Lecture 1: Amortized Analysis

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

May 9, 2023

・ロ ・ ・ (型 ト ・ 言 ト ・ 言 ・ う へ ペ 1/42

Overview

Introduction

- Why amortized analysis?
- Types of amortized analyses
- Examples of Data Structures Using Amortized Analysis
 - Aggregate Analysis
 - Accounting Method
 - Potential Method
- Acknowledgements

Why Amortized Analysis?

In your first data structures course, you learned how to devise data structures that had good *worst-case* or *average-case* behaviour *per query*.

Why Amortized Analysis?

In your first data structures course, you learned how to devise data structures that had good *worst-case* or *average-case* behaviour *per query*.

Worst or average-case complexity of data structures

Data Structure	search	insertion	deletion
Doubly-Linked List	<i>O</i> (<i>n</i>)	O(1)	<i>O</i> (<i>n</i>)
Ordered Array	$O(\log n)$	O(n)	O(n)
Hash Tables ^a	O(1)	O(1)	O(1)
Balanced Binary Search Trees ^b	$O(\log n)$	$O(\log n)$	$O(\log n)$

^aAverage-case, although worst-case search time is $\Theta(n)$

^{*b*}Also average-case. Worst-case complexity is O(height) of the tree, which can be $\Theta(n)$.

Why Amortized Analysis?

In **amortized analysis**, one averages the *total time* required to perform a sequence of data-structure operations over *all operations performed*.

Upshot of amortized analysis: worst-case cost *per query* may be high for one particular query, so long as overall average cost per query is small in the end!

Remark

Amortized analysis is a *worst-case* analysis. That is, it measures the average performance of each operation in the worst case.

Types of amortized analyses

Three common types of amortized analyses:

• Aggregate Analysis: determine upper bound T(n) on total cost of sequence of *n* operations. So amortized complexity is T(n)/n.

Types of amortized analyses

Three common types of amortized analyses:

- Aggregate Analysis: determine upper bound T(n) on total cost of sequence of n operations. So amortized complexity is T(n)/n.
- Accounting Method: assign certain *charge* to each operation (independent of the actual cost of the operation). If operation is cheaper than the charge, then build up credit to use later.

Types of amortized analyses

Three common types of amortized analyses:

- Aggregate Analysis: determine upper bound T(n) on total cost of sequence of n operations. So amortized complexity is T(n)/n.
- Accounting Method: assign certain *charge* to each operation (independent of the actual cost of the operation). If operation is cheaper than the charge, then build up credit to use later.
- Otential Method: one comes up with *potential energy* of a data structure, which maps each state of entire data-structure to a real number (its "potential"). Differs from accounting method because we assign credit to the data structure as a whole, instead of assigning credit to each operation.

One simple problem - several analyses

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- *Question:* how many bit operations will it take to increment *C* from 0 to *n*?

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- *Question:* how many bit operations will it take to increment *C* from 0 to *n*?
- Notice that the *worst-case* time *per operation* is log(*n*). So an upper bound is $O(n \log n)$.

011L 1000

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- *Question:* how many bit operations will it take to increment *C* from 0 to *n*?
- Notice that the *worst-case* time *per operation* is log(n). So an upper bound is O(n log n).
- But overall, we see that the *most significant bits* get updated *very infrequently*.
- Is the above analysis tight?

$$\begin{array}{c} 0000 \rightarrow 000 | \\ \uparrow & \uparrow \end{array}$$

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- *Question:* how many bit operations will it take to increment *C* from 0 to *n*?
- Notice that the *worst-case* time *per operation* is log(*n*). So an upper bound is $O(n \log n)$.
- But overall, we see that the most significant bits get updated very infrequently. i.e. after 2^{k-1} provide the second significant bits of the second significant bits of the second s
- Is the above analysis tight? • How many times will we "flip" the kth bit? flip kth bit in intervals of 2^{k-1} norms

n k-1 flips of kth bit

- **Input:** A binary counter *C* initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Question: how many bit operations will it take to increment C from 0 to *n*?
- Notice that the *worst-case* time *per operation* is log(*n*). So an upper bound is $O(n \log n)$.
- But overall, we see that the *most significant bits* get updated *very* infrequently. amo hized
- Is the above analysis tight?
- How many times will we "flip" the kth bit?
- Putting it all together, we get:

 $\lceil \log n \rceil$ $\frac{2^{k}}{2} < \sum_{k \ge 0} n/2^{k} = 2n \text{ (total B(n))}$ $\frac{1}{4} + 1 m s \text{ kin bit gets flipped}$ 14 / 42

CS

our

suppose that the *actual cost* of each operation of algorithm is c_i (which may be hard to track)

$$\sum_{i=1}^{n} C_{i}$$

$$C_{i} = cost \quad ef \quad ih \quad in creament$$

$$(# \ bit \quad flips)$$

$$C_{1} = 4 \qquad C_{2} = 2 \qquad C_{3} = 4 \qquad C_{4} = 3$$

$$0000 \mapsto 0001 \mapsto 0010 \qquad 0010 \mapsto 0011$$

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- In the accounting method, at each step of the algorithm, we assign charges γ_i to each operation such that

$$\sum_{i=1}^{\ell} \gamma_i \ge \sum_{i=1}^{\ell} c_i$$

for any $\ell \geq 1$

 That is, the total charged up to step l is greater than or equal to the actual cost of all operations up to that point

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- In the accounting method, at each step of the algorithm, we assign charges γ_i to each operation such that

$$\sum_{i=1}^{\ell} \gamma_i \ge \sum_{i=1}^{\ell} c_i$$

for any $\ell \geq 1$

- That is, the total charged up to step l is greater than or equal to the actual cost of all operations up to that point
- In other words, we charge certain operations before they happen

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- In the accounting method, at each step of the algorithm, we assign charges γ_i to each operation such that

$$\sum_{i=1}^{\ell} \gamma_i \ge \sum_{i=1}^{\ell} c_i$$

for any $\ell \geq 1$

- That is, the total charged up to step l is greater than or equal to the actual cost of all operations up to that point
- In other words, we charge certain operations before they happen
- If we manage to do the above, then

Total cost \leq Total charged

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ ら の

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?
- Suppose we charge the cost of "clearing a bit" (changing the bit from 1 to 0) to the operation that sets the bit to 1 in the first place.

0000 m 2000

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?
- Suppose we charge the cost of "clearing a bit" (changing the bit from 1 to 0) to the operation that sets the bit to 1 in the first place.
- If we flip k bits during an increment, we have already charged k 1 of those bit flips to earlier bit flips.

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?
- Suppose we charge the cost of "clearing a bit" (changing the bit from 1 to 0) to the operation that sets the bit to 1 in the first place.
- If we flip k bits during an increment, we have already charged k 1 of those bit flips to earlier bit flips.

Why?

 Note that if we flip k bits, we must set k - 1 of these bits to 0 (so that it carries over)

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?
- Suppose we charge the cost of "clearing a bit" (changing the bit from 1 to 0) to the operation that sets the bit to 1 in the first place.
- If we flip k bits during an increment, we have already charged k 1 of those bit flips to earlier bit flips.

Why?

- Note that if we flip k bits, we must set k − 1 of these bits to 0 (so that it carries over)
- So, instead of *paying* for k bit flips in this increment, we *charge* at most 2:
 - one for setting a bit to 1,
 - and the other is the charge to "clear this bit"

イ・ニス

actual cost clearing charge

24 / 42

A D A 4 B A 4 B A 4 B A 1 B

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *charge earlier operations* for the *cost of subsequent operations*?
- Suppose we charge the cost of "clearing a bit" (changing the bit from 1 to 0) to the operation that sets the bit to 1 in the first place.
- If we flip k bits during an increment, we have already charged k 1 of those bit flips to earlier bit flips.

Why?

- Note that if we flip k bits, we must set k − 1 of these bits to 0 (so that it carries over)
- So, instead of *paying* for k bit flips in this increment, we *charge* at most 2:
 - one for setting a bit to 1,
 - and the other is the charge to "clear this bit" clearing charge
- Total cost \leq Total Charged = $2 \times n$

25 / 42

actual cost

Example of the accounting method

$$\sum \delta_i = 2 \times n = 2n$$

<ロ><一><一><一><一><一><一><一</td>26/42

Formal Analysis of the accounting method

 suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- potential method: assign potential Φ_i to data structure at time i. Amortized cost of ith operation is

$$\gamma_i = c_i + \Phi_i - \Phi_{i-1}$$

• That is, total amortized cost is the *actual cost* of the operation plus the *change in potential*

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- potential method: assign potential Φ_i to data structure at time i. Amortized cost of ith operation is

$$\gamma_i = c_i + \Phi_i - \Phi_{i-1}$$

- That is, total amortized cost is the *actual cost* of the operation plus the *change in potential*
- We have:

$$\sum_{i=1}^{n} \gamma_{i} = \sum_{i=1}^{n} (c_{i} + \Phi_{i} - \Phi_{i-1}) = \Phi_{n} - \Phi_{0} + \sum_{i=1}^{n} c_{i}$$

$$felescopius$$

30 / 42

- suppose that the *actual cost* of each operation of an algorithm is c_i (which may be hard to track)
- potential method: assign potential Φ_i to data structure at time i. Amortized cost of ith operation is

$$\gamma_i = c_i + \Phi_i - \Phi_{i-1}$$

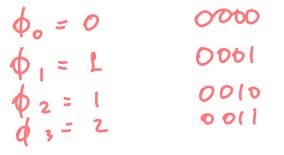
- That is, total amortized cost is the *actual cost* of the operation plus the *change in potential*
- We have: $\sum_{i=1}^{n} \gamma_i = \sum_{i=1}^{n} (c_i + \Phi_i - \Phi_{i-1}) = \Phi_n - \Phi_0 + \sum_{i=1}^{n} c_i$ • So if $\Phi_k - \Phi_0 \ge 0$ for all $k \ge 0$ (valid potential function) the total amortized cost is an upper bound on total cost.

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 $\Phi_i =$ number of bits with value 1 at step *i*



- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 $\Phi_i =$ number of bits with value 1 at step *i*

• $\Phi_0 = 0$ and $\Phi_i = \#$ of 1 bits of $i \ge 0$ (valid potential function) $\Rightarrow 0$ $\forall k$ $\phi_k \Rightarrow \phi_o = 0$ Valie

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 Φ_i = number of bits with value 1 at step *i*

Φ₀ = 0 and Φ_i = # of 1 bits of i ≥ 0 (valid potential function)
What is the amortized cost of the ith operation:

•
$$c_i = (\# \text{ bits } 0 \to 1) + (\# \text{ bits } 1 \to 0)$$
 cost

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 Φ_i = number of bits with value 1 at step *i*

Φ₀ = 0 and Φ_i = # of 1 bits of i ≥ 0 (valid potential function)
What is the amortized cost of the ith operation:

•
$$c_i = (\# \text{ bits } 0 \rightarrow 1) + (\# \text{ bits } 1 \rightarrow 0)$$

• $\Phi_i - \Phi_{i-1} = (\# \text{ bits } 0 \rightarrow 1) - (\# \text{ bits } 1 \rightarrow 0)$

potential

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 Φ_i = number of bits with value 1 at step *i*

Φ₀ = 0 and Φ_i = # of 1 bits of i ≥ 0 (valid potential function)
What is the amortized cost of the ith operation:

•
$$c_i = (\# \text{ bits } 0 \to 1) + (\# \text{ bits } 1 \to 0)$$

• $\Phi_i - \Phi_{i-1} = (\# \text{ bits } 0 \to 1) - (\# \text{ bits } 1 \to 0)$

potential

Amortized cost:

$$\gamma_i = c_i + \Phi_i - \Phi_{i-1} = 2 \times (\# \text{ bits } 0 \to 1)$$

38 / 42

- Input: A binary counter C initially set to zero
- **Output:** increment this counter up to *n* (a given integer)
- Is there a way to *assign potential function* to the *entire data structure* (i.e. the bits that we are incrementing)?
- Potential:

 Φ_i = number of bits with value 1 at step *i*

Φ₀ = 0 and Φ_i = # of 1 bits of i ≥ 0 (valid potential function)
What is the amortized cost of the ith operation:

•
$$c_i = (\# \text{ bits } 0 \to 1) + (\# \text{ bits } 1 \to 0)$$

• $\Phi_i - \Phi_{i-1} = (\# \text{ bits } 0 \to 1) - (\# \text{ bits } 1 \to 0)$
potential

Amortized cost:

$$\gamma_i = c_i + \Phi_i - \Phi_{i-1} = 2 \times (\# \text{ bits } 0 \rightarrow 1)$$

• Since each increment *only changes 1 bit from 0 to 1* each amortized cost is 2.

Example of the potential method

5 ci = Z ci + In-In valid $= 5 \left(c_i + \overline{\Phi}_i - \overline{\Phi}_{i+1} \right)$ = 5 x; = 2.n

Discussion of the potential method

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ 今 Q ○
41/42

Acknowledgements

- Lecture largely based on Jeff Erickson's notes (with exercises!) http://jeffe.cs.illinois.edu/teaching/algorithms/notes/ 09-amortize.pdf
- More exercises and another example using all methods can also be found at the [CLRS] book, chapter 17. (see useful resources page)