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What is a Random Walk?
Given a graph G(V,E)
© random walk starts from a vertex vy

@ at each time step it moves uniformly to a random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)
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What is a Random Walk?
Given a graph G(V,E)
@ random walk starts from a vertex vy

@ at each time step it moves uniformly to a random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

e Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

o Mixing time: how long does it take for the walk to converge to the
stationary distribution?

e Hitting time: starting from a vertex vy, what is expected number of
steps until it reaches a vertex v¢?

@ Cover time: how long does it take to reach every vertex of the graph
at least once?

8/79



Random Walk: Example
@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)
@ Starting from a, what is expected number of steps to visit all vertices?
(i.e, cover time)
© Stationary Distribution?
@ Mixing time? (we'll do it later)

@ Practice question: Compare question 2 to coupon collector problem!
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = Vi | XO = Vo,-...- ,thl = th]_] = Pr[Xt = V; | thl = thl]
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What is a Markov Chain?

Random walk is a special kind of stochastic process:
Pr[Xt = Vi | XO = Vo,-...- ,th]_ = thl] = Pr[Xt = V; | thl = Vt71]

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.

16/79



What is a Markov Chain?

Random walk is a special kind of stochastic process:
Pr[Xt = Vi | XO = Vo,-...- ,th]_ = thl] = Pr[Xt = V; | thl = Vt71]

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.

Process is “forgetful/ memoryless’

Markov chain is characterized by this property.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

24/79



Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

@ Vertex is a state of Markov chain

@ edge (/,j) corresponds to transition probability from i to j

25/79



Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

@ Vertex is a state of Markov chain

@ edge (/,j) corresponds to transition probability from i to j

@ Markov Chain irreducible if underlying directed graph is strongly
connected (i.e. there is directed path from i to j for any pair i,j € V)
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.

@ P € R™" transition matrix
@ entry P;; corresponds to transition probability from / to j
e p; € R” probability vector: p:(i) := Pr[being at state i at time t]
@ Transition given by
pt+1 = pt- P
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Properties of Markov Chains
@ Period of a state i is:
ged{t e N| P{; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at i/ at time t is positive
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Properties of Markov Chains

@ Period of a state i is:
ged{t e N| P{; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at i/ at time t is positive
o State i is aperiodic if its period is 1.
e Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
o Bipartite graphs yield periodic Markov Chains

For any finite, irreducible and aperiodic Markov Chain, there exists T < oo
such that

t ..
Pi;>0 foranyi,j€Vandt>T.

See proof in reference of [Haggstrom, Chapter 4].
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Introduction

Main Topics
o Stationary Distributions and Mixing Time

Conclusion
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R” such that

TP = .
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R” such that

TP = .

Informally, 7 is an “equilibrium/fixed point” state, as we have
7w = Pt for any t > 0.
o Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?

@ Given two distributions p, g € R", their total variational distance is

Atv(p,q) ZZIP, ail = 5 -Hp—qu

e p; converges to q iff lim Ary(ps,q) =0
t—o00
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Mixing Time of Markov Chains
Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

Aty(pe,m) <€

regardless of the initial starting distribution pg.
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Mixing Time of Markov Chains
Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

Aty(pe,m) <€

regardless of the initial starting distribution pg.

e For complete graph, eigenvalues \y =1, Ay =--- =X\, =-1/(n—1),
corresponding eigenvectors vy, ..., v, (orthonormal)
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Hitting Time

@ Given states /,j in a Markov chain, the hitting time from state i to
state j is defined as

Tij:=min{t>1]| X, =j,X =i}

We say T;; = oo if the Markov chain never visits j starting from /.
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We say T;; = oo if the Markov chain never visits j starting from /.

e The mean hitting time 7;j := E[T; j]
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Hitting Time

@ Given states /,j in a Markov chain, the hitting time from state i to
state j is defined as

Tij:=min{t>1]| X, =j,X =i}

We say T;; = oo if the Markov chain never visits j starting from /.
@ The mean hitting time 7;j := E[T; j]
e Hitting time lemma: For any finite, irreducible, aperiodic Markov

chain, and for any two states /,j (not necessarily distinct) we have
that:

Pr[T,"j<OO]:1 and E[T,'J]<OO
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM);; > 0 for all /,J,
since our Markov chain is finite, irreducible and aperiodic.
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM);; > 0 for all /,J,
since our Markov chain is finite, irreducible and aperiodic.

e set o := min; j(PM);;
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Proof of Hitting Time Lemma
@ We know that we can find M < oo such that (PM);; > 0 for all /,J,
since our Markov chain is finite, irreducible and aperiodic.
e set o := min; j(PM);;
o Note that
Pr(Tij > M] <Pr[ Xy #/j] <1-«
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since our Markov chain is finite, irreducible and aperiodic.

e set o := min; j(PM);;
@ Note that
Pr(Tij > M] <Pr[ Xy #/j] <1-«
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Proof of Hitting Time Lemma

@ We know that we can find M < oo such that (PM);; > 0 for all /,J,
since our Markov chain is finite, irreducible and aperiodic.

set o := min; j(PM); ;
Note that

Pr(Tij > M] <Pr[ Xy #/j] <1-«
@ Moreover, we can prove:
Pr[T,-J > 2/\//] = Pr[T;,j > /VI] . Pr[T,-J > 2M | T/J > M]
<(1—a) - -Pr[Xom #J | Tij> M|
<(1-a)?

Iterating, we have Pr[T;; > (M] < (1 — a)*
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Proof of Hitting Time Lemma

o lterating, we have Pr[T;; > ¢(M] < (1 — )"
@ Thus, we have

E[Tijl=> Pr(Tij>=n =) Pr[Tij>n] < M/a <o

n>1 n>0
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Fundamental Theorem of Markov Chains

@ The return time from state i to itself is T;;

o Expected return time: defined as 7; ; := E[T; ;].
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Fundamental Theorem of Markov Chains

@ The return time from state i to itself is T; ;

o Expected return time: defined as 7; ; := E[T; ;].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

© There exists a unique stationary distribution 7, where m; > 0 for all
i€ [n]

@ The sequence of distributions {p;}+>o0 will converge to 7, no matter
what the initial distribution is

o

7= lim Pf, =
t—o00 ? Tii
b
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]
© for every distribution py € RZ,

o

lim po- Pt =
t—o0

T = lim Pl'ti = —
t—o00 ? Tii
b

Intuition for proof of this theorem:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]
@ For every distribution pg € RZ, t|im po-Pi=m

- — 00
o

T = lim Pl'ti =
t—o0

Ti,i

)

Intuition for proof of this theorem:

@ two random walks are “indistinguishable” after they “meet” at the
same vertex v at a particular time t

@ By finiteness, irreducibility and aperiodicity, two walks will meet with

positive probability (and thus by Markov property) become same
distribution
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Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:
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) 1
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If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

© There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim po- Pt =m
t—o0

) 1
m; = lim P,-t,- = —
t—o00 ?

Tii

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:

P=D"1 Ag
@ Note that in this case, easy to guess stationary distribution:
d.
T = ﬁ, m = |E‘
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

Wi:%, m:|E|
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

Wi:%, m:|E’

e If Ag adjacency matrix of G(V, E) and D = diag(di, da, . ..

transition matrix:
P=D"1. A¢
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

T = —, m:|E]
m

e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, . . .,

transition matrix:
P=D"1. A¢

e P not symmetric, but similar to a symmetric matrix:

D1/2PD 1/2 _ D1/2D_1AGD_1/2:D 1/2A D~ 1/2 _

dn),

P/
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, ..., dy),
transition matrix:
P=D"1. Ag

e P not symmetric, but similar to a symmetric matrix:
D1/2PD 1/2 _ D1/2D—1AGD—1/2 — D 1/2A D~ 1/2 _ - p

e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, ..., dy),
transition matrix:
P=D"1. Ag

e P not symmetric, but similar to a symmetric matrix:
D1/2PD 1/2 _ D1/2D—1AGD—1/2 — D 1/2A D~ 1/2 _ - p

e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
e Eigenvectors of P are D~1/2y; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

69 /79



Fundamental Theorem of Markov Chains

d.
e Stationary distribution: m; = 2—', m = |E|
m

e Transition matrix: P = D71 Ag
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

d.
e Stationary distribution: m; = 2—' m = |E|
m

)

e Transition matrix: P = D71 Ag
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive
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Fundamental Theorem of Markov Chains

d.
e Stationary distribution: m; = 2—', m = |E|
m

e Transition matrix: P = D71 Ag
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive

This eigenvector is 7!
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Fundamental Theorem of Markov Chains

d.
e Stationary distribution: m; = 2—', m = |E|
m

e Transition matrix: P = D71 Ag
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive
e This eigenvector is 7!
o All random walks converge to 7, as we wanted to show.
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Revisiting the complete graph
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Mixing time from eigenvalue gap

@ write here that mixing time follows from eigenvalue gap

@ in the next lecture, after Perron-Frobenius, revisit this point

76 /79



Conclusion

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (next lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras|

e Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair]

Sampling Problems
o Gibbs sampling in statistical physics
e many more places

Probability amplification without too much randomness (efficient)
o Random walks on expander graphs

@ many more
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Acknowledgement

@ Lecture based largely on:
e Lap Chi's notes
o [Motwani & Raghavan 2007, Chapter 6]
o [Haggstrom|
@ See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

@ Also see Lap Chi's notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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