that kills
small cycles (i.e., make their circulation non-zero)

e Once we have a bipartite graph with no cycles of length 2k, then in
next iteration we kill cycles of length up to 4k

e show that no cycles of length 2k = few cycles of length 4k — similar to
Karger's min cut lemmal
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Bipartite Matching

@ Suppose we have a weight assignment w. Let G, be the subgraph of
G given by the union of all min w-weight perfect matchings in G.
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Bipartite Matching

@ Suppose we have a weight assignment w. Let G, be the subgraph of
G given by the union of all min w-weight perfect matchings in G.

e Claim: circulation of each (even) cycle in G, is zero

@ Proof: LP duality!

e Linear programs:

Primal

min E WeXe

ecE
st. x>0
> =
e€d(u)
forue LUR

(complementary slackness)
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Bipartite Matching

@ Suppose we have a weight assignment w. Let G, be the subgraph of
G given by the union of all min w-weight perfect matchings in G.

e Claim: circulation of each (even) cycle in G, is zero

@ Proof: LP duality! (complementary slackness)
e Linear programs:

Primal Dual
min Z WeXe max Z Yu
ecE uelUR
st. x>0 st. Yo+ < we
erzl fore={u,v} €E
e€d(u)
forue LUR

o Complementary slackness says x. 7 0 in primal, where e = {u, v}
= Y, + y» = We in dual optimal.
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Bipartite Matching - Dual
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Bipartite Matching - Circulation
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

@ General mathematical programming very hard (how hard do you think
it is?)
@ Special cases have very striking applications!

Today and last lecture: Linear Programming
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

@ General mathematical programming very hard (how hard do you think
it is?)
@ Special cases have very striking applications!

Today and last lecture: Linear Programming

@ Linear Programming and Duality - fundamental concepts, lots of
applications!

e Applications in Combinatorial Optimization (a lot of it happened here
at UW!)

o Applications in Game Theory (minimax theorem)

o Applications in Learning Theory (boosting)

o Applications in Parallel Computation/Derandomization (Perfect
Matching)

e many more
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@ Lecture based largely on:

e Lectures 3-6 of Yarom Singer’s Advanced Optimization class
o [Schrijver 1986, Chapter 7]
o Personal Communication with Rohit

@ See Yarom's notes at https://people.seas.harvard.edu/
~yaron/AM221-S16/schedule.html
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