
09/05/2023 CS 466/666 Homework 1

Problem 1

(a) Design a data structure to support the following two operations for a dynamic multiset S of integers,

which allows duplicate values:

1. INSERT(S, x) inserts x into S

2. DELETE-LARGER-HALF(S) deletes the largest ⌈|S|/2⌉ elements from S

Show how to implement this data structure so that any sequence of m INSERT and DELETE-LARGER-

HALF operations runs in O(m) time. Your implementation should also include a way to output the

elements of S in O(|S|) time. You can assume that your initial multiset is empty.

Hint: to delete larger half, need to find the median. You can use the result that there is a linear time

algorithm for finding the median in an unordered array (if you don’t know this result, you should learn

about it - it is pretty cool).

(b) An ordered stack is a data structure that stores a sequence of items and supports the following operations:

1. ORDEREDPUSH(x) removes all items smaller than x from the beginning of the sequence and then

adds x to the beginning of the sequence.

2. POP() deletes and returns the first item in the sequence, or NULL if the sequence is empty.

Suppose we implement an ordered stack with a simple linked list, using the obvious ORDEREDPUSH

and POP algorithms. Prove that if we start with an empty data structure, the amortized cost of each

ORDEREDPUSH or POP operation is O(1).

Problem 2

In this problem we will work out some splaying counterexamples;

(a) Single rotations “don’t work” for splay trees. To show this, consider a degenerate n-node “linked-list

shaped” binary tree where each node’s right child is empty. Suppose that the (only) leaf is splayed to

the root by single rotations. Show the structure of the tree after this splay. Generalize this to argue that

there is a sequence of n/2 splays (each splay using only single rotations) that each take at least n/2 work.

(b) Now from the same starting tree, show the final structure after splaying the leaf with (zig-zig) double

rotations. Explain how this splay has made much more progress than single rotations in “improving” the

tree.

(c) Given the theorem about access time in splay trees, it is tempting to conjecture that splaying does not

create trees in which it would take a long time to find an item. Show this conjecture is false by showing

that for large enough n, it is possible to restructure any binary tree on n nodes into any other binary tree
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on n nodes by a sequence of splay requests. Conclude that it is possible to make a sequence of requests

that cause the splay tree to achieve any desired shape.

Hint: start by showing how you can use splay requests to make a specified node into a leaf, then recurse.

Problem 3

The simplest model for a random graph consists of n vertices, and tossing a fair coin for each pair {i, j})
to decide whether this edge should be present in the graph. Call this model G(n, 1/2). A triangle is a set of 3

vertices with an edge between each pair.

1. What is the expected number of triangles?

2. What is the variance?

3. Show that the number of triangles is concentrated around the expectation and give an expression for the

bound in the decay of probability.

Problem 4

In this problem, we are in the setting where given a set S (which is not known to us - and this set does not

have repeated elements), we only have access to S by querying a random element from S uniformly at random.

Thus, if we want to sample s elements from S, we will obtain a sequence of elements a1, . . . , as ∈ S where each

ak was drawn from S uniformly at random. Thus it could be the case where ai = aj for some i ̸= j.

1. Show that given n distinct numbers in [0, 1] it is impossible to estimate the value of the median within

say 1.1 multiplicative approximation factor with o(n) samples.

Hint: to show an impossibility result you show two different sets of n numbers that have very different

medians but which generate, with high probability, identical samples of size o(n).

2. Now calculate the number of samples needed (as a function of t) so that the following is true: with high

probability, the median of the sample has at least n/2− t numbers (from the given set of n numbers) less

than it and at least n/2− t numbers (from the given set of n numbers) more than it.

Problem 5

Consider again the experiment in which we toss m labeled balls at random into n labeled bins, and let the

random variable X be the number of empty bins. We have seen that E[X] = n ·
(
1− 1

n

)m
.

(a) By writing X =
∑

i Xi for suitable random variables Xi, show how to derive the following exact formula

for the variance of X:

V ar[X] = n ·
(
1− 1

n

)m

+ n(n− 1) ·
(
1− 2

n

)m

− n2 ·
(
1− 1

n

)2m

(b) What is the asymptotic value (as n → ∞) of V ar[X] in the cases m = n and m = n ln(n)?
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Hint: you may use the approximations (1−x/n)n ∼ e−x · (1−x2/2n) and (1−1/n)xn ∼ e−x · (1−x/2n)

(c) When throwing n balls into n bins, what is the expected number of bins with exactly one ball? Compute

an exact formula and its asymptotic approximation.

Problem 6

1. Let us consider the coupon collector problem: we toss m = n log n + cn balls into n bins, where c is a

constant, and we are interested in the probability that there is no empty bin. We saw in class that

Pr[some bin is empty] ≤ n ·
(
1− 1

n

)m

∼ n · 1

em/n
=

1

ec
.

Prove that

Pr[some bin is empty] = Ω

(
1

ec
− 1

2e2c

)
.

Hint: inclusion-exclusion

2. Consider the following variation of the coupon collector’s problem. Each box of cereal contains one of 2n

different coupons. The coupons are organized into n pairs, so that coupons 1 and 2 are a pair, coupons

3 and 4 are a pair, and so on. Once you obtain one coupon from every pair, you can obtain a prize.

Assuming that each coupon in each box is chosen independently and uniformly at random from the 2n

possibilities, what is the expected number of boxes you must buy before you can claim the prize?
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