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Overview

Error Reduction and BPP ⊂ P/poly

BPP ⊆ Σp
2 ∩Πp
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Error Reduction
▶ Given a TM M ∈ BPP deciding a language L, we have that

Pr
r
[M(x, r) = L(x)] ≥ 2/3

where r ∈ {0, 1}p(|x|).

▶ To improve our confidence, just run the same algorithm
multiple times, outputting the majority.
Let A be the following algorithm (with t = 2k − 1):

1. On input x ∈ {0, 1}n, sample r1, . . . , rt ∈ {0, 1}p(n)
2. Output MAJ(M(x, r1), . . . ,M(x, rt))

▶ If Xi := 1M(x,ri)=L(x), we have Pr[Xi = 1] = p ≥ 2/3. By
Chernoff:

Pr
r
[A(x, r) ̸= L(x)] = Pr

[
t∑

i=1

Xi < k

]
≤ exp

(
− t

200p(1− p)

)
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Error Reduction in BPP
Proposition 1 (Error Reduction in BPP)
If L ∈ BPP and c > 0 is a constant, then there is a poly-time
PTM M such that for all x ∈ {0, 1}∗

Pr
r
[M(x, r) = L(x)] ≥ 1− 2−|x|c

▶ Apply the error reduction from previous slide with
t(|x|) = O(|x|c).



Adleman’s theorem: BPP ⊂ P/poly

▶ L ∈ BPP and Proposition 1 ⇒ there is poly-time PTM M
such that

∀n ∈ N, x ∈ {0, 1}n, Pr
r
[M(x, r) ̸= L(x)] ≤ 1

2n+1

▶ Suppose M uses m random bits, thus r ∈ {0, 1}m

▶ r is bad for x if M(x, r) ̸= L(x).
▶ Count number of pairs (x, r) such that r is bad for x
▶ For each x, there are ≤ 2m−n−1 such r’s L ∈ BPP
▶ Total number of bad pairs is ≤ 2n · 2m−n−1 = 2m−1

▶ Pigeonhole: there is one r which is good for all x ∈ {0, 1}n

▶ Hardwire this r into M
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Sipser-Gács theorem: BPP ⊆ Σp
2 ∩ Πp
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Theorem 2 (Sipser-Gács)

BPP ⊆ Σp
2 ∩Πp

2

▶ L ∈ BPP and Proposition 1 ⇒ there is PTM M using
m := m(n) ≥ n (poly(n)) random bits for x ∈ {0, 1}n s.t.

Pr
r
[M(x, r) ̸= L(x)] ≤ 2−n

▶ For x ∈ {0, 1}n let Sx ⊂ {0, 1}m be set of random strings r
such that M(x, r) = 1

x ∈ L ⇒ |Sx| ≥ (1− 2−n)2m

x ̸∈ L ⇒ |Sx| ≤ 2m−n

▶ Enough to show which is the case using 2 quantifiers
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▶ Since BPP = coBPP, enough to prove that BPP ⊆ Σp
2
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Let k = ⌈m/n⌉+ 1

1. If S ⊂ {0, 1}m with |S| ≤ 2m−n and u1, . . . , uk ∈ {0, 1}m

k∪
i=1

(S + ui) ̸= {0, 1}m

2. If S ⊆ {0, 1}m with |S| ≥ (1− 2−n)2m, there are
u1, . . . , uk ∈ {0, 1}m such that

k∪
i=1

(S + ui) = {0, 1}m

3. Above show that

x ∈ L ⇔ ∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
k∨

i=1

M(x, r+ui) = 1
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Proof of item 2
Let k = ⌈m/n⌉+ 1

▶ If S ⊆ {0, 1}m with |S| ≥ (1− 2−n)2m, there are
u1, . . . , uk ∈ {0, 1}m such that

k∪
i=1

(S + ui) = {0, 1}m

1. For r ∈ {0, 1}m, let Br event that r ̸∈ Su :=
∪k

i=1(S + ui).
Equivalently, ui ̸∈ S + r for i ∈ [k].

2. |S| ≥ (1− 2−n)2m ⇒ Pr[Br] ≤ 2−nk < 2m

3. By union bound:

Pr [∃r ∈ {0, 1}m | Br] < 1.
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