Lecture 14 - Counting I Promise Problems, Unique-SAT

Rafael Oliveira rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• Unique-SAT (Valiant-Vazirani)

• Unique-SAT (Valiant-Vazirani)

Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- ► Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.

Unique-SAT (Valiant-Vazirani reduction)

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- ► Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$

Unique-SAT (Valiant-Vazirani reduction)

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$
 - $\blacktriangleright \ \ \, \mbox{ If } \phi \ \mbox{is satisfiable, with high probability } \mathcal{F} \cap \mathcal{U} \neq \emptyset$
 - ▶ If ϕ not satisfiable, then $\mathcal{F} \cap \mathcal{U} = \emptyset$ (always)

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$
 - ▶ If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
 - $\blacktriangleright \ \ \mathsf{lf} \ \phi \ \mathsf{not} \ \mathsf{satisfiable, then} \ \mathcal{F} \cap \mathcal{U} = \emptyset \qquad \qquad (\mathsf{always})$

Main idea:

1. $\phi \in \mathsf{SAT}$ with n variables with $\sim 2^k$ satisfying assignments

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$
 - ▶ If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
 - $\blacktriangleright \ \ \mathsf{lf} \ \phi \ \, \mathsf{not} \ \, \mathsf{satisfiable, then} \ \, \mathcal{F} \cap \mathcal{U} = \emptyset \qquad \qquad (\mathsf{always})$

Main idea:

- 1. $\phi \in \mathsf{SAT}$ with n variables with $\sim 2^k$ satisfying assignments
- 2. let $h:\{0,1\}^n \to \{0,1\}^k$ be hash function picked from pairwise independent family

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$
 - ▶ If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
 - $\blacktriangleright \ \ \mathsf{lf} \ \phi \ \, \mathsf{not} \ \, \mathsf{satisfiable, then} \ \, \mathcal{F} \cap \mathcal{U} = \emptyset \qquad \qquad (\mathsf{always})$

Main idea:

- 1. $\phi \in \mathsf{SAT}$ with n variables with $\sim 2^k$ satisfying assignments
- 2. let $h:\{0,1\}^n \to \{0,1\}^k$ be hash function picked from pairwise independent family
- 3. Expect exactly one assignment $x \in \{0,1\}^n$ such that

$$\phi(x) = 1 \text{ and } h(x) = 0$$

- Let U be the set of all satisfiable CNFs which have exactly one satisfying assignment
- Today: if we had a poly-time algorithm to solve all instances in U, then we will show that NP = RP.
- \blacktriangleright randomized reduction from SAT to ${\cal U}$
 - ▶ from CNF ϕ we will construct polynomially many CNFs $\mathcal{F} := \{\varphi_0, \dots, \varphi_m\}$
 - ▶ If ϕ is satisfiable, with high probability $\mathcal{F} \cap \mathcal{U} \neq \emptyset$
 - $\blacktriangleright \text{ If } \phi \text{ not satisfiable, then } \mathcal{F} \cap \mathcal{U} = \emptyset$ (always)

Main idea:

- 1. $\phi \in \mathsf{SAT}$ with n variables with $\sim 2^k$ satisfying assignments
- 2. let $h:\{0,1\}^n \to \{0,1\}^k$ be hash function picked from pairwise independent family
- 3. Expect exactly one assignment $x \in \{0,1\}^n$ such that

$$\phi(x) = 1 \text{ and } h(x) = 0$$

4. Construct CNF ψ from ϕ and h which is satisfied precisely by the assignment above

Pairwise Independent Hash Family

Definition 1 (Pairwise Independent Hash Family)

A family \mathcal{H} of functions $h: \{0,1\}^n \to \{0,1\}^m$ is a pairwise independent family of hash functions if for every two different inputs $x, y \in \{0,1\}^n$ and every $a, b \in \{0,1\}^m$, we have

$$\Pr_{h \in \mathcal{H}}[h(x) = a \land h(y) = b] = \frac{1}{2^{2m}}$$

• When we pick h at random, the random variables h(x) and h(y) are independent and uniformly distributed.

Pairwise Independent Hash Family

Definition 1 (Pairwise Independent Hash Family)

A family \mathcal{H} of functions $h: \{0,1\}^n \to \{0,1\}^m$ is a pairwise independent family of hash functions if for every two different inputs $x, y \in \{0,1\}^n$ and every $a, b \in \{0,1\}^m$, we have

$$\Pr_{h \in \mathcal{H}}[h(x) = a \land h(y) = b] = \frac{1}{2^{2m}}$$

Example 2

The family

 $\mathcal{H} := \{ h_{a,b}(x) = (a_1 \cdot x + b_1, \dots, a_m \cdot x + b_m) \mid a_i \in \{0, 1\}^n, b_i \in \{0, 1\} \}$

is a family of pairwise independent hash functions.

Lemma 3 If $T \subseteq \{0,1\}^n$ such that $2^k \leq |T| < 2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h : \{0,1\}^n \to \{0,1\}^{k+2}$ then

$$\Pr_{h \in \mathcal{H}} \left[|\{x \in T \mid h(x) = 0\}| = 1 \right] \ge 1/8$$

Lemma 3 If $T \subseteq \{0,1\}^n$ such that $2^k \leq |T| < 2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h : \{0,1\}^n \to \{0,1\}^{k+2}$ then

$$\Pr_{h \in \mathcal{H}} \left[|\{x \in T \mid h(x) = 0\}| = 1 \right] \ge 1/8$$

Fix $x \in T$. Want to compute

$$\Pr_{h}[h(x) \land \forall y \in T \setminus \{x\}, \ h(y) \neq 0]$$

Lemma 3 If $T \subseteq \{0,1\}^n$ such that $2^k \leq |T| < 2^{k+1}$ and \mathcal{H} is a family of pairwise independent hash functions $h : \{0,1\}^n \to \{0,1\}^{k+2}$ then

$$\Pr_{h \in \mathcal{H}} \left[|\{x \in T \mid h(x) = 0\}| = 1 \right] \ge 1/8$$

Fix $x \in T$. Want to compute

$$\Pr_{h}[h(x) \land \forall y \in T \setminus \{x\}, \ h(y) \neq 0]$$

Write

$$\begin{split} &\Pr_h[\forall y \in T \setminus \{x\}, \ h(y) \neq 0 \ \mid h(x) = 0] \\ &= 1 - \Pr[\exists y \in T \setminus \{x\} \text{ s.t. } h(y) = 0 \ \mid \ h(x) = 0] \end{split}$$

Union bound

$$\begin{aligned} &\Pr[\exists y \in T \setminus \{x\} \text{ s.t. } h(y) = 0 \mid h(x) = 0] \\ &= \sum_{y \in T \setminus \{x\}} \Pr[h(y) = 0 \mid h(x) = 0] \\ &= \sum_{y \in T \setminus \{x\}} \Pr[h(y) = 0] \end{aligned}$$

Given a CNF $\phi,$ let S_{ϕ} be the set of satisfying assignments to $\phi.$ Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ (always)

2. If $2^k \leq |S_{\phi}| < 2^{k+1}$ then $|S_{\psi}| = 1$ with probability $\geq 1/8$

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

1. If ϕ is unsatisfiable then so is ψ (always)

2. If $2^k \leq |S_{\phi}| < 2^{k+1}$ then $|S_{\psi}| = 1$ with probability $\geq 1/8$

• Pick random $a_1, \ldots, a_{k+2} \in \{0, 1\}^n$ and $b_1, \ldots, b_{k+2} \in \{0, 1\}$

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

- 1. If ϕ is unsatisfiable then so is ψ (always)
- 2. If $2^k \leq |S_{\phi}| < 2^{k+1}$ then $|S_{\psi}| = 1$ with probability $\geq 1/8$
- ▶ Pick random $a_1, \ldots, a_{k+2} \in \{0, 1\}^n$ and $b_1, \ldots, b_{k+2} \in \{0, 1\}$ ▶ Will construct small CNF ψ which is equivalent to

$$\phi(x) \land (h_{a,b}(x) = 0) \Leftrightarrow \phi(x) \land \bigwedge_{i \in [n]} (a_i \cdot x + b_i = 0)$$

Challenge: $\bigoplus \notin AC_{/poly}^0$! How to write small CNF for $a_i \cdot x$?

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

- 1. If ϕ is unsatisfiable then so is ψ (always)
- 2. If $2^k \leq |S_{\phi}| < 2^{k+1}$ then $|S_{\psi}| = 1$ with probability $\geq 1/8$
- ▶ Pick random $a_1, \ldots, a_{k+2} \in \{0, 1\}^n$ and $b_1, \ldots, b_{k+2} \in \{0, 1\}$ ▶ Will construct small CNF ψ which is equivalent to

$$\phi(x) \land (h_{a,b}(x) = 0) \Leftrightarrow \phi(x) \land \bigwedge_{i \in [n]} (a_i \cdot x + b_i = 0)$$

• Auxiliary variables to the rescue! Let y_1, \ldots, y_n new vars.

$$a \cdot x \oplus b \equiv \bigwedge_{i=1}^{n-1} (y_i = a_i \wedge x_i \oplus y_{i-1}) \wedge (y_n = a_n \wedge x_n \oplus y_{n-1} \oplus b)$$

Lemma 4

There is a (one-sided) poly-time PTM that on input a CNF formula ϕ and integer k outputs a formula ψ such that

- 1. If ϕ is unsatisfiable then so is ψ (always)
- 2. If $2^k \leq |S_{\phi}| < 2^{k+1}$ then $|S_{\psi}| = 1$ with probability $\geq 1/8$
- ▶ Pick random $a_1, \ldots, a_{k+2} \in \{0, 1\}^n$ and $b_1, \ldots, b_{k+2} \in \{0, 1\}$ ▶ Will construct small CNF ψ which is equivalent to

$$\phi(x) \land (h_{a,b}(x) = 0) \Leftrightarrow \phi(x) \land \bigwedge_{i \in [n]} (a_i \cdot x + b_i = 0)$$

• Auxiliary variables to the rescue! Let y_1, \ldots, y_n new vars.

$$a \cdot x \oplus b \equiv \bigwedge_{i=1}^{n-1} (y_i = a_i \wedge x_i \oplus y_{i-1}) \wedge (y_n = a_n \wedge x_n \oplus y_{n-1} \oplus b)$$

• all expressions constantly many vars \Rightarrow small CNF

Theorem 5 (Valiant Vazirani 1986)

If there is poly-time algorithm which on input a CNF formula ϕ with $|S_{\phi}| = 1$ finds the assignment, then RP = NP.

Theorem 5 (Valiant Vazirani 1986)

If there is poly-time algorithm which on input a CNF formula ϕ with $|S_{\phi}| = 1$ finds the assignment, then RP = NP.

- Algorithm: run the below procedure 10 times
 - 1. On input ϕ use algorithm from Lemma 4 with parameters $0\leq k\leq n,$ constructing ψ_k for each k
 - 2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas

Theorem 5 (Valiant Vazirani 1986)

If there is poly-time algorithm which on input a CNF formula ϕ with $|S_{\phi}| = 1$ finds the assignment, then RP = NP.

- Algorithm: run the below procedure 10 times
 - 1. On input ϕ use algorithm from Lemma 4 with parameters $0 \leq k \leq n,$ constructing ψ_k for each k
 - 2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas

 \blacktriangleright If ϕ is unsatisfiable then procedure above will never accept

Theorem 5 (Valiant Vazirani 1986)

If there is poly-time algorithm which on input a CNF formula ϕ with $|S_{\phi}| = 1$ finds the assignment, then RP = NP.

- Algorithm: run the below procedure 10 times
 - 1. On input ϕ use algorithm from Lemma 4 with parameters $0 \leq k \leq n,$ constructing ψ_k for each k
 - 2. Accept if our poly-time algorithm finds a satisfying assignment to one of the formulas
- \blacktriangleright If ϕ is unsatisfiable then procedure above will never accept
- If φ is satisfiable, by lemma 4, each iteration of algorithm succeeds with probability ≥ 1/8. Probability of success is ≥ 1 − (7/8)¹⁰ > 1/2

References I

Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach Cambridge University Press

Chapter 17

Trevisan, Luca (2002)

Lecture notes

See webpage

Lecture 7