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Unique-SAT
▶ Let U be the set of all satisfiable CNFs which have exactly

one satisfying assignment

▶ Today: if we had a poly-time algorithm to solve all instances
in U , then we will show that NP = RP.

▶ randomized reduction from SAT to U
▶ from CNF ϕ we will construct polynomially many CNFs

F := {φ0, . . . , φm}

▶ If ϕ is satisfiable, with high probability F ∩ U ̸= ∅
▶ If ϕ not satisfiable, then F ∩ U = ∅ (always)

▶ Main idea:
1. ϕ ∈ SAT with n variables with ∼ 2k satisfying assignments

2. let h : {0, 1}n → {0, 1}k be hash function picked from pairwise
independent family

3. Expect exactly one assignment x ∈ {0, 1}n such that

ϕ(x) = 1 and h(x) = 0

4. Construct CNF ψ from ϕ and h which is satisfied precisely by
the assignment above
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Pairwise Independent Hash Family
Definition 1 (Pairwise Independent Hash Family)
A family H of functions h : {0, 1}n → {0, 1}m is a pairwise
independent family of hash functions if for every two different
inputs x, y ∈ {0, 1}n and every a, b ∈ {0, 1}m, we have

Pr
h∈H

[h(x) = a ∧ h(y) = b] =
1

22m

▶ When we pick h at random, the random variables h(x) and
h(y) are independent and uniformly distributed.

Example 2
The family

H := {ha,b(x) = (a1·x+b1, . . . , am·x+bm) | ai ∈ {0, 1}n, bi ∈ {0, 1}}

is a family of pairwise independent hash functions.
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Unique Solution from Hashing
Lemma 3
If T ⊆ {0, 1}n such that 2k ≤ |T | < 2k+1 and H is a family of
pairwise independent hash functions h : {0, 1}n → {0, 1}k+2 then

Pr
h∈H

[|{x ∈ T | h(x) = 0}| = 1] ≥ 1/8

▶ Fix x ∈ T . Want to compute

Pr
h
[h(x) ∧ ∀y ∈ T \ {x}, h(y) ̸= 0]

▶ Write

Pr
h
[∀y ∈ T \ {x}, h(y) ̸= 0 | h(x) = 0]

= 1− Pr[∃y ∈ T \ {x} s.t. h(y) = 0 | h(x) = 0]
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Unique Solution from Hashing
▶ Union bound

Pr[∃y ∈ T \ {x} s.t. h(y) = 0 | h(x) = 0]

=
∑

y∈T\{x}

Pr[h(y) = 0 | h(x) = 0]

=
∑

y∈T\{x}

Pr[h(y) = 0]



Construction of family of CNFs
Given a CNF ϕ, let Sϕ be the set of satisfying assignments to ϕ.
Lemma 4
There is a (one-sided) poly-time PTM that on input a CNF
formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ (always)
2. If 2k ≤ |Sϕ| < 2k+1 then |Sψ| = 1 with probability ≥ 1/8

▶ Pick random a1, . . . , ak+2 ∈ {0, 1}n and b1, . . . , bk+2 ∈ {0, 1}
▶ Will construct small CNF ψ which is equivalent to

ϕ(x) ∧ (ha,b(x) = 0) ⇔ ϕ(x) ∧
∧
i∈[n]

(ai · x+ bi = 0)

▶ Auxiliary variables to the rescue! Let y1, . . . , yn new vars.

a ·x⊕ b ≡
n−1∧
i=1

(yi = ai∧xi⊕yi−1)∧ (yn = an∧xn⊕yn−1⊕ b)

▶ all expressions constantly many vars ⇒ small CNF
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Proof of Valiant-Vazirani
Theorem 5 (Valiant Vazirani 1986)
If there is poly-time algorithm which on input a CNF formula ϕ
with |Sϕ| = 1 finds the assignment, then RP = NP.

▶ Algorithm: run the below procedure 10 times
1. On input ϕ use algorithm from Lemma 4 with parameters

0 ≤ k ≤ n, constructing ψk for each k
2. Accept if our poly-time algorithm finds a satisfying assignment

to one of the formulas
▶ If ϕ is unsatisfiable then procedure above will never accept
▶ If ϕ is satisfiable, by lemma 4, each iteration of algorithm

succeeds with probability ≥ 1/8.
Probability of success is ≥ 1− (7/8)10 > 1/2
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