Lecture 6: Graph Sparsification

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

May 30, 2023

Overview

- Introduction
- Why Sparsify?
- Warm-up Problem
- Main Problem
- Graph Sparsification
- Acknowledgements

Why do we sparsify?

Often times graph algorithms for graphs $G(V, E)$ have runtimes which depend on $|E|$. If the graph is dense, i.e. $|E|=\omega\left(n^{1+\gamma}\right)$, for $\gamma>0$, then this may be too slow.

We want graph that has nearly-linear number of edges $O(n \cdot$ poly $\log n)$

- Settle for approximate answers

Why do we sparsify?

Often times graph algorithms for graphs $G(V, E)$ have runtimes which depend on $|E|$. If the graph is dense, i.e. $|E|=\omega\left(n^{1+\gamma}\right)$, for $\gamma>0$, then this may be too slow.

We want graph that has nearly-linear number of edges $O(n \cdot$ poly $\log n)$

- Settle for approximate answers
- Used as primitives in many other algorithms (for instance, max-flow, sparsest cut, etc.)

Why do we sparsify?

Often times graph algorithms for graphs $G(V, E)$ have runtimes which depend on $|E|$. If the graph is dense, i.e. $|E|=\omega\left(n^{1+\gamma}\right)$, for $\gamma>0$, then this may be too slow.

We want graph that has nearly-linear number of edges $O(n \cdot$ poly $\log n)$

- Settle for approximate answers
- Used as primitives in many other algorithms (for instance, max-flow, sparsest cut, etc.)
- Applications in network connectivity

Graph Cuts

Definition (Graph Cut)

If $G(V, E, w)$ is a weighted graph, a cut is a partition of the vertices into two non-empty sets $V=S \sqcup \bar{S}$. The value of a cut is the quantity

$$
w(S, \bar{S}):=\sum_{e \in E(S, \bar{S})} w_{e} .
$$

Contraction of Edges

Definition (Edge Contraction)

Let $G(V, E)$ be a graph. If $e=\{u, v\} \in E$ is an edge of G, then the contraction of e is a new graph $H(V \cup\{z\} \backslash\{u, v\}, F)$ where we replace the vertices u, v by one vertex z, and any edge $\{u, x\}=: f \in E \backslash\{e\}$ is replaced by $\{z, x\} \in F$.

Randomized Minimum Cut

- Input: undirected unweighted graph $G(V, E)$
- Output: minimum cut (S, \bar{S}), with high probability

Randomized Minimum Cut

- Input: undirected unweighted graph $G(V, E)$
- Output: minimum cut (S, \bar{S}), with high probability
- While there are more than 2 vertices in the graph:
- Pick uniformly random edge and contract it

Randomized Minimum Cut

- Input: undirected unweighted graph $G(V, E)$
- Output: minimum cut (S, \bar{S}), with high probability
- While there are more than 2 vertices in the graph:
- Pick uniformly random edge and contract it
- Output the two subsets encoded by the two remaining vertices.

Analysis

Why does this work?

Intuition: picking a random edge uniformly at random "favours" small cuts (i.e. preserves them) with higher probability.

Analysis

Why does this work?

Intuition: picking a random edge uniformly at random "favours" small cuts (i.e. preserves them) with higher probability.

Remark

The value of the minimum cut does note decrease after contraction.

Analysis

Theorem (Karger)
The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

- Let (S, \bar{S}) be a minimum cut, and $c:=|E(S, \bar{S})|$. If we never contract an edge from $E(S, \bar{S})$, the algorithm succeeds.

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

- Let (S, \bar{S}) be a minimum cut, and $c:=|E(S, \bar{S})|$. If we never contract an edge from $E(S, \bar{S})$, the algorithm succeeds.
- Probability that an edge from $E(S, \bar{S})$ is contracted in the $i^{t h}$ iteration (conditioned on cut still alive)

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

- Let (S, \bar{S}) be a minimum cut, and $c:=|E(S, \bar{S})|$. If we never contract an edge from $E(S, \bar{S})$, the algorithm succeeds.
- Probability that an edge from $E(S, \bar{S})$ is contracted in the $i^{t h}$ iteration (conditioned on cut still alive)
- Each vertex is a cut, so each vertex has degree $\geq c \Rightarrow$

$$
\geq \frac{(n-i+1) \cdot c}{2} \quad \text { edges remain. }
$$

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

- Let (S, \bar{S}) be a minimum cut, and $c:=|E(S, \bar{S})|$. If we never contract an edge from $E(S, \bar{S})$, the algorithm succeeds.
- Probability that an edge from $E(S, \bar{S})$ is contracted in the $i^{\text {th }}$ iteration (conditioned on cut still alive)
- Each vertex is a cut, so each vertex has degree $\geq c \Rightarrow$

$$
\geq \frac{(n-i+1) \cdot c}{2} \quad \text { edges remain. }
$$

- Contracting random edge, probability we kill cut (S, \bar{S}) is

$$
=|E(S, \bar{S})| \cdot \frac{1}{(\# \text { edges })} \leq c \cdot \frac{2}{(n-i+1) \cdot c}=\frac{2}{n-i+1}
$$

Analysis

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

- Let (S, \bar{S}) be a minimum cut, and $c:=|E(S, \bar{S})|$. If we never contract an edge from $E(S, \bar{S})$, the algorithm succeeds.
- Probability that an edge from $E(S, \bar{S})$ is contracted in the $i^{\text {th }}$ iteration (conditioned on cut still alive)
- Each vertex is a cut, so each vertex has degree $\geq c \Rightarrow$

$$
\geq \frac{(n-i+1) \cdot c}{2} \quad \text { edges remain. }
$$

- Contracting random edge, probability we kill cut (S, \bar{S}) is

$$
=|E(S, \bar{S})| \cdot \frac{1}{(\# \text { edges })} \leq c \cdot \frac{2}{(n-i+1) \cdot c}=\frac{2}{n-i+1}
$$

- $\operatorname{Pr}[(S, \bar{S})$ survives $] \geq(1-2 / n) \cdot(1-3 / n) \cdots(1-2 / 3)=2 / n(n-1)$

Hmmmmm, this is not with high probability...

- To improve success probability, repeat this randomized procedure t times (for which t ?)
- If we repeat for t times, failure probability is

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

Hmmmmm, this is not with high probability...

- To improve success probability, repeat this randomized procedure t times (for which t ?)
- If we repeat for t times, failure probability is

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- setting $t=2 n(n-1)$ then

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t} \leq \exp \left(-\frac{2 t}{n(n-1)}\right)=e^{-4}
$$

Hmmmmm, this is not with high probability...

- To improve success probability, repeat this randomized procedure t times (for which t ?)
- If we repeat for t times, failure probability is

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- setting $t=2 n(n-1)$ then

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t} \leq \exp \left(-\frac{2 t}{n(n-1)}\right)=e^{-4}
$$

- Running time: One execution implemented in $O\left(n^{2}\right)$, so t executions in time $O\left(n^{2} t\right)=O\left(n^{4}\right)$.

Hmmmmm, this is not with high probability...

- To improve success probability, repeat this randomized procedure t times (for which t ?)
- If we repeat for t times, failure probability is

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- setting $t=2 n(n-1)$ then

$$
\leq\left(1-\frac{2}{n(n-1)}\right)^{t} \leq \exp \left(-\frac{2 t}{n(n-1)}\right)=e^{-4}
$$

- Running time: One execution implemented in $O\left(n^{2}\right)$, so t executions in time $O\left(n^{2} t\right)=O\left(n^{4}\right)$.
- You will work on some running time improvements in your homework!

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Corollary

There are at most $O\left(n^{2}\right)$ minimum cuts in an undirected graph.

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Corollary

There are at most $O\left(n^{2}\right)$ minimum cuts in an undirected graph.

- Each minimum cut survives with probability $\Omega\left(1 / n^{2}\right)$
- Events that two different cuts survive are disjoint

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Corollary

There are at most $O\left(n^{2}\right)$ minimum cuts in an undirected graph.

- Each minimum cut survives with probability $\Omega\left(1 / n^{2}\right)$
- Events that two different cuts survive are disjoint
- Non-trivial statement to prove using other arguments!

Combinatorial Application

Theorem (Karger)

The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$, where $n=|V|$.

Corollary

There are at most $O\left(n^{2}\right)$ minimum cuts in an undirected graph.

- Each minimum cut survives with probability $\Omega\left(1 / n^{2}\right)$
- Events that two different cuts survive are disjoint
- Non-trivial statement to prove using other arguments!

This is all good, but we haven't "sparsified" anything so far!

- Introduction
- Why Sparsify?
- Warm-up Problem
- Main Problem
- Graph Sparsification
- Acknowledgements

Graph Sparsification

Definition (Weight of a cut)

Let $G(V, E, w)$ be undirected weighted graph. For any cut (S, \bar{S}), let the weight of (S, \bar{S}) be

$$
w(S, \bar{S}):=\sum_{e \in E(S, \bar{S})} w(e)
$$

Graph Sparsification

Definition (Weight of a cut)

Let $G(V, E, w)$ be undirected weighted graph. For any cut (S, \bar{S}), let the weight of (S, \bar{S}) be

$$
w(S, \bar{S}):=\sum_{e \in E(S, \bar{S})} w(e)
$$

Definition (Sparse Graph)

We say that a graph $G(V, E)$ is sparse if $|E|=\tilde{O}(|V|)$.

Graph Sparsification

Definition (Weight of a cut)

Let $G(V, E, w)$ be undirected weighted graph. For any cut (S, \bar{S}), let the weight of (S, \bar{S}) be

$$
w(S, \bar{S}):=\sum_{e \in E(S, \bar{S})} w(e)
$$

Definition (Sparse Graph)

We say that a graph $G(V, E)$ is sparse if $|E|=\tilde{O}(|V|)$.

Question

How to make a graph sparse (nearly linear \# edges) while approximating the value of every cut of a graph?

Graph Sparsification

- Input: graph $G\left(V, E, w_{G}\right), \varepsilon>0$.

$$
n=|V|, \quad m=|E| .
$$

- Output: graph $H\left(V, F, w_{H}\right)$ such that for every cut (S, \bar{S}), we have

$$
(1-\varepsilon) \cdot w_{G}(S, \bar{S}) \leq w_{H}(S, \bar{S}) \leq(1+\varepsilon) \cdot w_{G}(S, \bar{S})
$$

Graph Sparsification

- Input: graph $G\left(V, E, w_{G}\right), \varepsilon>0$.

$$
n=|V|, m=|E| .
$$

- Output: graph $H\left(V, F, w_{H}\right)$ such that for every cut (S, \bar{S}), we have

$$
(1-\varepsilon) \cdot w_{G}(S, \bar{S}) \leq w_{H}(S, \bar{S}) \leq(1+\varepsilon) \cdot w_{G}(S, \bar{S})
$$

- Assumption (for this class): the input graph $G(V, E)$ is unweighted and has minimum cut value $\Omega(\log n)$ (i.e., a large-ish cut)

Graph Sparsification

- Input: graph $G\left(V, E, w_{G}\right), \varepsilon>0$.

$$
n=|V|, m=|E| .
$$

- Output: graph $H\left(V, F, w_{H}\right)$ such that for every cut (S, \bar{S}), we have

$$
(1-\varepsilon) \cdot w_{G}(S, \bar{S}) \leq w_{H}(S, \bar{S}) \leq(1+\varepsilon) \cdot w_{G}(S, \bar{S})
$$

- Assumption (for this class): the input graph $G(V, E)$ is unweighted and has minimum cut value $\Omega(\log n)$ (i.e., a large-ish cut)

Algorithm:

- Let $p \in(0,1)$ be a parameter.
- For each edge $e \in E(G)$, with probability p, make e an edge of H with weight $w_{H}(e)=1 / p$.

Graph Sparsification

Idea:

- Set p to get correct expected value for both \# edges in H and the value of each cut (S, \bar{S}) in H.

Graph Sparsification

Idea:

- Set p to get correct expected value for both \# edges in H and the value of each cut (S, \bar{S}) in H.
- After that, need to prove concentration around expected values for all cuts simultaneously!

Graph Sparsification

Idea:

- Set p to get correct expected value for both \# edges in H and the value of each cut (S, \bar{S}) in H.
- After that, need to prove concentration around expected values for all cuts simultaneously!
- Use Chernoff-Hoeffding and assumption that min-cut value is large.

Graph Sparsification

Idea:

- Set p to get correct expected value for both \# edges in H and the value of each cut (S, \bar{S}) in H.
- After that, need to prove concentration around expected values for all cuts simultaneously!
- Use Chernoff-Hoeffding and assumption that min-cut value is large.

Theorem ([Karger, 1993])

Let c be the value of the min-cut of G. Set

$$
p=\frac{15 \ln n}{\varepsilon^{2} \cdot c} .
$$

Graph H given by algorithm from previous slide approximates all cuts of G and has $O(p \cdot|E|)$ edges with probability $\geq 1-4 / n$.

Graph Sparsification

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let
$X_{e}=\left\{\begin{array}{l}1, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$

Graph Sparsification

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let

$$
X_{e}= \begin{cases}1, & \text { if edge } e \text { included in } H \\ 0, & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}[|F|]=\sum_{e \in E} \mathbb{E}\left[X_{e}\right]=\sum_{e \in E}(p \cdot 1+(1-p) \cdot 0)=p \cdot|E|
$$

Graph Sparsification

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let

$$
X_{e}= \begin{cases}1, & \text { if edge } e \text { included in } H \\ 0, & \text { otherwise }\end{cases}
$$

$$
\mathbb{E}[|F|]=\sum_{e \in E} \mathbb{E}\left[X_{e}\right]=\sum_{e \in E}(p \cdot 1+(1-p) \cdot 0)=p \cdot|E|
$$

$$
\begin{aligned}
\mathbb{E}\left[w_{H}(S, \bar{S})\right] & =\sum_{e \in E(S, \bar{S})} \mathbb{E}\left[w_{H}(e)\right]=\sum_{e \in E(S, \bar{S})}\left(p \cdot \frac{1}{p}+(1-p) \cdot 0\right) \\
& =|E(S, \bar{S})|=k=w_{G}(S, \bar{S})
\end{aligned}
$$

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let
$w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let
$w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let
$w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}
- Chernoff Bound:

$$
\operatorname{Pr}\left[\left|w_{H}(S, \bar{S})-k\right| \geq \varepsilon \cdot k\right] \leq 2 \exp \left(-\frac{\varepsilon^{2} k p}{3}\right)=2 n^{-5 k / c}
$$

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let
$w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}
- Chernoff Bound:

$$
\operatorname{Pr}\left[\left|w_{H}(S, \bar{S})-k\right| \geq \varepsilon \cdot k\right] \leq 2 \exp \left(-\frac{\varepsilon^{2} k p}{3}\right)=2 n^{-5 k / c}
$$

- Note that $k \geq c$, as c is the weight of the minimum cut

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let $w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}
- Chernoff Bound:

$$
\operatorname{Pr}\left[\left|w_{H}(S, \bar{S})-k\right| \geq \varepsilon \cdot k\right] \leq 2 \exp \left(-\frac{\varepsilon^{2} k p}{3}\right)=2 n^{-5 k / c}
$$

- Note that $k \geq c$, as c is the weight of the minimum cut
- This is probability of single cut deviating from its mean... How can we handle the exponentially many cuts in the graph?

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let $w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}
- Chernoff Bound:

$$
\operatorname{Pr}\left[\left|w_{H}(S, \bar{S})-k\right| \geq \varepsilon \cdot k\right] \leq 2 \exp \left(-\frac{\varepsilon^{2} k p}{3}\right)=2 n^{-5 k / c}
$$

- Note that $k \geq c$, as c is the weight of the minimum cut
- This is probability of single cut deviating from its mean... How can we handle the exponentially many cuts in the graph?
- Observation: probability that large cut violated is much smaller, and there are not many small cuts!

Graph Sparsification - Concentration

- Take a cut (S, \bar{S}). Suppose $k:=w_{G}(S, \bar{S})$. Let $w_{e}=\left\{\begin{array}{l}1 / p, \text { if edge } e \text { included in } H \\ 0, \text { otherwise }\end{array}\right.$
- $w_{H}(S, \bar{S})$ is a sum of independent random variables w_{e}
- Chernoff Bound:

$$
\operatorname{Pr}\left[\left|w_{H}(S, \bar{S})-k\right| \geq \varepsilon \cdot k\right] \leq 2 \exp \left(-\frac{\varepsilon^{2} k p}{3}\right)=2 n^{-5 k / c}
$$

- Note that $k \geq c$, as c is the weight of the minimum cut
- This is probability of single cut deviating from its mean... How can we handle the exponentially many cuts in the graph?
- Observation: probability that large cut violated is much smaller, and there are not many small cuts!
- So we can do a clever union bound!

Number of Cuts Lemma

Lemma (Number of small cuts)

If c is the size of the minimum cut in our graph, then the number of cuts with at most $\alpha \cdot c$ edges for $\alpha \geq 1$ is at most $n^{2 \alpha}$.

Number of Cuts Lemma

Lemma (Number of small cuts)

If c is the size of the minimum cut in our graph, then the number of cuts with at most $\alpha \cdot c$ edges for $\alpha \geq 1$ is at most $n^{2 \alpha}$.

Practice problem: generalize our earlier proof on the \# minimum cuts to this case.

Union Bound on \# Cuts

$\operatorname{Pr}[$ some cut is violated $] \leq \sum_{S \subseteq V} \operatorname{Pr}[(S, \bar{S})$ is violated $]$

Union Bound on \# Cuts

$$
\begin{aligned}
& \operatorname{Pr}[\text { some cut is violated }] \leq \sum_{S \subseteq V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} \sum_{\substack{S \subseteq V \\
\alpha c \leq\left|w_{G}(\bar{S}, \bar{S})\right| \leq 2 \cdot \alpha c}} \operatorname{Pr}[(S, \bar{S}) \text { is violated }]
\end{aligned}
$$

Union Bound on \# Cuts

$$
\begin{aligned}
& \operatorname{Pr}[\text { some cut is violated }] \leq \sum_{S \subseteq V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} \sum_{\substack{ \\
\alpha c \leq\left|w_{G}(S, \bar{S})\right| \leq 2 \cdot \alpha c}} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} n^{4 \alpha} \cdot \operatorname{Pr}\left[(S, \bar{S}) \text { is violated }\left|\alpha c \leq\left|w_{G}(S, \bar{S})\right| \leq 2 \cdot \alpha c\right]\right.
\end{aligned}
$$

Union Bound on \# Cuts

$$
\begin{aligned}
& \operatorname{Pr}[\text { some cut is violated }] \leq \sum_{S \subseteq V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} \sum_{\substack{ } V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} n^{4 \alpha} \cdot \operatorname{Pr}[(S, \bar{S}) \mid \leq 2 \cdot \alpha c \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} n^{4 \alpha} \cdot 2 n^{-5 \alpha c / c} \\
& =\sum_{\alpha=1,2,4,8, \ldots} n^{-\alpha} \leq 4 / n
\end{aligned}
$$

Union Bound on \# Cuts

$$
\begin{aligned}
& \operatorname{Pr}[\text { some cut is violated }] \leq \sum_{S \subseteq V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha=1,2,4,8, \ldots} \sum_{\substack{ } V} \operatorname{Pr}[(S, \bar{S}) \text { is violated }] \\
& \leq \sum_{\alpha c \leq\left|w_{G}(S, \bar{S})\right| \leq 2 \cdot \alpha c} n^{4 \alpha} \cdot \operatorname{Pr}\left[(S, \bar{S}) \text { is violated }\left|\alpha c \leq\left|w_{G}(S, \bar{S})\right| \leq 2 \cdot \alpha c\right]\right. \\
& \leq \sum_{\alpha=1,2,4,8, \ldots, \ldots} n^{4 \alpha} \cdot 2 n^{-5 \alpha c / c} \\
& =\sum_{\alpha=1,2,4,8, \ldots} n^{-\alpha} \leq 4 / n
\end{aligned}
$$

Another application of Chernoff gives us that H has the right number of edges $|F| \approx p \cdot|E|$ (i.e., sparse)

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.
- Without min-cut assumption, uniform sampling won't work

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.
- Without min-cut assumption, uniform sampling won't work
- [Benczur, Karger 1996]: without minimum cut assumption, just sample non-uniformly in clever way!

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.
- Without min-cut assumption, uniform sampling won't work
- [Benczur, Karger 1996]: without minimum cut assumption, just sample non-uniformly in clever way!
- Sample edge with probability proportional to "connectivity" of two endpoints (i.e., how relevant is the edge between them?)

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.
- Without min-cut assumption, uniform sampling won't work
- [Benczur, Karger 1996]: without minimum cut assumption, just sample non-uniformly in clever way!
- Sample edge with probability proportional to "connectivity" of two endpoints (i.e., how relevant is the edge between them?)
- Strong Connectivity: a k-strong component is a maximal induced subgraph that is k-edge-connected. For each edge e, let s_{e} be the maximum value k such that there exists a k-strong component containing e.

How to remove the assumption?

- Assumed that the graph has large min-cut value $(c=\Omega(\log n))$.
- Without min-cut assumption, uniform sampling won't work
- [Benczur, Karger 1996]: without minimum cut assumption, just sample non-uniformly in clever way!
- Sample edge with probability proportional to "connectivity" of two endpoints (i.e., how relevant is the edge between them?)
- Strong Connectivity: a k-strong component is a maximal induced subgraph that is k-edge-connected. For each edge e, let s_{e} be the maximum value k such that there exists a k-strong component containing e.
- Sample edge e with probability $p_{e}=\Theta\left(\frac{\log n}{\varepsilon^{2} \cdot s_{e}}\right)$ and weight $1 / p_{e}$.

Acknowledgement

- Lecture based largely on Lap Chi's notes.
- See Lap Chi's Lecture 1 notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L01.pdf
- See Lap Chi's Lecture 3 notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L03.pdf
- See Mohsen's notes for the general Benczur-Karger algorithm https://people.inf.ethz.ch/gmohsen/AA18/Notes/S1.pdf.

References I

嗇 Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms
Mitzenmacher, Michael, and Eli Upfal (2017)
Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.
Karger, David (1993)
Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
SODA 93, 21-30.
R
Benczur, Andras and Karger, David (1996)
Approximating st minimum cuts in $\tilde{O}\left(n^{2}\right)$ time.
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 47-55.

