Lecture 9 - Randomized Algorithms, $\mathrm{BPP} \subset \mathrm{P}_{/ \text {poly }}$ and $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- Error Reduction and $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$
- $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Error Reduction

- Given a TM $M \in$ BPP deciding a language L, we have that

$$
\operatorname{Pr}_{r}[M(x, r)=L(x)] \geq 2 / 3
$$

where $r \in\{0,1\}^{p(|x|)}$.

Error Reduction

- Given a TM $M \in$ BPP deciding a language L, we have that

$$
\operatorname{Pr}_{r}[M(x, r)=L(x)] \geq 2 / 3
$$

where $r \in\{0,1\}^{p(|x|)}$.

- To improve our confidence, just run the same algorithm multiple times, outputting the majority.
Let A be the following algorithm (with $t=2 k-1$):

1. On input $x \in\{0,1\}^{n}$, sample $r_{1}, \ldots, r_{t} \in\{0,1\}^{p(n)}$
2. Output $\operatorname{MAJ}\left(M\left(x, r_{1}\right), \ldots, M\left(x, r_{t}\right)\right)$

Error Reduction

- Given a TM $M \in$ BPP deciding a language L, we have that

$$
\operatorname{Pr}_{r}[M(x, r)=L(x)] \geq 2 / 3
$$

where $r \in\{0,1\}^{p(|x|)}$.

- To improve our confidence, just run the same algorithm multiple times, outputting the majority.
Let A be the following algorithm (with $t=2 k-1$):

1. On input $x \in\{0,1\}^{n}$, sample $r_{1}, \ldots, r_{t} \in\{0,1\}^{p(n)}$
2. Output $\operatorname{MAJ}\left(M\left(x, r_{1}\right), \ldots, M\left(x, r_{t}\right)\right)$

- If $X_{i}:=1_{M\left(x, r_{i}\right)=L(x)}$, we have $\operatorname{Pr}\left[X_{i}=1\right]=p \geq 2 / 3$. By Chernoff:

$$
\operatorname{Pr}_{r}[A(x, r) \neq L(x)]=\operatorname{Pr}\left[\sum_{i=1}^{t} X_{i}<k\right] \leq \exp \left(-\frac{t}{200 p(1-p)}\right)
$$

Error Reduction in BPP

Proposition 1 (Error Reduction in BPP)
If $L \in B P P$ and $c>0$ is a constant, then there is a poly-time PTM M such that for all $x \in\{0,1\}^{*}$

$$
\operatorname{Pr}_{r}[M(x, r)=L(x)] \geq 1-2^{-|x|^{c}}
$$

- Apply the error reduction from previous slide with $t(|x|)=O\left(|x|^{c}\right)$.

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.

Adleman's theorem: BPP $\subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.
- Count number of pairs (x, r) such that r is bad for x

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.
- Count number of pairs (x, r) such that r is bad for x
- For each x, there are $\leq 2^{m-n-1}$ such r 's
$L \in \mathrm{BPP}$

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.
- Count number of pairs (x, r) such that r is bad for x
- For each x, there are $\leq 2^{m-n-1}$ such r^{\prime} s
$L \in \mathrm{BPP}$
- Total number of bad pairs is $\leq 2^{n} \cdot 2^{m-n-1}=2^{m-1}$

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.
- Count number of pairs (x, r) such that r is bad for x
- For each x, there are $\leq 2^{m-n-1}$ such r 's $L \in$ BPP
- Total number of bad pairs is $\leq 2^{n} \cdot 2^{m-n-1}=2^{m-1}$
- Pigeonhole: there is one r which is good for all $x \in\{0,1\}^{n}$

Adleman's theorem: $\mathrm{BPP} \subset \mathrm{P}_{\text {/poly }}$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is poly-time PTM M such that

$$
\forall n \in \mathbb{N}, x \in\{0,1\}^{n}, \operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq \frac{1}{2^{n+1}}
$$

- Suppose M uses m random bits, thus $r \in\{0,1\}^{m}$
- r is bad for x if $M(x, r) \neq L(x)$.
- Count number of pairs (x, r) such that r is bad for x
- For each x, there are $\leq 2^{m-n-1}$ such r 's $L \in$ BPP
- Total number of bad pairs is $\leq 2^{n} \cdot 2^{m-n-1}=2^{m-1}$
- Pigeonhole: there is one r which is good for all $x \in\{0,1\}^{n}$
- Hardwire this r into M
- Error Reduction and BPP $\subset \mathrm{P}_{/ \text {poly }}$
- $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
Theorem 2 (Sipser-Gács)

$$
B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

Sipser-Gács theorem: $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
Theorem 2 (Sipser-Gács)

$$
B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

- Since BPP $=$ coBPP, enough to prove that $\mathrm{BPP} \subseteq \Sigma_{2}^{p}$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Theorem 2 (Sipser-Gács)

$$
B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is PTM M using $m:=m(n) \geq n(\operatorname{poly}(n))$ random bits for $x \in\{0,1\}^{n}$ s.t.

$$
\operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq 2^{-n}
$$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Theorem 2 (Sipser-Gács)

$$
B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is PTM M using $m:=m(n) \geq n(\operatorname{poly}(n))$ random bits for $x \in\{0,1\}^{n}$ s.t.

$$
\operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq 2^{-n}
$$

- For $x \in\{0,1\}^{n}$ let $S_{x} \subset\{0,1\}^{m}$ be set of random strings r such that $M(x, r)=1$

$$
\begin{gathered}
x \in L \Rightarrow\left|S_{x}\right| \geq\left(1-2^{-n}\right) 2^{m} \\
x \notin L \Rightarrow\left|S_{x}\right| \leq 2^{m-n}
\end{gathered}
$$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Theorem 2 (Sipser-Gács)

$$
B P P \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}
$$

- $L \in \mathrm{BPP}$ and Proposition $1 \Rightarrow$ there is PTM M using $m:=m(n) \geq n(\operatorname{poly}(n))$ random bits for $x \in\{0,1\}^{n}$ s.t.

$$
\operatorname{Pr}_{r}[M(x, r) \neq L(x)] \leq 2^{-n}
$$

- For $x \in\{0,1\}^{n}$ let $S_{x} \subset\{0,1\}^{m}$ be set of random strings r such that $M(x, r)=1$

$$
\begin{gathered}
x \in L \Rightarrow\left|S_{x}\right| \geq\left(1-2^{-n}\right) 2^{m} \\
x \notin L \Rightarrow\left|S_{x}\right| \leq 2^{m-n}
\end{gathered}
$$

- Enough to show which is the case using 2 quantifiers

Sipser-Gács theorem: $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
Let $k=\lceil m / n\rceil+1$

1. If $S \subset\{0,1\}^{m}$ with $|S| \leq 2^{m-n}$ and $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right) \neq\{0,1\}^{m}
$$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$
Let $k=\lceil m / n\rceil+1$

1. If $S \subset\{0,1\}^{m}$ with $|S| \leq 2^{m-n}$ and $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right) \neq\{0,1\}^{m}
$$

2. If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

Sipser-Gács theorem: BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$

Let $k=\lceil m / n\rceil+1$

1. If $S \subset\{0,1\}^{m}$ with $|S| \leq 2^{m-n}$ and $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right) \neq\{0,1\}^{m}
$$

2. If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

3. Above show that

$$
x \in L \Leftrightarrow \exists u_{1}, \ldots, u_{k} \in\{0,1\}^{m} \forall r \in\{0,1\}^{m} \bigvee_{i=1}^{n} M\left(x, r+u_{i}\right)=1
$$

Proof of item 2

Let $k=\lceil m / n\rceil+1$

- If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

Proof of item 2

Let $k=\lceil m / n\rceil+1$

- If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

1. For $r \in\{0,1\}^{m}$, let B_{r} event that $r \notin S_{u}:=\bigcup_{i=1}^{k}\left(S+u_{i}\right)$. Equivalently, $u_{i} \notin S+r$ for $i \in[k]$.

Proof of item 2

Let $k=\lceil m / n\rceil+1$

- If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

1. For $r \in\{0,1\}^{m}$, let B_{r} event that $r \notin S_{u}:=\bigcup_{i=1}^{k}\left(S+u_{i}\right)$.

Equivalently, $u_{i} \notin S+r$ for $i \in[k]$.
2. $|S| \geq\left(1-2^{-n}\right) 2^{m} \Rightarrow \operatorname{Pr}\left[B_{r}\right] \leq 2^{-n k}<2^{m}$

Proof of item 2

Let $k=\lceil m / n\rceil+1$

- If $S \subseteq\{0,1\}^{m}$ with $|S| \geq\left(1-2^{-n}\right) 2^{m}$, there are $u_{1}, \ldots, u_{k} \in\{0,1\}^{m}$ such that

$$
\bigcup_{i=1}^{k}\left(S+u_{i}\right)=\{0,1\}^{m}
$$

1. For $r \in\{0,1\}^{m}$, let B_{r} event that $r \notin S_{u}:=\bigcup_{i=1}^{k}\left(S+u_{i}\right)$.

Equivalently, $u_{i} \notin S+r$ for $i \in[k]$.
2. $|S| \geq\left(1-2^{-n}\right) 2^{m} \Rightarrow \operatorname{Pr}\left[B_{r}\right] \leq 2^{-n k}<2^{m}$
3. By union bound:

$$
\operatorname{Pr}\left[\exists r \in\{0,1\}^{m} \mid B_{r}\right]<1
$$

References I

國 Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Chapter 7
Cambridge University Press
宔
Trevisan, Luca (2002)
Lecture notes
Chapter 5
See webpage

- Goldreich, Oded (2006)

Computational complexity: a conceptual perspective.
Chapter 6
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

