
Lecture 11
Hardness vs Randomness

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022



Overview

Nisan-Wigderson (NW) Generators



Pseudorandom Generators
Definition 1 (Pseudorandom Distributions)
A distribution R over {0, 1}m is (s, ε)-pseudorandom if for every
circuit C such that S(C) ≤ s

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um is the uniform distribution over {0, 1}m.



Pseudorandom Generators
Definition 1 (Pseudorandom Distributions)
A distribution R over {0, 1}m is (s, ε)-pseudorandom if for every
circuit C such that S(C) ≤ s

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um is the uniform distribution over {0, 1}m.

▶ We say that G : {0, 1}ℓ → {0, 1}m is (s, ε)-pseudorandom if
the distribution G(Uℓ) is (s, ε)-pseudorandom.



Constructing PRGs
▶ It seems to be very hard to construct PRGs unconditionally
▶ Today: one can use hard boolean functions to construct PRGs
▶ Idea:

1. unpredictability equivalent to pseudorandomness ([Yao 1982])
2. a hard function should be hard to predict



Nisan-Wigderson PRG
Definition 2 (Average-Case Hardness)
Given f : {0, 1}n → {0, 1}, its average-case hardness, denoted by
H(f), is the smallest s ∈ N such that

∀C circuit s.t. S(C) ≤ s ⇒ Pr
x
[C(x) = f(x)] ≤ 1/2 + 1/s

Theorem 3 (Special case of [NW 1994])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
H(Ln) ≥ 2δn, then there is constant c > 0 and family of PRGs
Gm : {0, 1}c logm → {0, 1}m which are computable in poly(m)
time and are (2m, 1/8)-pseudorandom.
▶ In particular, the above implies P = BPP.
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Combinatorial designs
Definition 4 (Combinatorial designs)
Given integers t > ℓ > d > 0, the family {S1, . . . , Sm} of subsets
of [t] is a (t, ℓ, d)-design if

1. |Si| = ℓ for all i ∈ [m]

2. |Si ∩ Sj | ≤ d for all i ̸= j

Proposition 5
For every ℓ ∈ N∗ and γ ∈ (0, 1), there is t = O(γ−1ℓ) such that a
(t, ℓ, γℓ)-design {S1, . . . , Sm}, where m := 2γℓ, can be constructed
in O(2t · tm2) time.
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NW generators: construction
▶ Notation: if x ∈ {0, 1}t and S ⊆ [t], let xS ∈ {0, 1}|S| be the

string obtained by selecting the bits of S (in order) from x

Definition 6 (NW generators)
For a boolean function f : {0, 1}ℓ → {0, 1} and a design
S := {S1, . . . , Sm} over [t], the NW-generator is given by

NWf,S(x) := f1(x) ◦ · · · ◦ fm(x)

where fi(x) := f(xSi)



Proof of Pseudorandomness
Follows from the following lemma:

Lemma 7
Let t, ℓ, γ as in Proposition 5 and m := 2γℓ. If f : {0, 1}ℓ → {0, 1}
and S := {S1, . . . , Sm} be a (t, ℓ, logm)-design over [t].
If D : {0, 1}m → {0, 1} is s.t.

|Pr
r
[D(r) = 1]− Pr

x
[D(NWf,S(x)) = 1]| > ε

then there is a circuit C with S(C) = O(m2) s.t.

|Pr
x
[D(C(x)) = f(x)]− 1/2| > ε/m.

▶ Above lemma shows that a distinguisher for the generator
yields a distinguisher for f
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Proof of Lemma 7
Main idea: if D distinguishes NWf,S from uniform, then can find

a bit of output of NWf,S where we can notice this difference.
From this bit, we can non-trivially predict f .

Main tool: hybrid argument.

Define distributions H0, . . . , Hm over {0, 1}m as follows:
▶ Sample u ∼ Um and v ∼ NWf,S(Ut)

▶ Hi given by v[i] ◦ u[m]\[i]

▶ H0 = Um and Hm = NWf,S(Ut)

By hypothesis of lemma, there is b0 ∈ {0, 1} s.t.

Pr
x
[D′(NWf,S(x)) = 1]− Pr

r
[D′(r) = 1] > ε

where D′(x) = b0 ⊕D(x).
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Proof of Lemma 7
▶ Note

ε < Pr
x
[D′(NWf,S(x)) = 1]− Pr

r
[D′(r) = 1]

= Pr[D′(Hm) = 1]− Pr[D′(H0) = 1]

=

m∑
i=1

(Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1])

▶ There is i ∈ [m] such that

Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1] > ε/m

▶ Assume Si = [ℓ] and let {0, 1}t = {0, 1}ℓ × {0, 1}t−ℓ s.t.
x = (y, z)

▶ Above inequality ⇒ good distinguisher for f : {0, 1}ℓ → {0, 1}



Proof of Lemma 7
▶ Note

ε < Pr
x
[D′(NWf,S(x)) = 1]− Pr

r
[D′(r) = 1]

= Pr[D′(Hm) = 1]− Pr[D′(H0) = 1]

=

m∑
i=1

(Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1])

▶ There is i ∈ [m] such that

Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1] > ε/m

▶ Assume Si = [ℓ] and let {0, 1}t = {0, 1}ℓ × {0, 1}t−ℓ s.t.
x = (y, z)

▶ Above inequality ⇒ good distinguisher for f : {0, 1}ℓ → {0, 1}



Proof of Lemma 7
▶ Note

ε < Pr
x
[D′(NWf,S(x)) = 1]− Pr

r
[D′(r) = 1]

= Pr[D′(Hm) = 1]− Pr[D′(H0) = 1]

=

m∑
i=1

(Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1])

▶ There is i ∈ [m] such that

Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1] > ε/m

▶ Assume Si = [ℓ] and let {0, 1}t = {0, 1}ℓ × {0, 1}t−ℓ s.t.
x = (y, z)

▶ Above inequality ⇒ good distinguisher for f : {0, 1}ℓ → {0, 1}



Proof of Lemma 7
▶ Note

ε < Pr
x
[D′(NWf,S(x)) = 1]− Pr

r
[D′(r) = 1]

= Pr[D′(Hm) = 1]− Pr[D′(H0) = 1]

=

m∑
i=1

(Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1])

▶ There is i ∈ [m] such that

Pr[D′(Hi) = 1]− Pr[D′(Hi−1) = 1] > ε/m

▶ Assume Si = [ℓ] and let {0, 1}t = {0, 1}ℓ × {0, 1}t−ℓ s.t.
x = (y, z)

▶ Above inequality ⇒ good distinguisher for f : {0, 1}ℓ → {0, 1}



Distinguisher for f
Consider following algorithm A:
▶ Input: y ∈ {0, 1}ℓ

▶ Output: b ∈ {0, 1} (guess for f(y))

1. pick random z ∈ {0, 1}t−ℓ and r ∈ {0, 1}m−i+1

2. compute f1(x), . . . , fi−1(x) (x = (y, z), fi(x) := f(xSi))
3. If D′(f1(x), . . . , fi−1(x), ri, . . . , rm) = 1, output ri.

Else, output 1− ri.

Claim: Pry,z,r[A(y) = f(y)] > 1/2 + ε/m

Same proof as last lecture’s.

By averaging, there are fixed z, r such that A when given z, r
approximates f well.
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Efficiency of A
▶ Seems like we computed f many times to try to compute f !

Design property!

▶ By design property, i ̸= j ⇒ |Si ∩ Sj | ≤ logm.
fj(y, z) = fj(x) = f(xSj ) depends on ≤ logm bits of y!

▶ Since we have fixed z, r

fj computed by circuit of size O(m)

So all m bits can be computed by a O(m2) sized circuit!
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Proof of Theorem 3
▶ Let fℓ : {0, 1}ℓ → {0, 1} be given by f(x) := Lℓ(x).
▶ Let Gm := NWf,S with the parameters ℓ, γ, t and m = 2γℓ

from Proposition 5 (design)

▶ By Definition 1, Gm is not (2m, 1/8)-pseudorandom ⇒ exists
cicuit D with S(D) ≤ 2m s.t.

|Pr[D(Gm(Uℓ)) = 1]− Pr[D(Um) = 1]| < 1/8

▶ By Lemma 7, there is circuit Φ of size O(m2) such that

Pr
x
[Φ(x) = f(x)] > 1/2 + 1/8m = 1/2 + 2−γℓ−3

which contradicts H(Lℓ) ≥ 2δℓ when γ < δ/3
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Construction of combinatorial designs
▶ Take p to be a prime number and consider Fp finite field with

p elements. Let t = p2.
▶ Take all polynomials of degree ≤ d = γℓ in Fp[z]

▶ For each polynomial q(z) ∈ Fp[z], let

Sq := {(i, q(i)) | i ∈ [ℓ]}

▶ Note that if f ̸≡ g then |Sf ∩ Sg| ≤ d

▶ There are pd+1 polynomials of degree ≤ d
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