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Overview

e Error Reduction and BPP C P,

e BPP C XN




Error Reduction
> Given a TM M € BPP deciding a language L, we have that

Er[M(x,r) = L(z)] >2/3

where 7 € {0, 1}7(12]).
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» To improve our confidence, just run the same algorithm
multiple times, outputting the majority.
Let A be the following algorithm (with ¢ = 2k — 1):

1. Oninput z € {0,1}", sample 71,...,r, € {0,1}P(")
2. Output MAJ(M (z,71),..., M(z, 7))
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Given a TM M € BPP deciding a language L, we have that

Er[M(x,r) = L(x)] >2/3

where 7 € {0, 1}7(12]).
To improve our confidence, just run the same algorithm
multiple times, outputting the majority.
Let A be the following algorithm (with ¢ = 2k — 1):

1. Oninput z € {0,1}", sample 71,...,r, € {0,1}P(")

2. Output MAJ(M (z,71),..., M(z, 7))
If X := 1ar(ar)=L(z), We have Pr[X; = 1] =p > 2/3. By
Chernoff:

Pr[A(z,r) # L(z)] = Pr

T

zt:Xi < k:] < exp <_200p(tl—p)>

i=1




Error Reduction in BPP

Proposition 1 (Error Reduction in BPP)

If L € BPP and ¢ > 0 is a constant, then there is a poly-time
PTM M such that for all z € {0,1}*

Pr[M(z,7) = L(z)] > 1 - 9 lel”

» Apply the error reduction from previous slide with

t(lxl) = O(l2[%).




Adleman’s theorem: BPP C P,

» [ € BPP and Proposition 1 = there is poly-time PTM M
such that

n 1
vn € N,z € {0,1}", I-;r[M(;c,r) # L(x)] < St
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Adleman’s theorem: BPP C P,

» [ € BPP and Proposition 1 = there is poly-time PTM M
such that

n 1
vn € N,z € {0,1}", I?;r[M(:c,r) # L(x)] < St

Suppose M uses m random bits, thus r € {0,1}"™

r is bad for x if M(x,r) # L(x).

Count number of pairs (z,7) such that r is bad for x

For each z, there are < 2~ "1 such r's L € BPP
Total number of bad pairs is < 27 . 2m—n—1 = gm—1
Pigeonhole: there is one r which is good for all x € {0,1}"
Hardwire this r into M
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Sipser-Gacs theorem: BPP C ¥ N 11}
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» Since BPP = coBPP, enough to prove that BPP C ¥}
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Theorem 2 (Sipser-Géacs)
BPP C Y NI,

» [ € BPP and Proposition 1 = there is PTM M using
m :=m(n) > n (poly(n)) random bits for z € {0,1}" s.t.

f;r[M(a:?r) #L(z)] <27"

» For z € {0,1}" let S, C {0,1}" be set of random strings r
such that M(z,r) =1

r€L=|[S;]>(1—-2"")2"

x &L= |5, <2m™

» Enough to show which is the case using 2 quantifiers
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Let k = [m/n] +1
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k

(S +w) # {0,13™

i=1
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k

(S +w) # {0, 13"
i=1
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Uy, ..., ur € {0,1}"™ such that
k

(S +w) = {o,13™

i=1

3. Above show that

k
x€L& Juy,...,u, €{0,1}"Vr e {O,I}m\/M(x,r—i—ui) =1

i=1




Proof of item 2
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1. For r € {0,1}™, let B, event that r ¢ S, := J"_, (S + u;).
Equivalently, u; € S+ r for i € [k].
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k
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Proof of item 2

Let k = [m/n] +1
> If S C{0,1}™ with |S| > (1 —27™)2™, there are
Uy, ..., ur € {0,1}"™ such that

k
S +w) = {0,13™
i=1
1. For r € {0,1}™, let B, event that r ¢ S, := J"_, (S + u;).
Equivalently, u; € S+ r for i € [k].
2. |S] > (1 —27")2™ = Pr[B,] < 27"k < 2m
3. By union bound:

Pr[3r € {0,1}" | B,] < 1.
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