
Lecture 10 - Derandomization,
Pseudorandom Generators (PRGs)

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

Pseudorandom Generators (PRGs)

Unpredictability vs Randomness & PRGs from Hard Functions

Derandomization
▶ Derandomization is the process of “removing randomness”

from PTMs
▶ Sometimes term is used to simply refer to a deterministic

algorithm for the same problem
▶ In this case, just says that language L ∈ P

▶ Is there a general way to (non-trivially) remove randomness
from BPP machines?

BPP ⊆? SUBEXP :=
∩
ε>0

DTIME(2nε
)

▶ To do the above, cannot use PTMs as a black-box. That is,
general derandomization cannot relativize

See literature in [Pap 1994]

Derandomization
▶ Derandomization is the process of “removing randomness”

from PTMs
▶ Sometimes term is used to simply refer to a deterministic

algorithm for the same problem
▶ In this case, just says that language L ∈ P

▶ Is there a general way to (non-trivially) remove randomness
from BPP machines?

BPP ⊆? SUBEXP :=
∩
ε>0

DTIME(2nε
)

▶ To do the above, cannot use PTMs as a black-box. That is,
general derandomization cannot relativize

See literature in [Pap 1994]

Derandomization
▶ Derandomization is the process of “removing randomness”

from PTMs
▶ Sometimes term is used to simply refer to a deterministic

algorithm for the same problem
▶ In this case, just says that language L ∈ P

▶ Is there a general way to (non-trivially) remove randomness
from BPP machines?

BPP ⊆? SUBEXP :=
∩
ε>0

DTIME(2nε
)

▶ To do the above, cannot use PTMs as a black-box. That is,
general derandomization cannot relativize

See literature in [Pap 1994]

Derandomization
▶ Also know that lower bounds cannot relativize.

Could we use (strong enough) lower bounds to derandomize
BPP?

▶ In a sense reduce use of non-relativization to proving lower
bounds.

▶ Still interesting that hardness can imply randomness, as we
are now using reductions to prove:

some impossible result ⇒ possible result!

Usually a reduction A ≤ B is used to show that B tractable
then A tractable or conversely A intractable then B
intractable

Derandomization
▶ Also know that lower bounds cannot relativize.

Could we use (strong enough) lower bounds to derandomize
BPP?

▶ In a sense reduce use of non-relativization to proving lower
bounds.1

▶ Still interesting that hardness can imply randomness, as we
are now using reductions to prove:

some impossible result ⇒ possible result!

Usually a reduction A ≤ B is used to show that B tractable
then A tractable or conversely A intractable then B
intractable

1Though admittedly it could be that on the way to prove lower bounds, our
non-reltivizing technique also works against BPP, in which case all of the below
will be sort of redundant.

Derandomization
▶ Also know that lower bounds cannot relativize.

Could we use (strong enough) lower bounds to derandomize
BPP?

▶ In a sense reduce use of non-relativization to proving lower
bounds.

▶ Still interesting that hardness can imply randomness, as we
are now using reductions to prove:

some impossible result ⇒ possible result!

Usually a reduction A ≤ B is used to show that B tractable
then A tractable or conversely A intractable then B
intractable

Pseudorandom Generators
Definition 1 (Pseudorandom Distributions)
A distribution R over {0, 1}m is (s, ε)-pseudorandom if for every
circuit C such that S(C) ≤ s

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um is the uniform distribution over {0, 1}m.

Definition 2 (Pseudorandom Generators)
Let s : N → N be a time-constructible and non-decreasing
function. A 2n-time constructible string function
G : {0, 1}∗ → {0, 1}∗ is an s(ℓ)-pseudorandom generator if
▶ |G(z)| = s(|z|) for all z ∈ {0, 1}∗

▶ for every ℓ ∈ N, G(Uℓ) is (s(ℓ)3, 1/10) pseudorandom.

Pseudorandom Generators
Definition 1 (Pseudorandom Distributions)
A distribution R over {0, 1}m is (s, ε)-pseudorandom if for every
circuit C such that S(C) ≤ s

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um is the uniform distribution over {0, 1}m.

▶ We say that G : {0, 1}ℓ → {0, 1}m is (s, ε)-pseudorandom if
the distribution G(Uℓ) is (s, ε)-pseudorandom.

Definition 2 (Pseudorandom Generators)
Let s : N → N be a time-constructible and non-decreasing
function. A 2n-time constructible string function
G : {0, 1}∗ → {0, 1}∗ is an s(ℓ)-pseudorandom generator if
▶ |G(z)| = s(|z|) for all z ∈ {0, 1}∗

▶ for every ℓ ∈ N, G(Uℓ) is (s(ℓ)3, 1/10) pseudorandom.

Pseudorandom Generators
Definition 1 (Pseudorandom Distributions)
A distribution R over {0, 1}m is (s, ε)-pseudorandom if for every
circuit C such that S(C) ≤ s

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um is the uniform distribution over {0, 1}m.

Definition 2 (Pseudorandom Generators)
Let s : N → N be a time-constructible and non-decreasing
function. A 2n-time constructible string function
G : {0, 1}∗ → {0, 1}∗ is an s(ℓ)-pseudorandom generator if
▶ |G(z)| = s(|z|) for all z ∈ {0, 1}∗

▶ for every ℓ ∈ N, G(Uℓ) is (s(ℓ)3, 1/10) pseudorandom.1

1Constants 3 and 1/10 chosen for convenience

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.

▶ The above shows why it’s ok to let the PRG run in 2ℓ time for
inputs of length ℓ - for derandomization we will have to go
over all seeds!

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.

1. s(ℓ) = 2γℓ ⇒ BPP = P
2. s(ℓ) = 2ℓ

γ where γ ∈ (0, 1) then BPP ⊆ DTIME(2poly logn)

3. if s(ℓ) = ℓc then BPP ⊆ DTIME(2n1/c
)

▶ The above shows why it’s ok to let the PRG run in 2ℓ time for
inputs of length ℓ - for derandomization we will have to go
over all seeds!

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.
▶ Say s(ℓ) = 2γℓ and let M ∈ BPTIME(nc),

Gm : {0, 1}γ−1 logm → {0, 1}m

▶ If M uses m := m(n) random bits over {0, 1}n, then
Pr

r∈Um

[M(x, r) = L(x)] ≥ 2/3

▶ Given x, r, note that M(x, r) is deterministic TM, hence
(Proposition 2, Lecture 6), M(x, r) ∈ SIZE(t2(n)), thus

| Pr
r∈Gm(Uℓ)

[M(x, r)]− Pr
r∈Um

[M(x, r)]| < 1/10

▶ Then, if ℓ := γ−1 logm,
Pr

r∈Gm(Uℓ)
[M(x, r) = L(x)] > 2/3− 1/10 > 5/9

▶ The above shows why it’s ok to let the PRG run in 2ℓ time for
inputs of length ℓ - for derandomization we will have to go
over all seeds!

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.
▶ Say s(ℓ) = 2γℓ and let M ∈ BPTIME(nc),

Gm : {0, 1}γ−1 logm → {0, 1}m
▶ If M uses m := m(n) random bits over {0, 1}n, then

Pr
r∈Um

[M(x, r) = L(x)] ≥ 2/3

▶ Given x, r, note that M(x, r) is deterministic TM, hence
(Proposition 2, Lecture 6), M(x, r) ∈ SIZE(t2(n)), thus

| Pr
r∈Gm(Uℓ)

[M(x, r)]− Pr
r∈Um

[M(x, r)]| < 1/10

▶ Then, if ℓ := γ−1 logm,
Pr

r∈Gm(Uℓ)
[M(x, r) = L(x)] > 2/3− 1/10 > 5/9

▶ The above shows why it’s ok to let the PRG run in 2ℓ time for
inputs of length ℓ - for derandomization we will have to go
over all seeds!

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.
▶ Say s(ℓ) = 2γℓ and let M ∈ BPTIME(nc),

Gm : {0, 1}γ−1 logm → {0, 1}m
▶ If M uses m := m(n) random bits over {0, 1}n, then

Pr
r∈Um

[M(x, r) = L(x)] ≥ 2/3

▶ Given x, r, note that M(x, r) is deterministic TM, hence
(Proposition 2, Lecture 6), M(x, r) ∈ SIZE(t2(n)), thus

| Pr
r∈Gm(Uℓ)

[M(x, r)]− Pr
r∈Um

[M(x, r)]| < 1/10

▶ Then, if ℓ := γ−1 logm,
Pr

r∈Gm(Uℓ)
[M(x, r) = L(x)] > 2/3− 1/10 > 5/9

▶ The above shows why it’s ok to let the PRG run in 2ℓ time for
inputs of length ℓ - for derandomization we will have to go
over all seeds!

PRGs and Derandomization
Proposition 3
s(ℓ)-PRG ⇒ BPTIME(s(t(n))) ⊆ DTIME(2ct(n)s(t(n))) for some
constant c > 0, where t(n) is a poly-time computable function.
▶ The above shows why it’s ok to let the PRG run in 2ℓ time for

inputs of length ℓ - for derandomization we will have to go
over all seeds!

Pseudorandom Generators (PRGs)

Unpredictability vs Randomness & PRGs from Hard Functions

Constructing PRGs
▶ It seems to be very hard to construct PRGs unconditionally

▶ As we will see soon, it turns out that one can use hard
boolean functions to construct PRGs

▶ Idea:
1. unpredictability equivalent to pseudorandomness ([Yao 1982])
2. a hard function should be hard to predict

Constructing PRGs
▶ It seems to be very hard to construct PRGs unconditionally
▶ As we will see soon, it turns out that one can use hard

boolean functions to construct PRGs
▶ Idea:

1. unpredictability equivalent to pseudorandomness ([Yao 1982])
2. a hard function should be hard to predict

Unpredictability vs Pseudorandomness
Lemma 4
If f : {0, 1}ℓ → {0, 1} and there is a circuit D with S(D) ≤ s s.t.

|Pr
x
[D(x ◦ f(x)) = 1]− Pr

x,b
[D(x ◦ b) = 1]| > ε

then there is a circuit A with S(A) ≤ s+ 3 s.t.

Pr
x
[A(x) = f(x)] > 1/2 + ε.

▶ Above lemma shows that hard functions (on average), should
“look random” to “efficient computation”

▶ Can assume there is circuit D′ of size ≤ s+ 1 s.t.

Pr
x
[D′(x ◦ f(x)) = 1]− Pr

x,b
[D′(x ◦ b) = 1] > ε

Since either D or ¬D will do.

Unpredictability vs Pseudorandomness
Lemma 4
If f : {0, 1}ℓ → {0, 1} and there is a circuit D with S(D) ≤ s s.t.

|Pr
x
[D(x ◦ f(x)) = 1]− Pr

x,b
[D(x ◦ b) = 1]| > ε

then there is a circuit A with S(A) ≤ s+ 3 s.t.

Pr
x
[A(x) = f(x)] > 1/2 + ε.

▶ Above lemma shows that hard functions (on average), should
“look random” to “efficient computation”

▶ Can assume there is circuit D′ of size ≤ s+ 1 s.t.

Pr
x
[D′(x ◦ f(x)) = 1]− Pr

x,b
[D′(x ◦ b) = 1] > ε

Since either D or ¬D will do.

Unpredictability vs Pseudorandomness
Lemma 4
If f : {0, 1}ℓ → {0, 1} and there is a circuit D with S(D) ≤ s s.t.

|Pr
x
[D(x ◦ f(x)) = 1]− Pr

x,b
[D(x ◦ b) = 1]| > ε

then there is a circuit A with S(A) ≤ s+ 3 s.t.

Pr
x
[A(x) = f(x)] > 1/2 + ε.

▶ Above lemma shows that hard functions (on average), should
“look random” to “efficient computation”

▶ Can assume there is circuit D′ of size ≤ s+ 1 s.t.

Pr
x
[D′(x ◦ f(x)) = 1]− Pr

x,b
[D′(x ◦ b) = 1] > ε

Since either D or ¬D will do.

Proof of Lemma 4
Let’s use D′ as our circuit D

Main idea: guess random bit b and compute D(x, b) to check
whether b is a good guess for f(x).

Let Ab be the procedure:
▶ Sample b ∼ {0, 1}
▶ If D(x, b) = 1 then output b
▶ Else, output 1− b

We will show from our assumption that
Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] = Pr
x,b

[Ab(x) = f(x) | b = f(x)] · Pr
x,b

[b = f(x)]

+ Pr
x,b

[Ab(x) = f(x) | b ̸= f(x)] · Pr
x,b

[b ̸= f(x)]

▶ Thus, there is bit b∗ such that

Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] = Pr
x,b

[Ab(x) = f(x) | b = f(x)] · Pr
x,b

[b = f(x)]

+ Pr
x,b

[Ab(x) = f(x) | b ̸= f(x)] · Pr
x,b

[b ̸= f(x)]

=
1

2
· Pr
x,b

[Ab(x) = f(x) | b = f(x)]

+
1

2
· Pr
x,b

[Ab(x) = f(x) | b ̸= f(x)]

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] = Pr
x,b

[Ab(x) = f(x) | b = f(x)] · Pr
x,b

[b = f(x)]

+ Pr
x,b

[Ab(x) = f(x) | b ̸= f(x)] · Pr
x,b

[b ̸= f(x)]

=
1

2
· Pr
x,b

[Ab(x) = f(x) | b = f(x)]

+
1

2
· Pr
x,b

[Ab(x) = f(x) | b ̸= f(x)]

=
1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

+
1

2
· Pr
x,b

[D(x ◦ b) = 0 | b ̸= f(x)]

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] =
1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

+
1

2
· Pr
x,b

[D(x ◦ b) = 0 | b ̸= f(x)]

=
1

2
+

1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b ̸= f(x)]

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] =
1

2
+

1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b ̸= f(x)]

=
1

2
+ Pr

x,b
[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b ̸= f(x)]

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

Pr
x,b

[Ab(x) = f(x)] =
1

2
+ Pr

x,b
[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b = f(x)]

− 1

2
· Pr
x,b

[D(x ◦ b) = 1 | b ̸= f(x)]

=
1

2
+ Pr

x
[D(x ◦ f(x)) = 1]− Pr

x,b
[D(x ◦ b) = 1]

> 1/2 + ε

▶ Thus, there is bit b∗ such that
Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

▶ Thus, there is bit b∗ such that

Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Proof of Lemma 4
We will show from our assumption that

Pr
x,b

[Ab(x) = f(x)] > 1/2 + ε

▶ Thus, there is bit b∗ such that

Pr
x
[Ab∗(x) = f(x)] > 1/2 + ε

▶ Circuit for Ab∗

Ab∗(x) = b∗ ⊕ (¬D′(x, b∗))

Nisan-Wigderson PRG
Definition 5 (Average-Case Hardness)
Given f : {0, 1}n → {0, 1}, its average-case hardness, denoted by
H(f), is the smallest s ∈ N such that

∀C circuit s.t. S(C) ≤ s ⇒ Pr
x
[C(x) = f(x)] ≤ 1/2 + 1/s

Theorem 6 (Special case of [NW 1994])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
H(Ln) ≥ 2δn, then there is constant c > 0 and family of PRGs
Gm : {0, 1}c logm → {0, 1}m which are computable in poly(m)
time and are (2m, 1/8)-pseudorandom.
▶ In particular, the above implies P = BPP.

Nisan-Wigderson PRG
Definition 5 (Average-Case Hardness)
Given f : {0, 1}n → {0, 1}, its average-case hardness, denoted by
H(f), is the smallest s ∈ N such that

∀C circuit s.t. S(C) ≤ s ⇒ Pr
x
[C(x) = f(x)] ≤ 1/2 + 1/s

Theorem 6 (Special case of [NW 1994])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
H(Ln) ≥ 2δn, then there is constant c > 0 and family of PRGs
Gm : {0, 1}c logm → {0, 1}m which are computable in poly(m)
time and are (2m, 1/8)-pseudorandom.

▶ In particular, the above implies P = BPP.

Nisan-Wigderson PRG
Definition 5 (Average-Case Hardness)
Given f : {0, 1}n → {0, 1}, its average-case hardness, denoted by
H(f), is the smallest s ∈ N such that

∀C circuit s.t. S(C) ≤ s ⇒ Pr
x
[C(x) = f(x)] ≤ 1/2 + 1/s

Theorem 6 (Special case of [NW 1994])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
H(Ln) ≥ 2δn, then there is constant c > 0 and family of PRGs
Gm : {0, 1}c logm → {0, 1}m which are computable in poly(m)
time and are (2m, 1/8)-pseudorandom.
▶ In particular, the above implies P = BPP.

Constructing PRGs from hardness
One can actually obtain derandomization from worst-case hardness.
Theorem 7 ([IW 1997])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
S(L ∩ {0, 1}n) ≥ 2δn, then BPP = P.

Theorem 8 ([IW 1998])
If BPP ̸= EXP, then for every L ∈ BPP and ε > 0, there is a
deterministic algorithm A ∈ DTIME(2nε

) and, for infinitely many
n ∈ N solves L ∩ {0, 1}n on a 1− 1/n fraction of its inputs

Turns out worst-case hypothesis ⇒ average-case hypothesis
Theorem 9 ([BFNW 1993, I 1995, IW 1997])
If there is L ∈ E and δ > 0 s.t. for all sufficiently large n,
S(Ln) ≥ 2δn, then there is L′ ∈ E and δ′ > 0 s.t. for sufiiciently
large n, H(L′) ≥ 2δ

′n.

Constructing PRGs from hardness
One can actually obtain derandomization from worst-case hardness.
Theorem 7 ([IW 1997])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
S(L ∩ {0, 1}n) ≥ 2δn, then BPP = P.

Theorem 8 ([IW 1998])
If BPP ̸= EXP, then for every L ∈ BPP and ε > 0, there is a
deterministic algorithm A ∈ DTIME(2nε

) and, for infinitely many
n ∈ N solves L ∩ {0, 1}n on a 1− 1/n fraction of its inputs

Turns out worst-case hypothesis ⇒ average-case hypothesis
Theorem 9 ([BFNW 1993, I 1995, IW 1997])
If there is L ∈ E and δ > 0 s.t. for all sufficiently large n,
S(Ln) ≥ 2δn, then there is L′ ∈ E and δ′ > 0 s.t. for sufiiciently
large n, H(L′) ≥ 2δ

′n.

Constructing PRGs from hardness
One can actually obtain derandomization from worst-case hardness.
Theorem 7 ([IW 1997])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
S(L ∩ {0, 1}n) ≥ 2δn, then BPP = P.
Theorem 8 ([IW 1998])
If BPP ̸= EXP, then for every L ∈ BPP and ε > 0, there is a
deterministic algorithm A ∈ DTIME(2nε

) and, for infinitely many
n ∈ N solves L ∩ {0, 1}n on a 1− 1/n fraction of its inputs
▶ Assumptions in Theorem 7 stronger than in Theorem 8

1. Non-uniform vs uniform
2. exponential hardness vs super-polynomial hardness

▶ With stronger assumptions, (should) come stronger
consequences

1. Theorem 7 works over all inputs
2. running time of simulations

Turns out worst-case hypothesis ⇒ average-case hypothesis
Theorem 9 ([BFNW 1993, I 1995, IW 1997])
If there is L ∈ E and δ > 0 s.t. for all sufficiently large n,
S(Ln) ≥ 2δn, then there is L′ ∈ E and δ′ > 0 s.t. for sufiiciently
large n, H(L′) ≥ 2δ

′n.

Constructing PRGs from hardness
One can actually obtain derandomization from worst-case hardness.
Theorem 7 ([IW 1997])
If there is L ∈ E and δ > 0 such that for all sufficiently large n,
S(L ∩ {0, 1}n) ≥ 2δn, then BPP = P.

Theorem 8 ([IW 1998])
If BPP ̸= EXP, then for every L ∈ BPP and ε > 0, there is a
deterministic algorithm A ∈ DTIME(2nε

) and, for infinitely many
n ∈ N solves L ∩ {0, 1}n on a 1− 1/n fraction of its inputs

Turns out worst-case hypothesis ⇒ average-case hypothesis
Theorem 9 ([BFNW 1993, I 1995, IW 1997])
If there is L ∈ E and δ > 0 s.t. for all sufficiently large n,
S(Ln) ≥ 2δn, then there is L′ ∈ E and δ′ > 0 s.t. for sufiiciently
large n, H(L′) ≥ 2δ

′n.

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach Chapters 9 & 20
Cambridge University Press

Papadimitriou, C (1994)
Computational Complexity
Addison-Wesley

Trevisan, Luca (2002)
Lecture notes Lectures 23, 24
See webpage

Goldreich, Oded (2006)
Computational complexity: a conceptual perspective. Chapter 6
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

References II
Babai, L and Fortnow, L and Nisan, N and Wigderson, A (1993)
BPP has subsexponential time simulations unless EXPTIME has
publishable proofs
Computational Complexity

Impagliazzo, Russell (1995)
Hard-core distributions for somewhat hard problems
FOCS

Impagliazzo, Russell and Wigderson, Avi (1997)
P = BPP unless E has subexponential circuits
STOC

Impagliazzo, Russell and Wigderson, Avi (1998)
Randomness vs Time: Derandomization under a uniform assumption
FOCS

References III
Nisan, Noam and Wigderson, Avi (1994)
Hardness vs Randomness
Journal of Computer and System Sciences

Yao, Andrew C. (1982)
Theory and applications of trapdoor functions
FOCS

	Pseudorandom Generators (PRGs)
	Unpredictability vs Randomness & PRGs from Hard Functions

