Lecture 14 - Counting I Promise Problems, Unique-SAT

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- Unique-SAT (Valiant-Vazirani)
- Unique-SAT (Valiant-Vazirani)

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.

Unique-SAT (Valiant-Vazirani reduction)

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
- from CNF ϕ we will construct polynomially many CNFs

$$
\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}
$$

Unique-SAT (Valiant-Vazirani reduction)

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
- from CNF ϕ we will construct polynomially many CNFs $\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}$
- If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
- If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U}=\emptyset$

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
\rightarrow from CNF ϕ we will construct polynomially many CNFs $\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}$
- If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
- If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U}=\emptyset$
- Main idea:

1. $\phi \in$ SAT with n variables with $\sim 2^{k}$ satisfying assignments

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
- from CNF ϕ we will construct polynomially many CNFs $\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}$
- If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
- If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U}=\emptyset$
- Main idea:

1. $\phi \in$ SAT with n variables with $\sim 2^{k}$ satisfying assignments
2. let $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ be hash function picked from pairwise independent family

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
- from CNF ϕ we will construct polynomially many CNFs $\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}$
- If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
- If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U}=\emptyset$
- Main idea:

1. $\phi \in$ SAT with n variables with $\sim 2^{k}$ satisfying assignments
2. let $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ be hash function picked from pairwise independent family
3. Expect exactly one assignment $x \in\{0,1\}^{n}$ such that

$$
\phi(x)=1 \text { and } h(x)=0
$$

Unique-SAT

- Let \mathcal{U} be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in \mathcal{U}, then we will show that $\mathrm{NP}=\mathrm{RP}$.
- randomized reduction from SAT to \mathcal{U}
- from CNF ϕ we will construct polynomially many CNFs $\mathcal{F}:=\left\{\varphi_{0}, \ldots, \varphi_{m}\right\}$
- If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
- If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U}=\emptyset$
- Main idea:

1. $\phi \in$ SAT with n variables with $\sim 2^{k}$ satisfying assignments
2. let $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ be hash function picked from pairwise independent family
3. Expect exactly one assignment $x \in\{0,1\}^{n}$ such that

$$
\phi(x)=1 \text { and } h(x)=0
$$

4. Construct CNF ψ from ϕ and h which is satisfied precisely by the assignment above

Pairwise Independent Hash Family

Definition 1 (Pairwise Independent Hash Family)

A family \mathcal{H} of functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a pairwise independent family of hash functions if for every two different inputs $x, y \in\{0,1\}^{n}$ and every $a, b \in\{0,1\}^{m}$, we have

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=a \wedge h(y)=b]=\frac{1}{2^{2 m}}
$$

- When we pick h at random, the random variables $h(x)$ and $h(y)$ are independent and uniformly distributed.

Pairwise Independent Hash Family

Definition 1 (Pairwise Independent Hash Family)
A family \mathcal{H} of functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a pairwise independent family of hash functions if for every two different inputs $x, y \in\{0,1\}^{n}$ and every $a, b \in\{0,1\}^{m}$, we have

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=a \wedge h(y)=b]=\frac{1}{2^{2 m}}
$$

Example 2
The family
$\mathcal{H}:=\left\{h_{a, b}(x)=\left(a_{1} \cdot x+b_{1}, \ldots, a_{m} \cdot x+b_{m}\right) \mid a_{i} \in\{0,1\}^{n}, b_{i} \in\{0,1\}\right\}$
is a family of pairwise independent hash functions.

Unique Solution from Hashing

Lemma 3
If $T \subseteq\{0,1\}^{n}$ such that $2^{k} \leq|T|<2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ then

$$
\operatorname{Pr}_{h \in \mathcal{H}}[|\{x \in T \quad \mid h(x)=0\}|=1] \geq 1 / 8
$$

Unique Solution from Hashing

Lemma 3
If $T \subseteq\{0,1\}^{n}$ such that $2^{k} \leq|T|<2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ then

$$
\operatorname{Pr}_{h \in \mathcal{H}}[|\{x \in T \quad \mid h(x)=0\}|=1] \geq 1 / 8
$$

- Fix $x \in T$. Want to compute

$$
\underset{h}{\operatorname{Pr}}[h(x) \wedge \forall y \in T \backslash\{x\}, h(y) \neq 0]
$$

Unique Solution from Hashing

Lemma 3
If $T \subseteq\{0,1\}^{n}$ such that $2^{k} \leq|T|<2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ then

$$
\operatorname{Pr}_{h \in \mathcal{H}}[|\{x \in T \quad \mid h(x)=0\}|=1] \geq 1 / 8
$$

- Fix $x \in T$. Want to compute

$$
\underset{h}{\operatorname{Pr}}[h(x) \wedge \forall y \in T \backslash\{x\}, h(y) \neq 0]
$$

- Write

$$
\begin{aligned}
& \underset{h}{\operatorname{Pr}}[\forall y \in T \backslash\{x\}, h(y) \neq 0 \quad \mid h(x)=0] \\
& =1-\operatorname{Pr}[\exists y \in T \backslash\{x\} \text { s.t. } h(y)=0 \mid h(x)=0]
\end{aligned}
$$

Unique Solution from Hashing

- Union bound

$$
\begin{aligned}
& \operatorname{Pr}[\exists y \in T \backslash\{x\} \text { s.t. } h(y)=0 \mid h(x)=0] \\
& =\sum_{y \in T \backslash\{x\}} \operatorname{Pr}[h(y)=0 \mid h(x)=0] \\
& =\sum_{y \in T \backslash\{x\}} \operatorname{Pr}[h(y)=0]
\end{aligned}
$$

Construction of family of CNFs

Given a CNF ϕ, let S_{ϕ} be the set of satisfying assignments to ϕ.
Lemma 4
There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ
2. If $2^{k} \leq\left|S_{\phi}\right|<2^{k+1}$ then $\left|S_{\psi}\right|=1$ with probability $\geq 1 / 8$

Construction of family of CNFs

Lemma 4
There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ (always)
2. If $2^{k} \leq\left|S_{\phi}\right|<2^{k+1}$ then $\left|S_{\psi}\right|=1$ with probability $\geq 1 / 8$

- Pick random $a_{1}, \ldots, a_{k+2} \in\{0,1\}^{n}$ and $b_{1}, \ldots, b_{k+2} \in\{0,1\}$

Construction of family of CNFs

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ
2. If $2^{k} \leq\left|S_{\phi}\right|<2^{k+1}$ then $\left|S_{\psi}\right|=1$ with probability $\geq 1 / 8$

- Pick random $a_{1}, \ldots, a_{k+2} \in\{0,1\}^{n}$ and $b_{1}, \ldots, b_{k+2} \in\{0,1\}$
- Will construct small CNF ψ which is equivalent to

$$
\phi(x) \wedge\left(h_{a, b}(x)=0\right) \Leftrightarrow \phi(x) \wedge \bigwedge_{i \in[n]}\left(a_{i} \cdot x+b_{i}=0\right)
$$

Challenge: $\bigoplus \notin A C_{/ p o l y}^{0}$! How to write small CNF for $a_{i} \cdot x$?

Construction of family of CNFs

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ (always)
2. If $2^{k} \leq\left|S_{\phi}\right|<2^{k+1}$ then $\left|S_{\psi}\right|=1$ with probability $\geq 1 / 8$

- Pick random $a_{1}, \ldots, a_{k+2} \in\{0,1\}^{n}$ and $b_{1}, \ldots, b_{k+2} \in\{0,1\}$
- Will construct small CNF ψ which is equivalent to

$$
\phi(x) \wedge\left(h_{a, b}(x)=0\right) \Leftrightarrow \phi(x) \wedge \bigwedge_{i \in[n]}\left(a_{i} \cdot x+b_{i}=0\right)
$$

- Auxiliary variables to the rescue! Let y_{1}, \ldots, y_{n} new vars.

$$
a \cdot x \oplus b \equiv \bigwedge_{i=1}^{n-1}\left(y_{i}=a_{i} \wedge x_{i} \oplus y_{i-1}\right) \wedge\left(y_{n}=a_{n} \wedge x_{n} \oplus y_{n-1} \oplus b\right)
$$

Construction of family of CNFs

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ
2. If $2^{k} \leq\left|S_{\phi}\right|<2^{k+1}$ then $\left|S_{\psi}\right|=1$ with probability $\geq 1 / 8$

- Pick random $a_{1}, \ldots, a_{k+2} \in\{0,1\}^{n}$ and $b_{1}, \ldots, b_{k+2} \in\{0,1\}$
- Will construct small CNF ψ which is equivalent to

$$
\phi(x) \wedge\left(h_{a, b}(x)=0\right) \Leftrightarrow \phi(x) \wedge \bigwedge_{i \in[n]}\left(a_{i} \cdot x+b_{i}=0\right)
$$

- Auxiliary variables to the rescue! Let y_{1}, \ldots, y_{n} new vars.

$$
a \cdot x \oplus b \equiv \bigwedge_{i=1}^{n-1}\left(y_{i}=a_{i} \wedge x_{i} \oplus y_{i-1}\right) \wedge\left(y_{n}=a_{n} \wedge x_{n} \oplus y_{n-1} \oplus b\right)
$$

- all expressions constantly many vars \Rightarrow small CNF

Proof of Valiant-Vazirani

Theorem 5 (Valiant Vazirani 1986)
If there is poly-time algorithm which on input a CNF formula ϕ with $\left|S_{\phi}\right|=1$ finds the assignment, then $R P=N P$.

Proof of Valiant-Vazirani

Theorem 5 (Valiant Vazirani 1986)
If there is poly-time algorithm which on input a CNF formula ϕ with $\left|S_{\phi}\right|=1$ finds the assignment, then $R P=N P$.

- Algorithm: run the below procedure 10 times

1. On input ϕ use algorithm from Lemma 4 with parameters $0 \leq k \leq n$, constructing ψ_{k} for each k
2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas

Proof of Valiant-Vazirani

Theorem 5 (Valiant Vazirani 1986)
If there is poly-time algorithm which on input a CNF formula ϕ with $\left|S_{\phi}\right|=1$ finds the assignment, then $R P=N P$.

- Algorithm: run the below procedure 10 times

1. On input ϕ use algorithm from Lemma 4 with parameters $0 \leq k \leq n$, constructing ψ_{k} for each k
2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas

- If ϕ is unsatisfiable then procedure above will never accept

Proof of Valiant-Vazirani

Theorem 5 (Valiant Vazirani 1986)
If there is poly-time algorithm which on input a CNF formula ϕ with $\left|S_{\phi}\right|=1$ finds the assignment, then $R P=N P$.

- Algorithm: run the below procedure 10 times

1. On input ϕ use algorithm from Lemma 4 with parameters $0 \leq k \leq n$, constructing ψ_{k} for each k
2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas

- If ϕ is unsatisfiable then procedure above will never accept
- If ϕ is satisfiable, by lemma 4, each iteration of algorithm succeeds with probability $\geq 1 / 8$. Probability of success is $\geq 1-(7 / 8)^{10}>1 / 2$

References I

R Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Chapter 17
Cambridge University Press
Trevisan, Luca (2002)
Lecture notes
Lecture 7
See webpage

