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Overview

@ Uniform Computation over a Ring (Field)

@ Algebraic Circuits




Problems of interest

Let R be a ring (commutative with unit)

» System of polynomial equations decision
» Semi-algebraic systems of equations decision
» Root finding search

>
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if R is ordered (like R), then we have access to > 0
else, only able to test = 0
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Finite BSS model

> Let R be aring
Apart from ring operations, have (in unit cost):
if R is ordered (like R), then we have access to > 0
else, only able to test = 0
if R field, then can divide
» Finite machine M over R:
1. Three spaces:
» Input space: Zpr = R™
» State space: Syy = R™
» Output space: Oy = R
2. directed graph G with 4 types of nodes:

> input node in-degree 0, outdegree 1
> output nodes out-degree 0
» computation nodes outdegree 1
» branch nodes outdegree 2
3. Each node performs a computation over R
» Input node: I :Zy — Sum linear map
» Computation: ¢g: Sy — S polynomial (rational) map
» Branch: h: Sy — R testing =0 or >0
» OQutput: On : S — Oumr linear map
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» Suppose we have the following problem (with R = C):
Input: f € C[z]
Output: find approximation z to a root of f




Computation over Finite Machines

» Suppose we have the following problem (with R = C):
Input: f € C[z]
Output: find approximation z to a root of f

» Algorithm: Newton's method
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R := bi-infinite direct sum space
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with xp = 0 for |k| sufficiently large

Polynomials and rational functions h : R™ — R on R
defined by evaluation at coordinates [m] := {1,2,...,m}
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Infinite Tape BSS Model

R := bi-infinite direct sum space

(oo, T9, T 1,20.21,%2,...)

with z;, = 0 for |k| sufficiently large

Polynomials and rational functions i : R™ — R on R
defined by evaluation at coordinates [m] := {1,2,...,m}
Infinite tape model has in addition to the finite model an
extra node called shift nodes o, where oy(z); = ;41 and
or(T); = Ti1

Input/output maps I : R — R and Oy : Roo — R™:

Io(z)=(...,0,n.21,...,2,,0,0,...) xr e R"
0€RY ifl=0

Oco(e o X0y o oy Tpy o) = I , i
(x1,...,2¢) € R" otherwise

where ¢ = min;>o{z_; =0}
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> A language L C R*®

» L is computable/decidable if its characteristic function x, is
decidable by R-machine

» Complexity of computing a problem: number of nodes
traversed in computation®

LCan define different costs for handling different elements of R, which yield
different complexity measures. See [BCSS], Chapter 4.
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Languages and decision problems

A language L. C R
L is computable/decidable if its characteristic function x, is
decidable by R-machine

Complexity of computing a problem: number of nodes
traversed in computation

Pr := class of languages decided by poly-time R-machines
Can now define reductions in similar way to boolean setting.
Projections: given language L, let

II(L):={zx € R>® | Jye R s.t. (x,y) €L}

NPg := {H(L) | Le PR}
Boolean parts: given complexity class C

0/1-C:={LN{0,1}* | LeC)
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Complete Problems

» Hilbert Nullstellensatz (HN):

Input: polynomials p1,...,p, € Rlx1,..., 2y
Output: YES, if there is & € R™ such that p;(«) = 0 for all
i€r]

» HNc is NPc-complete.

» 0/1— HNc¢ is 0/1 — NPc-complete.

» Semi-algebraic fesibility (SA-FEAS):
Input: polynomials p1,...,pr,q1,...,4s € R[x1,...,x,] where
R is ordered ring

Output: YES, if there is & € R™ such that p;(«) > 0 and
gi > 0 for all i € [r]
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Complete Problems
Hilbert Nullstellensatz (HN):

Input: polynomials p1,...,p, € Rlx1,..., 2y
Output: YES, if there is & € R™ such that p;(«) = 0 for all
i€r]

H N¢ is NPc-complete.

0/1 — HNc¢ is 0/1 — NP¢-complete.

Semi-algebraic fesibility (SA-FEAS):
Input: polynomials p1,...,pr,q1,...,4s € R[x1,...,x,] where
R is ordered ring

Output: YES, if there is & € R™ such that p;(«) > 0 and
gi > 0 for all i € [r]

SA— FFEAS is NPr-hard
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Relation to other models

If R =7/27 then infinite tape BSS is a classical Turing
Machine

If R=R then Py, C Pr
Can encode the advice in one entry of the tape - access its
bits using > 0 branch nodes
0/1—Pc C BPP
0/1 — NPc € PSPACE
Under GRH
0/1 —NPc C PH

If K, L are algebraically closed fields of characteristic zero,
then
NPK = Pk -~ NPL = PL




o Algebraic Circuits




Definition & Reductions




> VP

Complexity Classes

{F.}n € VP < 3c € N and {C,},, circuit s.t.
S(Cy) <0, deg(Cp) <0, and Cy(x) = Fy(x)




Complexity Classes

> VP
> VNP

{F}n € VNP < Jec € N and {Cy,},, € VP, t(n) < nf s.t.

Fo(r) = Z Ct(n)@vb)

be{0,1}m

Complete polynomial: Per, (X) =3 s T[is; Xio()
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Complexity Classes

> VP
> VNP
Complete polynomial: Per, (X) =" s Tit; Xioi)
> VBP
Complete polynomial: Det, (X) =" s (—1)7 T[iL; Xio(i)
> VNC

Theorem 1

VP = VNC = VNC?




Polynomial |dentity Testing
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