
Lecture 8 - Randomized Algorithms,
Probabilistic TMs

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

Randomized Algorithms & Probabilistic TMs

Relation to other classes

Modelling Randomness
Two equivalent perspectives. Let p : N → N be a function.
Definition 1 (“online” Probabilistic Turing Machines)
A probabilistic p-time Turing Machine (PTM) M is a TM with two
transition functions δ0, δ1 such that:
▶ at each step, it chooses with probability 1/2 to apply δ0

otherwise δ1

▶ it always halts in p(|x|) steps

Definition 2 (“offline” Probabilistic Turing Machines)
A probabilistic p-time Turing Machine (PTM) M is a TM with two
transition functions δ0, δ1 and two tapes: an input tape and a
random-input tape s.t.
▶ size of random-input tape is p(|x|)
▶ M(x, r) halts in p(|x|) steps

Modelling Randomness
Two equivalent perspectives. Let p : N → N be a function.
Definition 1 (“online” Probabilistic Turing Machines)
A probabilistic p-time Turing Machine (PTM) M is a TM with two
transition functions δ0, δ1 such that:
▶ at each step, it chooses with probability 1/2 to apply δ0

otherwise δ1

▶ it always halts in p(|x|) steps

Definition 2 (“offline” Probabilistic Turing Machines)
A probabilistic p-time Turing Machine (PTM) M is a TM with two
transition functions δ0, δ1 and two tapes: an input tape and a
random-input tape s.t.
▶ size of random-input tape is p(|x|)
▶ M(x, r) halts in p(|x|) steps

No time bound
Definition 3 (Randomized Turing Machines)
A randomized Turing Machine M is a TM with two transition
functions δ0, δ1 such that:
▶ at each step, it chooses with probability 1/2 to apply δ0

otherwise δ1

Modelling running time:
▶ Given a randomized TM M and input x, let T (M,x) be

random variable accounting for running time of M on input x.
▶ We say that M has expected running time t(n) if

E[t(M,x)] ≤ t(|x|)

for all x ∈ {0, 1}∗.

No time bound
Definition 3 (Randomized Turing Machines)
A randomized Turing Machine M is a TM with two transition
functions δ0, δ1 such that:
▶ at each step, it chooses with probability 1/2 to apply δ0

otherwise δ1

Modelling running time:
▶ Given a randomized TM M and input x, let T (M,x) be

random variable accounting for running time of M on input x.
▶ We say that M has expected running time t(n) if

E[t(M,x)] ≤ t(|x|)

for all x ∈ {0, 1}∗.

Randomized Languages
Definition 4 (BPTIME)
Given function t : N → N and L ⊆ {0, 1}∗ we say that a PTM M
decides L in time t(n) if for every x ∈ {0, 1}n:
▶ M halts in t(n) steps (regardless of random choices)
▶ Prr[M(x, r) = L(x)] ≥ 2/3

Important that success probability is constant away from 1/2.

Definition 5 (BPP)
The class BPP (bounded-error probabilistic polynomial-time) is
defined as

BPP :=
⋃
c∈N

BPTIME(O(nc))

Randomized Languages
Definition 4 (BPTIME)
Given function t : N → N and L ⊆ {0, 1}∗ we say that a PTM M
decides L in time t(n) if for every x ∈ {0, 1}n:
▶ M halts in t(n) steps (regardless of random choices)
▶ Prr[M(x, r) = L(x)] ≥ 2/3

Important that success probability is constant away from 1/2.

Definition 5 (BPP)
The class BPP (bounded-error probabilistic polynomial-time) is
defined as

BPP :=
⋃
c∈N

BPTIME(O(nc))

Randomized Languages
Definition 4 (BPTIME)
Given function t : N → N and L ⊆ {0, 1}∗ we say that a PTM M
decides L in time t(n) if for every x ∈ {0, 1}n:
▶ M halts in t(n) steps (regardless of random choices)
▶ Prr[M(x, r) = L(x)] ≥ 2/3

Important that success probability is constant away from 1/2.

Definition 5 (BPP)
The class BPP (bounded-error probabilistic polynomial-time) is
defined as

BPP :=
⋃
c∈N

BPTIME(O(nc))

One-sided error
Definition 6 (RP)
L ⊆ {0, 1}∗ is in RP if there is a poly-time PTM M such that

x ∈ L ⇒ Pr
r
[M(x, r) = 1] ≥ 1/2

x ̸∈ L ⇒ Pr
r
[M(x, r) = 1] = 0.

Definition 7 (coRP)
L ⊆ {0, 1}∗ is in coRP if there is a poly-time PTM M such that

x ∈ L ⇒ Pr
r
[M(x, r) = 1] = 1

x ̸∈ L ⇒ Pr
r
[M(x, r) = 1] ≤ 1/2.

One-sided error
Definition 6 (RP)
L ⊆ {0, 1}∗ is in RP if there is a poly-time PTM M such that

x ∈ L ⇒ Pr
r
[M(x, r) = 1] ≥ 1/2

x ̸∈ L ⇒ Pr
r
[M(x, r) = 1] = 0.

Definition 7 (coRP)
L ⊆ {0, 1}∗ is in coRP if there is a poly-time PTM M such that

x ∈ L ⇒ Pr
r
[M(x, r) = 1] = 1

x ̸∈ L ⇒ Pr
r
[M(x, r) = 1] ≤ 1/2.

Zero error
Definition 8 (ZPP)
L ⊆ {0, 1}∗ is in ZPP if there is a poly-time PTM M whose
output can be 0, 1, ? such that

∀x ∈ {0, 1}∗ ⇒ Pr
r
[M(x, r) =?] ≤ 1/2

∀x, r s.t. M(x, r) ̸=? ⇒ M(x, r) = L(x).

Proposition 9
ZPP is the class of languages which have an expected poly-time
randomized algorithm which always gives the right answer.

Zero error
Definition 8 (ZPP)
L ⊆ {0, 1}∗ is in ZPP if there is a poly-time PTM M whose
output can be 0, 1, ? such that

∀x ∈ {0, 1}∗ ⇒ Pr
r
[M(x, r) =?] ≤ 1/2

∀x, r s.t. M(x, r) ̸=? ⇒ M(x, r) = L(x).

Proposition 9
ZPP is the class of languages which have an expected poly-time
randomized algorithm which always gives the right answer.

Equivalent definition of ZPP
▶ L ∈ ZPP ⇒ exists randomized expected poly-time algorithm

which always gives the right answer

▶ Given ZPP algorithm M which runs in time t(n), let A be the
following algorithm:

1. On input x and random input r ∈ {0, 1}t(|x|), run M(x, r)
2. If the output is ? go back to step 1

▶ Running time:
▶ know that Prr[M(x, r) =?] ≤ 1/2
▶ Hence

E[tA(x)] ≤
∑
k≥1

1

2k
· k · t(|x|) = O(t(|x|))

Equivalent definition of ZPP
▶ L ∈ ZPP ⇒ exists randomized expected poly-time algorithm

which always gives the right answer
▶ Given ZPP algorithm M which runs in time t(n), let A be the

following algorithm:
1. On input x and random input r ∈ {0, 1}t(|x|), run M(x, r)
2. If the output is ? go back to step 1

▶ Running time:
▶ know that Prr[M(x, r) =?] ≤ 1/2
▶ Hence

E[tA(x)] ≤
∑
k≥1

1

2k
· k · t(|x|) = O(t(|x|))

Equivalent definition of ZPP
▶ L ∈ ZPP ⇒ exists randomized expected poly-time algorithm

which always gives the right answer
▶ Given ZPP algorithm M which runs in time t(n), let A be the

following algorithm:
1. On input x and random input r ∈ {0, 1}t(|x|), run M(x, r)
2. If the output is ? go back to step 1

▶ Running time:
▶ know that Prr[M(x, r) =?] ≤ 1/2
▶ Hence

E[tA(x)] ≤
∑
k≥1

1

2k
· k · t(|x|) = O(t(|x|))

Equivalent definition of ZPP
▶ L decided by randomized expected poly-time (t : N → N)

algorithm A which always gives the right answer

▶ Let M be the following algorithm:
1. On input x, run A(x) for 2 · t(|x|) steps
2. If A has not halted, output ?

▶ Running time clearly 2 · t(|x|)
▶ Since expected time is t(|x|)

Pr[M(x) =?] = Pr[A doesn’t halt in 2 · t(n) steps] ≤ 1/2

Equivalent definition of ZPP
▶ L decided by randomized expected poly-time (t : N → N)

algorithm A which always gives the right answer
▶ Let M be the following algorithm:

1. On input x, run A(x) for 2 · t(|x|) steps
2. If A has not halted, output ?

▶ Running time clearly 2 · t(|x|)
▶ Since expected time is t(|x|)

Pr[M(x) =?] = Pr[A doesn’t halt in 2 · t(n) steps] ≤ 1/2

Equivalent definition of ZPP
▶ L decided by randomized expected poly-time (t : N → N)

algorithm A which always gives the right answer
▶ Let M be the following algorithm:

1. On input x, run A(x) for 2 · t(|x|) steps
2. If A has not halted, output ?

▶ Running time clearly 2 · t(|x|)

▶ Since expected time is t(|x|)

Pr[M(x) =?] = Pr[A doesn’t halt in 2 · t(n) steps] ≤ 1/2

Equivalent definition of ZPP
▶ L decided by randomized expected poly-time (t : N → N)

algorithm A which always gives the right answer
▶ Let M be the following algorithm:

1. On input x, run A(x) for 2 · t(|x|) steps
2. If A has not halted, output ?

▶ Running time clearly 2 · t(|x|)
▶ Since expected time is t(|x|)

Pr[M(x) =?] = Pr[A doesn’t halt in 2 · t(n) steps] ≤ 1/2

Randomized log-space
Definition 10 (BPL)
BPL is the class of languages L ⊆ {0, 1} for which there is a
O(logn) space PTM M such that

Pr[M(x) = L(x)] ≥ 2/3, ∀x ∈ {0, 1}∗

Definition 11 (RL)
RL is the class of languages L ⊆ {0, 1} for which there is a
O(logn) space PTM M such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2

x ̸∈ L ⇒ Pr[M(x) = 1] = 0

Randomized log-space
Definition 10 (BPL)
BPL is the class of languages L ⊆ {0, 1} for which there is a
O(logn) space PTM M such that

Pr[M(x) = L(x)] ≥ 2/3, ∀x ∈ {0, 1}∗

Definition 11 (RL)
RL is the class of languages L ⊆ {0, 1} for which there is a
O(logn) space PTM M such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2

x ̸∈ L ⇒ Pr[M(x) = 1] = 0

Examples of randomized algorithms
▶ Polynomial Identity Testing

1. Input: straight-line program (algebraic circuit) and 1d where d
is upper bound on degree

2. Output: is the polynomial computed the zero polynomial?

▶ (Bipartite) Perfect Matching
1. Input: graph G(V,E)
2. Output: does G have a perfect matching?

▶ Primality Testing
1. Input: N ∈ N in binary
2. Output: is N prime?

Examples of randomized algorithms
▶ Polynomial Identity Testing

1. Input: straight-line program (algebraic circuit) and 1d where d
is upper bound on degree

2. Output: is the polynomial computed the zero polynomial?
▶ (Bipartite) Perfect Matching

1. Input: graph G(V,E)
2. Output: does G have a perfect matching?

▶ Primality Testing
1. Input: N ∈ N in binary
2. Output: is N prime?

Examples of randomized algorithms
▶ Polynomial Identity Testing

1. Input: straight-line program (algebraic circuit) and 1d where d
is upper bound on degree

2. Output: is the polynomial computed the zero polynomial?
▶ (Bipartite) Perfect Matching

1. Input: graph G(V,E)
2. Output: does G have a perfect matching?

▶ Primality Testing
1. Input: N ∈ N in binary
2. Output: is N prime?

Why was usefulness expected?
▶ Often times randomized algorithms follow template:

1. Fix a particular (deterministic) action A
2. Flip coins and perform A based on the outcome of the flips
3. Repeat the above enough times

▶ From probability theory, we have many events which when
done independently exhibit concentration of measure

▶ In cases above, saw that the problems which had:
1. a property which distinguished the YES and NO instances
2. quantitatively different number of witnesses

▶ Then, A just test for this property given a random witness
Theorem 12 (Chernoff Bound)
If X1, . . . , Xk ∈ {0, 1} are independent random variables and
Pr[Xi = 1] = p for all i ∈ [k] then

Pr
[∣∣∣∣∣1k ·

k∑
i=1

Xi − p > ε

∣∣∣∣∣
]
≤ 2 · exp

(
− kε2

2p(1− p)

)

Why was usefulness expected?
▶ Often times randomized algorithms follow template:

1. Fix a particular (deterministic) action A
2. Flip coins and perform A based on the outcome of the flips
3. Repeat the above enough times

▶ From probability theory, we have many events which when
done independently exhibit concentration of measure

▶ In cases above, saw that the problems which had:
1. a property which distinguished the YES and NO instances
2. quantitatively different number of witnesses

▶ Then, A just test for this property given a random witness
Theorem 12 (Chernoff Bound)
If X1, . . . , Xk ∈ {0, 1} are independent random variables and
Pr[Xi = 1] = p for all i ∈ [k] then

Pr
[∣∣∣∣∣1k ·

k∑
i=1

Xi − p > ε

∣∣∣∣∣
]
≤ 2 · exp

(
− kε2

2p(1− p)

)

Why was usefulness expected?
▶ Often times randomized algorithms follow template:

1. Fix a particular (deterministic) action A
2. Flip coins and perform A based on the outcome of the flips
3. Repeat the above enough times

▶ From probability theory, we have many events which when
done independently exhibit concentration of measure

▶ In cases above, saw that the problems which had:
1. a property which distinguished the YES and NO instances
2. quantitatively different number of witnesses

▶ Then, A just test for this property given a random witness
Theorem 12 (Chernoff Bound)
If X1, . . . , Xk ∈ {0, 1} are independent random variables and
Pr[Xi = 1] = p for all i ∈ [k] then

Pr
[∣∣∣∣∣1k ·

k∑
i=1

Xi − p > ε

∣∣∣∣∣
]
≤ 2 · exp

(
− kε2

2p(1− p)

)

Why was usefulness expected?
▶ Often times randomized algorithms follow template:

1. Fix a particular (deterministic) action A
2. Flip coins and perform A based on the outcome of the flips
3. Repeat the above enough times

▶ From probability theory, we have many events which when
done independently exhibit concentration of measure

▶ In cases above, saw that the problems which had:
1. a property which distinguished the YES and NO instances
2. quantitatively different number of witnesses

▶ Then, A just test for this property given a random witness
Theorem 12 (Chernoff Bound)
If X1, . . . , Xk ∈ {0, 1} are independent random variables and
Pr[Xi = 1] = p for all i ∈ [k] then

Pr
[∣∣∣∣∣1k ·

k∑
i=1

Xi − p > ε

∣∣∣∣∣
]
≤ 2 · exp

(
− kε2

2p(1− p)

)

Randomized Algorithms & Probabilistic TMs

Relation to other classes

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.
▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP

▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.
▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP

▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.
▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP

▶ ZPP ⊆ RP (also in coRP)
1. Whenever ZPP algorithm outputs ?, output 0 instead.

▶ RP ⊆ BPP
1. Just need to amplify success probability.

▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.

▶ RP ⊆ BPP
1. Just need to amplify success probability.

▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.

▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.
▶ BPP ⊆ PSPACE (more on BPP next lecture)

▶ BPL ⊆ SPACE(log3/2 n)

Relation among complexity classes
▶ Note that can define P as class of languages L decided by

poly-time PTMs such that

Pr
r
[M(x, r) = L(x)] = 1

▶ Hence we have P ⊆ BPP
▶ Also have P ⊆ RP ∩ coRP
▶ RP ⊆ NP
▶ ZPP ⊆ RP (also in coRP)

1. Whenever ZPP algorithm outputs ?, output 0 instead.
▶ RP ⊆ BPP

1. Just need to amplify success probability.
▶ BPP ⊆ PSPACE (more on BPP next lecture)
▶ BPL ⊆ SPACE(log3/2 n)

Randomized Reductions
Definition 13
Language A reduces to language B under randomized poly-time
reductions, denoted A ≤r B, if there is a PTM M such that

∀x ∈ {0, 1}∗, Pr[A(x) = B(M(x))] ≥ 2/3.

▶ Not transitive, but still useful since A ≤r B and B ∈ BPP
then A ∈ BPP.

▶ Randomized reductions are useful in several settings, and in
this course we will see an application when we study counting

Randomized Reductions
Definition 13
Language A reduces to language B under randomized poly-time
reductions, denoted A ≤r B, if there is a PTM M such that

∀x ∈ {0, 1}∗, Pr[A(x) = B(M(x))] ≥ 2/3.

▶ Not transitive, but still useful since A ≤r B and B ∈ BPP
then A ∈ BPP.

▶ Randomized reductions are useful in several settings, and in
this course we will see an application when we study counting

Randomized Reductions
Definition 13
Language A reduces to language B under randomized poly-time
reductions, denoted A ≤r B, if there is a PTM M such that

∀x ∈ {0, 1}∗, Pr[A(x) = B(M(x))] ≥ 2/3.

▶ Not transitive, but still useful since A ≤r B and B ∈ BPP
then A ∈ BPP.

▶ Randomized reductions are useful in several settings, and in
this course we will see an application when we study counting

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach Chapter 7
Cambridge University Press

Trevisan, Luca (2002)
Lecture notes Chapter 5
See webpage

Goldreich, Oded (2006)
Computational complexity: a conceptual perspective. Chapter 6
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

	Randomized Algorithms & Probabilistic TMs
	Relation to other classes

