Lecture 13 - Natural Proofs

Rafael Oliveira rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• Current (Non-Uniform) Circuit Lower Bounds

• Natural Proofs

• Random restriction with parameter $q \in [0, 1]$:

$$\rho(x_i) = \begin{cases} x_i, \text{ with probability } q \\ 0, \text{ with probability } (1-q)/2 \\ 1, \text{ with probability } (1-q)/2 \end{cases}$$

• Random restriction with parameter $q \in [0, 1]$:

 $\rho(x_i) = \begin{cases} x_i, \text{ with probability } q \\ 0, \text{ with probability } (1-q)/2 \\ 1, \text{ with probability } (1-q)/2 \end{cases}$

Switching lemma (Furst-Saxe-Sipser 1981): if q = n^{2/3}, then for any DNF of polynomial size p(n), and δ = 1/poly(n), after random restriction we get a CNF of size C with probability (1 − δ) where C is constant.

• Random restriction with parameter $q \in [0, 1]$:

 $\rho(x_i) = \begin{cases} x_i, \text{ with probability } q \\ 0, \text{ with probability } (1-q)/2 \\ 1, \text{ with probability } (1-q)/2 \end{cases}$

- Switching lemma (Furst-Saxe-Sipser 1981): if q = n^{2/3}, then for any DNF of polynomial size p(n), and δ = 1/poly(n), after random restriction we get a CNF of size C with probability (1 − δ) where C is constant.
- \bigoplus does not have poly-sized $AC^0_{\text{/poly}}$ circuits

• Random restriction with parameter $q \in [0, 1]$:

 $\rho(x_i) = \begin{cases} x_i, \text{ with probability } q \\ 0, \text{ with probability } (1-q)/2 \\ 1, \text{ with probability } (1-q)/2 \end{cases}$

- Switching lemma (Furst-Saxe-Sipser 1981): if q = n^{2/3}, then for any DNF of polynomial size p(n), and δ = 1/poly(n), after random restriction we get a CNF of size C with probability (1 − δ) where C is constant.
- \bigoplus does not have poly-sized $AC^0_{/poly}$ circuits
- ▶ Proof by induction on depth. Reduce d to d − 1 by switching bottom layer. Base case d = 2 easy.

• Current (Non-Uniform) Circuit Lower Bounds

• Natural Proofs

 \blacktriangleright Denote the set of all boolean functions on n bits as

$$\mathcal{F}_n := \{f : \{0,1\}^n \to \{0,1\}\} \simeq \{0,1\}^{2^n}$$

 \blacktriangleright Denote the set of all boolean functions on n bits as

$$\mathcal{F}_n := \{f : \{0,1\}^n \to \{0,1\}\} \simeq \{0,1\}^{2^n}$$

A combinatorial property of boolean functions is a family of subsets P := {P_n ⊆ F_n}_n.
Can think of P_n as function from F_n to {0, 1}.

n think of
$$\mathcal{P}_n$$
 as function from \mathcal{F}_n to $\{0,1\}$.
 $\mathcal{P}_n(f) = 1 \Leftrightarrow f \in \mathcal{P}_n$.

$$\mathcal{P}_n: \{0,1\}^{2^n} \to \{0,1\}$$

 \blacktriangleright Denote the set of all boolean functions on n bits as

$$\mathcal{F}_n := \{f : \{0,1\}^n \to \{0,1\}\} \simeq \{0,1\}^{2^n}$$

A combinatorial property of boolean functions is a family of subsets P := {P_n ⊆ F_n}_n.

Definition 1 (Natural Property [RR 1997])

Let Γ be a complexity class. A combinatorial property \mathcal{P} is Γ -natural if there is a combinatorial property $\mathcal{P}^* \subset \mathcal{P}$ such that

1. Constructive: function $\mathcal{P}_n^*(f)$ computable in Γ

2. Large:
$$\frac{|\mathcal{P}_n^*|}{|\mathcal{F}_n|} \ge \frac{1}{2^{O(n)}}.$$

 \blacktriangleright Denote the set of all boolean functions on n bits as

$$\mathcal{F}_n := \{f : \{0,1\}^n \to \{0,1\}\} \simeq \{0,1\}^{2^n}$$

A combinatorial property of boolean functions is a family of subsets P := {P_n ⊆ F_n}_n.

Definition 1 (Natural Property [RR 1997])

Let Γ be a complexity class. A combinatorial property \mathcal{P} is Γ -natural if there is a combinatorial property $\mathcal{P}^* \subset \mathcal{P}$ such that

1. Constructive: function $\mathcal{P}_n^*(f)$ computable in Γ

2. Large:
$$\frac{|\mathcal{P}_n^*|}{|\mathcal{F}_n|} \ge \frac{1}{2^{O(n)}}.$$

• If $\Gamma = \mathsf{P}$ then we simply say that \mathcal{P} is natural.

 \blacktriangleright Denote the set of all boolean functions on n bits as

$$\mathcal{F}_n := \{f : \{0,1\}^n \to \{0,1\}\} \simeq \{0,1\}^{2^n}$$

A combinatorial property of boolean functions is a family of subsets P := {P_n ⊆ F_n}_n.

Definition 1 (Natural Property [RR 1997])

Let Γ be a complexity class. A combinatorial property \mathcal{P} is Γ -natural if there is a combinatorial property $\mathcal{P}^* \subset \mathcal{P}$ such that

1. Constructive: function $\mathcal{P}_n^*(f)$ computable in Γ

2. Large:
$$\frac{|\mathcal{P}_n^*|}{|\mathcal{F}_n|} \ge \frac{1}{2^{O(n)}}.$$

• If $\Gamma = \mathsf{P}$ then we simply say that \mathcal{P} is natural.

• \mathcal{P}^* is called <u>core combinatorial property</u> of \mathcal{P}

Definition 2 (Natural Proofs [RR 1997])

- 1. ${\mathcal P}$ is $\Gamma\text{-natural}$
- 2. Useful: for any sequence of functions $f\in \mathcal{P},$ we have $f\not\in \Lambda$

Definition 2 (Natural Proofs [RR 1997])

- 1. ${\mathcal P}$ is $\Gamma\text{-natural}$
- 2. Useful: for any sequence of functions $f\in \mathcal{P},$ we have $f\not\in \Lambda$
- \blacktriangleright combinatorial property useful against Λ if any function having property is not in Λ

Definition 2 (Natural Proofs [RR 1997])

- 1. ${\mathcal P}$ is $\Gamma\text{-natural}$
- 2. Useful: for any sequence of functions $f\in \mathcal{P},$ we have $f\not\in \Lambda$
- Standard lower bound argument for Λ :
 - 1. Define combinatorial property $\ensuremath{\mathcal{P}}$
 - 2. Prove ${\mathcal P}$ useful against Λ
 - 3. Construct family of functions $f = \{f_n\}$ and prove $f \in \mathcal{P}$

Definition 2 (Natural Proofs [RR 1997])

- 1. ${\mathcal P}$ is $\Gamma\text{-natural}$
- 2. Useful: for any sequence of functions $f \in \mathcal{P}$, we have $f \notin \Lambda$
- Standard lower bound argument for Λ :
 - 1. Define combinatorial property $\ensuremath{\mathcal{P}}$
 - 2. Prove ${\mathcal P}$ useful against Λ
 - 3. Construct family of functions $f = \{f_n\}$ and prove $f \in \mathcal{P}$
- ► A natural lower bound for Λ is a standard lower bound argument which uses a natural property P

OWFs against circuits

Definition 3

A string function $f:\{0,1\}^*\to \{0,1\}^*$ is a one-way function against ${\sf SIZE}(s)$ if:

- 1. Easy to compute: f is poly-time computable
- 2. Hard to invert: for every circuit family $C \in SIZE(s)$

$$\Pr_{x \in \{0,1\}^n} [C_n(f_n(x)) \in f_n^{-1}(x)] < 1/s(n)$$

OWFs against circuits

Definition 3

A string function $f:\{0,1\}^*\to \{0,1\}^*$ is a one-way function against ${\sf SIZE}(s)$ if:

- 1. Easy to compute: f is poly-time computable
- 2. Hard to invert: for every circuit family $C \in SIZE(s)$

$$\Pr_{x \in \{0,1\}^n} [C_n(f_n(x)) \in f_n^{-1}(x)] < 1/s(n)$$

Theorem 4 (HILL 1999)

If there is a OWF against SIZE(s), then there is a PRG G of stretch $\ell(n) = 2n$ against SIZE(s). That is, $G_n : \{0,1\}^n \to \{0,1\}^{2n}$ such that for all $C \in SIZE(s)$

 $|\Pr[C_n(G(U_n)) = 1] - \Pr[C_n(U_{2n}) = 1]| < 1/s(n)$

Natural Proof Theorem

Theorem 5 (Natural Proofs [RR 1997]) If there is $\varepsilon > 0$ and a OWF against $SIZE(2^{n^{\varepsilon}})$, then there is no natural proof for $P_{/poly}$.

Natural Proof Theorem

Theorem 5 (Natural Proofs [**RR 1997**]) If there is $\varepsilon > 0$ and a OWF against $SIZE(2^{n^{\varepsilon}})$, then there is no natural proof for $P_{/poly}$.

• General theorem deals with Γ and Λ .

Natural Proof Theorem

Theorem 5 (Natural Proofs [**RR 1997**]) If there is $\varepsilon > 0$ and a OWF against $SIZE(2^{n^{\varepsilon}})$, then there is no natural proof for $P_{/poly}$.

- ► Idea: natural property \mathcal{P} can efficiently distinguish between pseudorandom functions from truly random functions
- But crypto assumption implies existence of PRGs

From Theorem 9, let G be our PRG with stretch $\ell(k) = 2k$. Think of $G_k : \{0,1\}^k \to \{0,1\}^k \times \{0,1\}^k$

$$G_k(x) = (y_0, y_1) =: (G_{k0}(x), G_{k1}(x))$$

- From Theorem 9, let G be our PRG with stretch $\ell(k) = 2k$. Think of $G_k : \{0,1\}^k \to \{0,1\}^k \times \{0,1\}^k$
- From G, construct a pseudorandom set of functions in \mathcal{F}_n
- Construction (board): let $n = k^{\alpha}$ for some $\alpha > 0$ (TBD later).

$$F: \{0,1\}^k \to \{0,1\}^{2^n} \simeq \mathcal{F}_n$$

such that $f_z := F(z)$ yields function in \mathcal{F}_n

- From Theorem 9, let G be our PRG with stretch $\ell(k) = 2k$. Think of $G_k : \{0,1\}^k \to \{0,1\}^k \times \{0,1\}^k$
- From G, construct a pseudorandom set of functions in \mathcal{F}_n
- Construction (board): let $n = k^{\alpha}$ for some $\alpha > 0$ (TBD later).

$$F: \{0,1\}^k \to \{0,1\}^{2^n} \simeq \mathcal{F}_n$$

such that $f_z := F(z)$ yields function in \mathcal{F}_n

• Given $z \in \{0,1\}^k$ and $x \in \{0,1\}^n$, can compute $f_z(x)$ in $n \cdot \text{poly}(k)$ time

$$\{f_{z^{(k)}}\} \in \mathsf{P}_{/poly}$$

- If \mathcal{P} is a natural proof for $\mathsf{P}_{/poly}$, then:
 - 1. Useful: for family $z := \{z^{(k)}\}_k$, family of functions $f := \{f_z\} \notin \mathsf{P}_{/poly}$
 - 2. Constructive: $f_{z^{(k)}} \in \mathcal{P}_n$ can be computed in poly-time
 - 3. Large: $\frac{|\mathcal{P}_n|}{|\mathcal{F}_n|} \ge 1/2^{O(n)}$

- If \mathcal{P} is a natural proof for $\mathsf{P}_{/poly}$, then:
 - 1. Useful: for family $z := \{z^{(k)}\}_k$, family of functions $f := \{f_z\} \notin \mathsf{P}_{/poly}$
 - 2. Constructive: $f_{z^{(k)}} \in \mathcal{P}_n$ can be computed in poly-time
 - 3. Large: $\frac{|\mathcal{P}_n|}{|\mathcal{F}_n|} \ge 1/2^{O(n)}$
 - ▶ Above and Proposition 2 from Lecture 6 imply that there is circuit $C \in SIZE(N^c) = SIZE(2^{ck^{\alpha}})$ such that

$$|\Pr[C(F(U_k)) = 1] - \Pr[C(U_N) = 1]| \ge 1/2^{O(n)}$$

Conclusion

- To prove circuit lower bounds (bypassing issue of OWFs) we must either
 - violate largeness: find property specific to few hard functions (not by random functions)
 - violate constructivity: identify feature of hard functions that cannot be computed efficiently

Conclusion

- To prove circuit lower bounds (bypassing issue of OWFs) we must either
 - violate largeness: find property specific to few hard functions (not by random functions)
 - violate constructivity: identify feature of hard functions that cannot be computed efficiently
- Are there examples of non-natural proofs?
 - Geometric Complexity Theory [Mulmuley Sohoni 2001]

Symmetries of Determinant and Permanent characterize them!

Violates largeness, approach is highly sophisticated.

References I

Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach Cambridge University Press

Chapters 9, 23

Razborov, A. and Rudich, S. (1997)

Natural Proofs

Journal of Computer and System Sciences