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Overview

Current (Non-Uniform) Circuit Lower Bounds

Natural Proofs



Example: AC0
/poly lower bounds

▶ Random restriction with parameter q ∈ [0, 1]:

ρ(xi) =


xi, with probability q

0, with probability (1− q)/2

1, with probability (1− q)/2

▶ Switching lemma (Furst-Saxe-Sipser 1981): if q = n2/3, then
for any DNF of polynomial size p(n), and δ = 1/poly(n), after
random restriction we get a CNF of size C with probability
(1− δ) where C is constant.

▶ ⊕
does not have poly-sized AC0

/poly circuits
▶ Proof by induction on depth. Reduce d to d− 1 by switching

bottom layer. Base case d = 2 easy.
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Current (Non-Uniform) Circuit Lower Bounds

Natural Proofs



Natural Properties
▶ Denote the set of all boolean functions on n bits as

Fn := {f : {0, 1}n → {0, 1}} ≃ {0, 1}2n

▶ A combinatorial property of boolean functions is a family of
subsets P := {Pn ⊆ Fn}n.

Definition 1 (Natural Property [RR 1997])
Let Γ be a complexity class. A combinatorial property P is
Γ-natural if there is a combinatorial property P∗ ⊂ P such that

1. Constructive: function P∗
n(f) computable in Γ

2. Large: |P∗
n|

|Fn|
≥ 1

2O(n)
.

▶ If Γ = P then we simply say that P is natural.
▶ P∗ is called core combinatorial property of P
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Natural Proofs
Definition 2 (Natural Proofs [RR 1997])
Let Γ and Λ be complexity classes (Λ non-uniform). A
combinatorial property P is a Γ-natural proof for Λ if

1. P is Γ-natural
2. Useful: for any sequence of functions f ∈ P , we have f ̸∈ Λ

▶ Standard lower bound argument for Λ:
1. Define combinatorial property P
2. Prove P useful against Λ
3. Construct family of functions f = {fn} and prove f ∈ P

▶ A natural lower bound for Λ is a standard lower bound
argument which uses a natural property P
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Example



OWFs against circuits
Definition 3
A string function f : {0, 1}∗ → {0, 1}∗ is a one-way function
against SIZE(s) if:

1. Easy to compute: f is poly-time computable
2. Hard to invert: for every circuit family C ∈ SIZE(s)

Pr
x∈{0,1}n

[Cn(fn(x)) ∈ f−1
n (x)] < 1/s(n)

Theorem 4 (HILL 1999)
If there is a OWF against SIZE(s), then there is a PRG G of
stretch ℓ(n) = 2n against SIZE(s). That is,
Gn : {0, 1}n → {0, 1}2n such that for all C ∈ SIZE(s)

|Pr[Cn(G(Un)) = 1]− Pr[Cn(U2n) = 1]| < 1/s(n)
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Natural Proof Theorem
Theorem 5 (Natural Proofs [RR 1997])
If there is ε > 0 and a OWF against SIZE(2nε

), then there is no
natural proof for P/poly.

▶ Idea: natural property P can efficiently distinguish between
pseudorandom functions from truly random functions

▶ But crypto assumption implies existence of PRGs
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Proof of Natural Proof Theorem
▶ From Theorem 9, let G be our PRG with stretch ℓ(k) = 2k.

Think of Gk : {0, 1}k → {0, 1}k × {0, 1}k

Gk(x) = (y0, y1) =: (Gk0(x), Gk1(x))

▶ From G, construct a pseudorandom set of functions in Fn

▶ Construction (board): let n = kα for some α > 0 (TBD later).

F : {0, 1}k → {0, 1}2n ≃ Fn

such that fz := F (z) yields function in Fn

▶ Given z ∈ {0, 1}k and x ∈ {0, 1}n, can compute fz(x) in
n · poly(k) time

{fz(k)} ∈ P/poly
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Proof of Natural Proof Theorem
▶ If P is a natural proof for P/poly, then:

1. Useful: for family z := {z(k)}k, family of functions
f := {fz} ̸∈ P/poly

2. Constructive: fz(k) ∈ Pn can be computed in poly-time
3. Large: |Pn|

|Fn|
≥ 1/2O(n)

▶ Above and Proposition 2 from Lecture 6 imply that there is
circuit C ∈ SIZE(N c) = SIZE(2ckα

) such that

|Pr[C(F (Uk)) = 1]− Pr[C(UN ) = 1]| ≥ 1/2O(n)
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Conclusion
▶ To prove circuit lower bounds (bypassing issue of OWFs) we

must either
▶ violate largeness: find property specific to few hard functions

(not by random functions)
▶ violate constructivity: identify feature of hard functions that

cannot be computed efficiently

▶ Are there examples of non-natural proofs?
▶ Geometric Complexity Theory [Mulmuley Sohoni 2001]

Symmetries of Determinant and Permanent characterize them!

Violates largeness, approach is highly sophisticated.
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