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Overview

Uniform Computation over a Ring (Field)

Algebraic Circuits



Problems of interest
Let R be a ring (commutative with unit)
▶ System of polynomial equations decision
▶ Semi-algebraic systems of equations decision
▶ Root finding search
▶



Finite BSS model
▶ Let R be a ring

Apart from ring operations, have (in unit cost):
▶ if R is ordered (like R), then we have access to ≥ 0
▶ else, only able to test = 0
▶ if R field, then can divide

▶ Finite machine M over R:
1. Three spaces:

▶ Input space: IM = Rn

▶ State space: SM = Rm

▶ Output space: OM = Rℓ

2. directed graph G with 4 types of nodes:
▶ input node in-degree 0, outdegree 1
▶ output nodes out-degree 0
▶ computation nodes outdegree 1
▶ branch nodes outdegree 2

3. Each node performs a computation over R
▶ Input node: I : IM → SM linear map
▶ Computation: g : SM → SM polynomial (rational) map
▶ Branch: h : SM → R testing = 0 or ≥ 0
▶ Output: OM : SM → OM linear map
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Computation over Finite Machines
▶ Suppose we have the following problem (with R = C):

▶ Input: f ∈ C[x]
▶ Output: find approximation z to a root of f

▶ Algorithm: Newton’s method
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Infinite Tape BSS Model
▶ R∞ :=

⊔
n≥0R

n

▶ R∞ := bi-infinite direct sum space

(. . . , x−2, x−1, x0.x1, x2, . . . )

with xk = 0 for |k| sufficiently large

▶ Polynomials and rational functions h : Rm → R on R∞
defined by evaluation at coordinates [m] := {1, 2, . . . ,m}

▶ Infinite tape model has in addition to the finite model an
extra node called shift nodes σ, where σl(x)i = xi+1 and
σr(x)i = xi−1

▶ Input/output maps I∞ : R∞ → R∞ and O∞ : R∞ → R∞:
▶ I∞(x) = (. . . , 0, n̂.x1, . . . , xn, 0, 0, . . . ) x ∈ Rn

▶ O∞(. . . , x0.x1, . . . , xℓ, . . . ) =

{
0 ∈ R0, if ℓ = 0

(x1, . . . , xℓ) ∈ Rℓ otherwise
where ℓ = mini≥0{x−i = 0}
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Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}
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different complexity measures. See [BCSS], Chapter 4.
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Complete Problems
▶ Hilbert Nullstellensatz (HN):

▶ Input: polynomials p1, . . . , pr ∈ R[x1, . . . , xn]
▶ Output: YES, if there is α ∈ Rn such that pi(α) = 0 for all

i ∈ [r]

▶ HNC is NPC-complete.
▶ 0/1−HNC is 0/1− NPC-complete.
▶ Semi-algebraic fesibility (SA-FEAS):

▶ Input: polynomials p1, . . . , pr, q1, . . . , qs ∈ R[x1, . . . , xn] where
R is ordered ring

▶ Output: YES, if there is α ∈ Rn such that pi(α) ≥ 0 and
qi > 0 for all i ∈ [r]

▶ SA− FEAS is NPR-hard
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Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine

▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH
▶ If K,L are algebraically closed fields of characteristic zero,

then
NPK = Pk ⇔ NPL = PL
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Uniform Computation over a Ring (Field)

Algebraic Circuits



Definition & Reductions



Complexity Classes
▶ VP

{Fn}n ∈ VP ⇔ ∃c ∈ N and {Cn}n circuit s.t.

S(Cn) ≤ nc, deg(Cn) ≤ nc, and Cn(x) = Fn(x)

▶ VNP
Complete polynomial: Pern(X) =

∑
σ∈Sn

∏n
i=1Xiσ(i)

▶ VBP
Complete polynomial: Detn(X) =

∑
σ∈Sn

(−1)σ
∏n

i=1Xiσ(i)

▶ VNC
Theorem 1

VP = VNC = VNC2
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Polynomial Identity Testing
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