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Overview

@ Nisan-Wigderson (NW) Generators




Pseudorandom Generators

Definition 1 (Pseudorandom Distributions)
A distribution R over {0,1}" is (s,¢e)-pseudorandom if for every
circuit C such that S(C) <s

IPr[C(R) = 1] — Pr[C(Up,) = 1]] < ¢

where U, is the uniform distribution over {0,1}™.




Pseudorandom Generators

Definition 1 (Pseudorandom Distributions)
A distribution R over {0,1}" is (s,¢e)-pseudorandom if for every
circuit C such that S(C) <s

|IPr[C(R) =1] = Pr[C(Up,) =1]| <e
where U, is the uniform distribution over {0,1}™.

> We say that G : {0,1}* — {0,1}™ is (s, )-pseudorandom if
the distribution G(Uy) is (s, e)-pseudorandom.




Constructing PRGs

P It seems to be very hard to construct PRGs unconditionally

» Today: one can use hard boolean functions to construct PRGs
> Idea:

1. unpredictability equivalent to pseudorandomness ([Yao 1982])
2. a hard function should be hard to predict




Nisan-Wigderson PRG

Definition 2 (Average-Case Hardness)

Given f:{0,1}" — {0,1}, its average-case hardness, denoted by
H(f), is the smallest s € N such that

VC circuit s.t. S(C) <s= I?vr[C(a:) =f(x)] <1/2+1/s
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Definition 2 (Average-Case Hardness)

Given f:{0,1}" — {0,1}, its average-case hardness, denoted by
H(f), is the smallest s € N such that

VC circuit s.t. S(C) <s= Iir[C(a:) =f(x)] <1/2+1/s

Theorem 3 (Special case of [NW 1994])

If there is L € E and § > 0 such that for all sufficiently large n,
H(L,) > 2°", then there is constant ¢ > 0 and family of PRGs
G {0,1}¢108™ 5 £0,13™ which are computable in poly(m)
time and are (2m, 1/8)-pseudorandom.

» In particular, the above implies P = BPP.




Combinatorial designs

Definition 4 (Combinatorial designs)
Given integers t > £ > d > 0, the family {Si,..., S} of subsets
of [t] is a (t,¢,d)-design if

1. |S;| = ¢ for all i € [m]

2. 18N S| <dforallisj




Combinatorial designs

Definition 4 (Combinatorial designs)
Given integers t > £ > d > 0, the family {Si,..., S} of subsets
of [t] is a (t,¢,d)-design if

1. |S;| = ¢ for all i € [m]

2. 18N S| <dforallisj

Proposition 5

For every £ € N* and v € (0,1), there ist = O(y~1{) such that a
(t,€,~v()-design {S1,...,Sm}, where m := 27, can be constructed
in O(2! - tm?) time.




NW generators: construction

> Notation: if z € {0,1}* and S C [t], let 25 € {0, 1}!°] be the
string obtained by selecting the bits of .S (in order) from z

Definition 6 (NW generators)

For a boolean function f : {0,1}* — {0,1} and a design
S :={S51,...,Sn} over [t], the NW-generator is given by

Nijs(:C) = fi(z)o-- o fr(z)

where f;(z) := f(zs,)




Proof of Pseudorandomness

Follows from the following lemma:

Lemma 7

Let t,¢,~ as in Proposition 5 and m := 27¢. If f : {0,1}* — {0,1}
and § :={S1,...,Sn} be a (t,¢,logm)-design over [t].

If D:{0,1}"™ — {0,1} is s.t.

| Pr[D(r) = 1] = Pr[D(NWys(x)) =1]| > €

T

then there is a circuit C' with S(C) = O(m?) s.t.

| Pr[D(C(x)) = f(2)] = 1/2] > e/m.




Proof of Pseudorandomness

Follows from the following lemma:

Lemma 7

Let t,¢,~ as in Proposition 5 and m := 27¢. If f : {0,1}* — {0,1}
and § :={S1,...,Sn} be a (t,¢,logm)-design over [t].

If D:{0,1}"™ — {0,1} is s.t.

| Pr[D(r) = 1] = Pr[D(NWys(x)) =1]| > €

T

then there is a circuit C with S(C) = O(m?) s.t.

| Pr[D(C(x)) = f(2)] = 1/2] > e/m.

» Above lemma shows that a distinguisher for the generator
yields a distinguisher for f




Proof of Lemma 7

Main idea: if D distinguishes NW; s from uniform, then can find
a bit of output of NW; s where we can notice this difference.
From this bit, we can non-trivially predict f.

Main tool: hybrid argument.
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Proof of Lemma 7

Main idea: if D distinguishes NW; s from uniform, then can find
a bit of output of NW; s where we can notice this difference.
From this bit, we can non-trivially predict f.

Main tool: hybrid argument.

Define distributions Hy, ..., Hy, over {0,1}" as follows:
» Sample u ~ U, and v ~ NWy s(Uy)
> H; given by v 0 U\
» Hy=U, and H,, = NW;s(Uy)

By hypothesis of lemma, there is by € {0, 1} s.t.

I?Cr[D’(NWf,S(x)) =1]— Prr[D’(r) =1]>¢

where D'(z) = by & D(x).




Proof of Lemma 7
» Note
e < Pr[D'(NWgs(z)) =1] — I;r[D'(r) =1]
D'(Hy,) = 1] — Pr[D'(Ho) = 1]
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» There is i € [m] such that
PT[D/(HI) = 1] — PI‘[D,(HIL',l) = 1] > 5/77’L

> Assume S; = [¢] and let {0,1}* = {0,1}¢ x {0,1}'* s.t.
z=(y,2)




Proof of Lemma 7
» Note
e < f;r[D/(NWﬁg(x)) =1]— lir[D’(r) =1]

= Pr[D/(H,,) = 1] — Pr[D'(Hp) = 1]

=Y (Pr[D'(H;) = 1] = Pr[D'(H;-1) = 1])
i=1
» There is i € [m] such that

PT[D/(HI) = 1] — PI‘[D,(HIL',l) = 1] > 5/77’L

> Assume S; = [¢] and let {0,1}* = {0,1}¢ x {0,1}'* s.t.
= (y,2)
> Above inequality = good distinguisher for f : {0,1}¢ — {0,1}




Distinguisher for f
Consider following algorithm A:
> Input: y € {0,1}
» QOutput: b e {0,1} (guess for f(y))
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Else, output 1 — ;.
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Claim: Pr,..[A(y) = f(y)] > 1/24+¢/m

Same proof as last lecture's.




Distinguisher for f
Consider following algorithm A:
> Input: y € {0,1}
» QOutput: b e {0,1} (guess for f(y))
1. pick random z € {0,1}=* and r € {0, 1} ~i*!
2. compute fi(x),..., fi—1(x) (z = (y,2), filz):= f(zs,))

3. If D/(f1($)7 ey fi_l(x),ri, ey T‘m) =1, output r;.
Else, output 1 — ;.

Claim: Pr,..[A(y) = f(y)] > 1/24+¢/m

Same proof as last lecture's.

By averaging, there are fixed z,r such that A when given z,r
approximates f well.




Efficiency of A

» Seems like we computed f many times to try to compute f!

Design property!
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[i(y,z) = fj(x) = f(xs;) depends on < logm bits of y!




Efficiency of A

» Seems like we computed f many times to try to compute f!
» By design property, i # j = |S; N .S;| < logm.
[i(y,z) = fj(x) = f(xs;) depends on < logm bits of y!
> Since we have fixed z,r
fj computed by circuit of size O(m)

So all m bits can be computed by a O(m?) sized circuit!




Proof of Theorem 3

> Let f,:{0,1}* — {0,1} be given by f(z) := L¢(x).
» Let Gy, := NW; s with the parameters /,~,t and m = 27t
from Proposition 5 (design)
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Proof of Theorem 3

Let f;:{0,1} — {0,1} be given by f(x) := L,(x).
Let Gy, := NW} s with the parameters £,v,t and m = 27t
from Proposition 5 (design)

By Definition 1, G,, is not (2m, 1/8)-pseudorandom = exists
cicuit D with S(D) < 2m s.t.

[Pr[D(Gm(Ur)) = 1] = Pr[D(Un) = 1] <1/8
By Lemma 7, there is circuit ® of size O(m?) such that

Pr(®(z) = f(x)] > 1/2+1/8m =1/2+ 277

which contradicts H(L;) > 2°¢ when v < §/3
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» Take p to be a prime number and consider I, finite field with
p elements. Let t = p?.

» Take all polynomials of degree < d =~/ in F[2]
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Construction of combinatorial designs

» Take p to be a prime number and consider I, finite field with
p elements. Let t = p?.

» Take all polynomials of degree < d =~/ in F[2]
» For each polynomial ¢(z) € Fp[z], let

Sq = {(i,q(@)) | i e[}

» Note that if f # g then |S; NSy <d

d+1

» There are p polynomials of degree < d
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