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Overview

@ Current (Non-Uniform) Circuit Lower Bounds

@ Natural Proofs
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lower bounds

Example: ACY
P /poly
Random restriction with parameter ¢ € [0, 1]:

xi, with probability ¢
p(z;) = ¢ 0, with probability (1 —¢)/2
1, with probability (1 — ¢)/2

Switching lemma (Furst-Saxe-Sipser 1981): if ¢ = n?/3, then
for any DNF of polynomial size p(n), and § = 1/poly(n), after
random restriction we get a CNF of size C' with probability

(1 —6) where C'is constant.

@ does not have poly-sized AC)  circuits

Proof by induction on depth. Reduce d to d — 1 by switching
bottom layer. Base case d = 2 easy.
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Natural Properties

» Denote the set of all boolean functions on n bits as

Fo=A{f:{0,1}" - {0,1}} ~ {0,1}*"
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» Denote the set of all boolean functions on n bits as
Fo=A{f:{0,1}" = {0,1}} ~ {0,1}*"

> A combinatorial property of boolean functions is a family of
subsets P := {P,, C F}n.
Can think of P, as function from F, to {0,1}.
Pu(f)=1< f€P,.

P, :{0,1}*" — {0,1}




Natural Properties

» Denote the set of all boolean functions on n bits as
Fp={f:{0,1}" = {0,1}} ~ {0,1}*"

> A combinatorial property of boolean functions is a family of
subsets P := {P,, C F}n.

Definition 1 (Natural Property [RR 1997])

Let I" be a complexity class. A combinatorial property P is

["-natural if there is a combinatorial property P* C P such that
1. Constructive: function P;i(f) computable in T’

P 1

71 P

2. Large:




Natural Properties

» Denote the set of all boolean functions on n bits as
Fp={f:{0,1}" = {0,1}} ~ {0,1}*"

> A combinatorial property of boolean functions is a family of
subsets P := {P,, C F}n.

Definition 1 (Natural Property [RR 1997])

Let I" be a complexity class. A combinatorial property P is

["-natural if there is a combinatorial property P* C P such that
1. Constructive: function P;i(f) computable in T’

P 1

71 P

2. Large:

> If I' = P then we simply say that P is natural.




Natural Properties

» Denote the set of all boolean functions on n bits as
Fp={f:{0,1}" = {0,1}} ~ {0,1}*"

> A combinatorial property of boolean functions is a family of
subsets P := {P,, C F}n.

Definition 1 (Natural Property [RR 1997])

Let I" be a complexity class. A combinatorial property P is

["-natural if there is a combinatorial property P* C P such that
1. Constructive: function P;i(f) computable in T’

P 1

71 P

2. Large:

> If I' = P then we simply say that P is natural.

> P* is called core combinatorial property of P




Natural Proofs

Definition 2 (Natural Proofs [RR 1997])

Let I and A be complexity classes (A non-uniform). A
combinatorial property P is a ['-natural proof for A if

1. P is I'-natural
2. Useful: for any sequence of functions f € P, we have f & A
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» combinatorial property useful against A if any function having
property is not in A
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Natural Proofs

Definition 2 (Natural Proofs [RR 1997])

Let I and A be complexity classes (A non-uniform). A
combinatorial property P is a ['-natural proof for A if

1. P is I'-natural
2. Useful: for any sequence of functions f € P, we have f & A

» Standard lower bound argument for A:
1. Define combinatorial property P
2. Prove P useful against A
3. Construct family of functions f = {f,} and prove f € P
» A natural lower bound for A is a standard lower bound
argument which uses a natural property P
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OWFs against circuits

Definition 3
A string function f: {0,1}* — {0,1}* is a one-way function
against SIZE(s) if:

1. Easy to compute: f is poly-time computable

2. Hard to invert: for every circuit family C' € SIZE(s)

Pr [C(fa(2)) € fr ' (2)] < 1/s(n)

ze{0,1}m
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against SIZE(s) if:
1. Easy to compute: f is poly-time computable
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Theorem 4 (HILL 1999)

If there is a OWF against SIZE(s), then there is a PRG G of
stretch £(n) = 2n against SIZE(s). That is,
Gy : {0,1}™ — {0, 1}2" such that for all C' € SIZE(s)

|Pr[C(G(U,)) = 1] — Pr[Ch(Uapn) = 1]| < 1/s(n)




Natural Proof Theorem

Theorem 5 (Natural Proofs [RR 1997])

If there is € > 0 and a OWF against SIZE(2""), then there is no
natural proof for Ppopy.
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Theorem 5 (Natural Proofs [RR 1997])

If there is € > 0 and a OWF against SIZE(2""), then there is no
natural proof for Ppopy.

» General theorem deals with I" and A.




Natural Proof Theorem

Theorem 5 (Natural Proofs [RR 1997])
If there is € > 0 and a OWF against SIZE(2""), then there is no
natural proof for Ppopy.
> Idea: natural property P can efficiently distinguish between
pseudorandom functions from truly random functions

» But crypto assumption implies existence of PRGs




Proof of Natural Proof Theorem

» From Theorem 9, let G be our PRG with stretch ¢(k) = 2k.
Think of Gy, : {0, 1}* — {0,1}* x {0,1}*

Gr(z) = (yo,y1) = (Gro(2), Gr1())
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From Theorem 9, let G be our PRG with stretch ¢(k) = 2k.
Think of Gy, : {0, 1}* — {0,1}* x {0,1}*

From G, construct a pseudorandom set of functions in F,,
Construction (board): let n = k for some o > 0 (TBD later).

F:{0,1}* = {0,1}*" ~ F,

such that f, := F(z) yields function in F,

Given z € {0,1}* and x € {0,1}", can compute f.(z) in
n - poly(k) time

{fz(k)} € P/poly
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1. Useful: for family z := {2(®)}, family of functions
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[Fal




Proof of Natural Proof Theorem

> If P is a natural proof for P, then:

1. Useful: for family z := {2(®)}, family of functions
f = {fZ} g P/poly

2. Constructive: f,u) € P, can be computed in poly-time

|Pn| o
3. Large: >1/20M)
[Fal

Above and Proposition 2 from Lecture 6 imply that there is
circuit C' € SIZE(N®) = SIZE(2°*") such that

[Pr[C(F(Uy)) = 1] = Pr[C(Un) = 1] > 1/2°0)




Conclusion

» To prove circuit lower bounds (bypassing issue of OWFs) we
must either
violate largeness: find property specific to few hard functions
(not by random functions)
violate constructivity: identify feature of hard functions that
cannot be computed efficiently




Conclusion

» To prove circuit lower bounds (bypassing issue of OWFs) we
must either

violate largeness: find property specific to few hard functions
(not by random functions)

violate constructivity: identify feature of hard functions that
cannot be computed efficiently

P Are there examples of non-natural proofs?
Geometric Complexity Theory [Mulmuley Sohoni 2001]

Symmetries of Determinant and Permanent characterize them!

Violates largeness, approach is highly sophisticated.
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