Lecture 8: Sublinear Time Algorithms

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

June 6, 2023

Overview

- Introduction
 - Why Sublinear Time Algorithms?
 - Warm-up Problem
- Main Problem
 - Number of Connected Components
- Acknowledgements

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

Sometimes big data can also *change over time*, so we need a *robust* answer and/or be able to solve problem quickly multiple times.

• **Social graph:** each person is a node, edges if they are friends.

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

- Social graph: each person is a node, edges if they are friends.
 - Is graph connected?

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

- Social graph: each person is a node, edges if they are friends.
 - Is graph connected?
 - What is the degree of separation? Diameter of graph (6 degrees of separation)

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

- Social graph: each person is a node, edges if they are friends.
 - Is graph connected?
 - What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

- Social graph: each person is a node, edges if they are friends.
 - Is graph connected?
 - What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs
 - Too many inputs to check your program on!

Sometimes big data does not come to us all at once (think streaming), but instead we *can query small pieces* of it.

- **Social graph:** each person is a node, edges if they are friends.
 - Is graph connected?
 - What is the degree of separation? Diameter of graph (6 degrees of separation)
- Program checking: checking that a computer program works correctly on all/most inputs
 - Too many inputs to check your program on!
- Many more...

• Graphs:

• Graphs:

- diameter
- # connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability

• Graphs:

- diameter
- # connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability

• Functions:

- is a function monotone?
- is function convex?
- is function linear?

• Graphs:

- diameter
- # connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability

• Functions:

- is a function monotone?
- is function convex?
- is function linear?

Distributions:

- is distribution uniform?
- is is independent?

• Graphs:

- diameter
- # connected components
- Minimum Spanning Tree
- Testing bipartiteness
- Testing clusterability

• Functions:

- is a function monotone?
- is function convex?
- is function linear?

Distributions:

- is distribution uniform?
- is is independent?

Connects to randomized algorithms, approximation algorithms, parallel algorithms, complexity theory, statistics, learning

What we *can't* do:

• Can't answer for all or there exists or exactly type statements

What we can't do:

- Can't answer for all or there exists or exactly type statements
 - are <u>all</u> individuals connected via friendships?
 - are <u>all</u> individuals connected by at most 6 degrees of separation?
 - is my program correct on all inputs

What we can't do:

- Can't answer for all or there exists or exactly type statements
 - are <u>all</u> individuals connected via friendships?
 - are <u>all</u> individuals connected by at most 6 degrees of separation?
 - is my program correct on all inputs

What we can do:

 Can answer for most or averages or approximate type statements with high probability

What we can't do:

- Can't answer for all or there exists or exactly type statements
 - are <u>all</u> individuals connected via friendships?
 - are <u>all</u> individuals connected by at most 6 degrees of separation?
 - is my program correct on all inputs

What we can do:

- Can answer for most or averages or approximate type statements with high probability
 - are most individuals connected via friendships?
 - are most individuals connected by at most 6 degrees of separation?
 - approximately how many people are left handed?
 - is my program correct on most inputs

What we can't do:

- Can't answer for all or there exists or exactly type statements
 - are <u>all</u> individuals connected via friendships?
 - are <u>all</u> individuals connected by at most 6 degrees of separation?
 - is my program correct on all inputs

What we can do:

- Can answer for most or averages or approximate type statements with high probability
 - are <u>most</u> individuals connected via friendships?
 - are most individuals connected by at most 6 degrees of separation?
 - approximately how many people are left handed?
 - is my program correct on most inputs

Randomized & Approximate algorithms.

• Random Access Queries

- Random Access Queries
 - Can access any word of input in one step
 - How is input represented?

- Random Access Queries
 - Can access any word of input in one step
 - How is input represented?
 - Adjacency matrix
 - Adjacency list

- Random Access Queries
 - Can access any word of input in one step
 - How is input represented?
 - Adjacency matrix
 - Adjacency list
 - Location

- Random Access Queries
 - Can access any word of input in one step
 - How is input represented?
 - Adjacency matrix
 - Adjacency list
 - Location
 - many others...

- Random Access Queries
 - Can access any word of input in one step
 - How is input represented?
 - Adjacency matrix
 - Adjacency list
 - Location
 - many others...
- Samples
 - get samples from certain distribution/input at each step

- **Input:** *m* points and a distance matrix *D* such that
 - $D_{ij} \leftarrow \text{distance from } i \text{ to } j$
 - D symmetric and satisfies triangle inequality

Input given in adjacency matrix representation

- **Input:** *m* points and a distance matrix *D* such that
 - $D_{ij} \leftarrow \text{distance from } i \text{ to } j$
 - D symmetric and satisfies triangle inequality
 Input given in adjacency matrix representation
- Input size: $N = m^2$

- **Input:** *m* points and a distance matrix *D* such that
 - $D_{ij} \leftarrow \text{distance from } i \text{ to } j$
 - D symmetric and satisfies triangle inequality
- Input size: $N = m^2$
- Let a, b be indices that maximize distance D_{ab} . Then D_{ab} is diameter

- **Input:** m points and a distance matrix D such that
 - $D_{ij} \leftarrow \text{distance from } i \text{ to } j$
 - D symmetric and satisfies triangle inequality
- Input size: $N = m^2$
- Let a, b be indices that maximize distance D_{ab} . Then D_{ab} is diameter
- **Output:** Indices k, ℓ such that

$$D_{k\ell} \geq D_{ab}/2$$

2-multiplicative algorithm

• Pick *k* arbitrarily

- Pick *k* arbitrarily
- Pick ℓ to maximize $D_{k\ell}$

- Pick *k* arbitrarily
- Pick ℓ to maximize $D_{k\ell}$
- Output indices k, ℓ

- Pick *k* arbitrarily
- Pick ℓ to maximize $D_{k\ell}$
- Output indices k, ℓ

Why does this work?

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k\ell}$
- Output indices k, ℓ

Why does this work?

Correctness

$$\begin{aligned} D_{ab} &\leq D_{ak} + D_{kb} \\ &\leq D_{k\ell} + D_{k\ell} = 2 \cdot D_{k\ell} \end{aligned}$$

- Pick k arbitrarily
- Pick ℓ to maximize $D_{k\ell}$
- Output indices k, ℓ

Why does this work?

Correctness

$$\begin{aligned} D_{ab} &\leq D_{ak} + D_{kb} \\ &\leq D_{k\ell} + D_{k\ell} = 2 \cdot D_{k\ell} \end{aligned}$$

• Running time: $O(m) = O(N^{1/2})$

- Pick *k* arbitrarily
- Pick ℓ to maximize $D_{k\ell}$
- Output indices k, ℓ

Why does this work?

Correctness

$$\begin{aligned} D_{ab} &\leq D_{ak} + D_{kb} \\ &\leq D_{k\ell} + D_{k\ell} = 2 \cdot D_{k\ell} \end{aligned}$$

• Running time: $O(m) = O(N^{1/2})$

Is this the best we can do?

• Let D be following: distance matrix $D_{i,i} = 0, \ \forall i \in [m]$ and $D_{i,j} = 1$ otherwise

- Let D be following: distance matrix $D_{i,i} = 0, \ \forall i \in [m]$ and $D_{i,j} = 1$ otherwise
- Let D' be same matrix as D except that for one pair (a, b) we make

$$D'_{ab} = D'_{ba} = 2 - \delta$$

- Let D be following: distance matrix $D_{i,i} = 0, \ \forall i \in [m]$ and $D_{i,j} = 1$ otherwise
- Let D' be same matrix as D except that for one pair (a, b) we make

$$D'_{ab} = D'_{ba} = 2 - \delta$$

ullet Check that D' satisfies properties of a distance matrix (thus valid)

- Let D be following: distance matrix $D_{i,i} = 0, \ \forall i \in [m]$ and $D_{i,j} = 1$ otherwise
- Let D' be same matrix as D except that for one pair (a, b) we make

$$D'_{ab} = D'_{ba} = 2 - \delta$$

- ullet Check that D' satisfies properties of a distance matrix (thus valid)
- Practice problem: prove that it would take $\Omega(N)$ time (i.e. number of queries) to decide if diameter is 1 or 2δ

- Introduction
 - Why Sublinear Time Algorithms?
 - Warm-up Problem

- Main Problem
 - Number of Connected Components

Acknowledgements

How to approximate number of connected components of a graph:

How to approximate number of connected components of a graph:

• **Input:** graph G(V, E) in adjacency list representation. $\epsilon > 0$.

$$n = |V|, \ m = |E|, \ N = m + n$$

• **Output:** if $C \leftarrow \#$ connected components of G, output with probability $\geq 3/4$ C' such that

$$|C'-C| \leq \epsilon n$$

How to approximate number of connected components of a graph:

• Input: graph G(V, E) in adjacency list representation. $\epsilon > 0$.

$$n = |V|, m = |E|, N = m + n$$

• **Output:** if $C \leftarrow \#$ connected components of G, output with probability $\geq 3/4$ C' such that

$$|C'-C| \le \epsilon n$$

• How can we even do this?

How to approximate number of connected components of a graph:

• Input: graph G(V, E) in adjacency list representation. $\epsilon > 0$.

$$n = |V|, m = |E|, N = m + n$$

• **Output:** if $C \leftarrow \#$ connected components of G, output with probability $\geq 3/4$ C' such that

$$|C'-C| \le \epsilon n$$

- How can we even do this?
- ullet Different characterization of # connected components of graph

How to approximate number of connected components of a graph:

• **Input:** graph G(V, E) in *adjacency list* representation. $\epsilon > 0$.

$$n = |V|, \ m = |E|, \ N = m + n$$

• **Output:** if $C \leftarrow \#$ connected components of G, output with probability $\geq 3/4$ C' such that

$$|C' - C| \le \epsilon n$$

- How can we even do this?
- Different characterization of # connected components of graph

Lemma (# Connected Components)

Let G(V, E) be a graph. For vertex $v \in V$, let $n_v \leftarrow \#$ vertices in connected component of v. Let C be number of connected components of G. Then:

$$C = \sum_{v \in V} \frac{1}{n_v}$$

Naive attempt: sample small number of vertices from G, compute n_{ν} and output normalization.

Naive attempt: sample small number of vertices from G, compute n_v and output normalization.

• **Problem:** just computing n_v may take *linear time* if graph is connected!

Naive attempt: sample small number of vertices from G, compute n_v and output normalization.

- **Problem:** just computing n_v may take *linear time* if graph is connected!
- Idea: if n_v large, then $1/n_v$ small and we can drop it!

Naive attempt: sample small number of vertices from G, compute n_v and output normalization.

- **Problem:** just computing n_v may take *linear time* if graph is connected!
- Idea: if n_v large, then $1/n_v$ small and we can drop it!

Lemma (Estimating # components)

Let

$$n_{v}'=\min(n_{v},2/\epsilon)$$

Then

$$\left| \sum_{v \in V} \frac{1}{n_v} - \sum_{v \in V} \frac{1}{n_v'} \right| \le \frac{\epsilon n}{2}.$$

Naive attempt: sample small number of vertices from G, compute n_v and output normalization.

- **Problem:** just computing n_v may take *linear time* if graph is connected!
- Idea: if n_v large, then $1/n_v$ small and we can drop it!

Lemma (Estimating # components)

Let

$$n_{v}'=\min(n_{v},2/\epsilon)$$

Then

$$\left| \sum_{v \in V} \frac{1}{n_v} - \sum_{v \in V} \frac{1}{n_v'} \right| \le \frac{\epsilon n}{2}.$$

How do we do this estimation?

Sample vertex v and run BFS starting at v, short-cutting if see $2/\epsilon$ vertices.

Connected Components - proof of lemma

Lemma (Estimating # components)

Let

$$n_{v}'=\min(n_{v},2/\epsilon)$$

Then

$$\left|\sum_{v\in V}\frac{1}{n_v}-\sum_{v\in V}\frac{1}{n_v'}\right|\leq \frac{\epsilon n}{2}.$$

• Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \dots, v_s uniformly at random.

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \ldots, v_s uniformly at random.
- Compute n'_{v_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \dots, v_s uniformly at random.
- Compute n'_{v_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

Running Time:

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \dots, v_s uniformly at random.
- Compute n'_{v_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

- Running Time:
 - $\Theta(1/\epsilon^2)$ vertices sampled,

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \ldots, v_s uniformly at random.
- Compute n'_{V_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

- Running Time:
 - $\Theta(1/\epsilon^2)$ vertices sampled,
 - each run takes $O(1/\epsilon^2)$ time to compute.

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \ldots, v_s uniformly at random.
- Compute n'_{v_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

Running Time:

- $\Theta(1/\epsilon^2)$ vertices sampled,
- each run takes $O(1/\epsilon^2)$ time to compute.
- Adding results takes $O(s) = O(1/\epsilon^2)$ time.

- Choose $s = \Theta(1/\epsilon^2)$ vertices v_1, \ldots, v_s uniformly at random.
- Compute n'_{V_i} using BFS
- Return

$$C' = \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}}$$

- Running Time:
 - $\Theta(1/\epsilon^2)$ vertices sampled,
 - each run takes $O(1/\epsilon^2)$ time to compute.
 - Adding results takes $O(s) = O(1/\epsilon^2)$ time.
- Total running time $O(1/\epsilon^4)$.

To prove correctness we need to show that with probability $\geq 3/4$ we have

$$\left| \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \sum_{v \in V} \frac{1}{n_v} \right| \le \epsilon n$$

To prove correctness we need to show that with probability $\geq 3/4$ we have

$$\left| \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \sum_{v \in V} \frac{1}{n_v} \right| \le \epsilon n$$

Dividing by n/s on both sides:

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_v} \right| \le \epsilon s$$

To prove correctness we need to show that with probability $\geq 3/4$ we have

$$\left| \frac{n}{s} \cdot \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \sum_{v \in V} \frac{1}{n_v} \right| \le \epsilon n$$

Dividing by n/s on both sides:

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_v} \right| \le \epsilon s$$

By our previous lemma, and triangle inequality, enough to prove that w.h.p.

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n'_{v}} \right| \le \frac{\epsilon s}{2}$$

Lemma and Triangle Inequality

Lemma (Estimating # components)

Let

$$n_{v}'=\min(n_{v},2/\epsilon)$$

Then

$$\left|\sum_{v\in V}\frac{1}{n_v}-\sum_{v\in V}\frac{1}{n_v'}\right|\leq \frac{\epsilon n}{2}.$$

Want to show that with probability $\geq 3/4$:

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n'_{v}} \right| \le \frac{\epsilon \cdot s}{2}$$

Want to show that with probability $\geq 3/4$:

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n'_v} \right| \le \frac{\epsilon \cdot s}{2}$$

Theorem (Hoeffding's Inequality)

Let X_i be independent random variables, taking values in $[a_i, b_i]$, $X = \sum_{i=1}^{s} X_i$. Then

$$\Pr[|X - \mathbb{E}[X]| \ge \ell] \le 2 \cdot \exp\left(-\frac{2\ell^2}{\sum_{i=1}^s (b_i - a_i)^2}\right)$$

Want to show that with probability $\geq 3/4$:

$$\left| \sum_{i=1}^{s} \frac{1}{n'_{v_i}} - \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n'_v} \right| \le \frac{\epsilon \cdot s}{2}$$

Theorem (Hoeffding's Inequality)

Let X_i be independent random variables, taking values in $[a_i, b_i]$, $X = \sum_{i=1}^{s} X_i$. Then

$$\Pr[|X - \mathbb{E}[X]| \ge \ell] \le 2 \cdot \exp\left(-\frac{2\ell^2}{\sum_{i=1}^s (b_i - a_i)^2}\right)$$

Setting parameters of Hoeffing's theorem to our setting:

- $a_i = 0, b_i = 1$
- $X_i = 1/n'_v$ with probability 1/n (pick vertex uniformly at random)

$$X = \sum_{i=1}^{s} X_i \quad \left(= \sum_{i=1}^{s} \frac{1}{n'_{V_i}} \right)$$

$$X = \sum_{i=1}^{s} X_i \quad \left(= \sum_{i=1}^{s} \frac{1}{n'_{v_i}} \right)$$

$$\mu := \mathbb{E}[X] = \sum_{i=1}^{3} \mathbb{E}[X_i] = s \cdot \sum_{v \in V} \frac{1}{n_v'} \cdot \frac{1}{n} = \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_v'}$$

$$X = \sum_{i=1}^{s} X_i \quad \left(= \sum_{i=1}^{s} \frac{1}{n'_{v_i}} \right)$$

$$\mu := \mathbb{E}[X] = \sum_{i=1}^s \mathbb{E}[X_i] = s \cdot \sum_{v \in V} \frac{1}{n'_v} \cdot \frac{1}{n} = \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n'_v}$$

Hoeffding with the parameters from previous slide and $\ell = \epsilon \cdot s/2$:

Theorem (Hoeffding's Inequality)

Let X_i be independent random variables, taking values in [0,1], $X = \sum_{i=1}^{s} X_i$. Then

$$\Pr[|X - \mu| \ge \epsilon \cdot s/2] \le 2 \cdot \exp(-\epsilon^2 s/2)$$

$$X = \sum_{i=1}^{s} X_i \quad \left(= \sum_{i=1}^{s} \frac{1}{n'_{v_i}} \right)$$

$$\mu := \mathbb{E}[X] = \sum_{i=1}^{s} \mathbb{E}[X_i] = s \cdot \sum_{v \in V} \frac{1}{n_v'} \cdot \frac{1}{n} = \frac{s}{n} \cdot \sum_{v \in V} \frac{1}{n_v'}$$

Hoeffding with the parameters from previous slide and $\ell = \epsilon \cdot s/2$:

Theorem (Hoeffding's Inequality)

Let X_i be independent random variables, taking values in [0,1], $X = \sum_{i=1}^{s} X_i$. Then

$$\Pr[|X - \mu| \ge \epsilon \cdot s/2] \le 2 \cdot \exp(-\epsilon^2 s/2)$$

Since $s = \Theta(1/\epsilon^2)$, the result follows by choosing $s = 8 \cdot (1/\epsilon^2)$

Acknowledgement

- Lecture based largely on Ronitt's notes.
- See Ronitt's notes at http://people.csail.mit.edu/ronitt/ COURSE/F20/Handouts/scribe1.pdf
- See also her notes for approximate MST http://people.csail. mit.edu/ronitt/COURSE/F20/Handouts/scribe2.pdf
- List of open problems in sublinear algorithms
 https://sublinear.info/index.php?title=Main_Page