Lecture 7 - Algebraic computation, Uniform and Non-uniform

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- Uniform Computation over a Ring (Field)
- Algebraic Circuits

Problems of interest

Let R be a ring (commutative with unit)

- System of polynomial equations
- Semi-algebraic systems of equations
- Root finding
decision decision
search

Finite BSS model

- Let R be a ring Apart from ring operations, have (in unit cost):
\square if R is ordered (like \mathbb{R}), then we have access to ≥ 0
- else, only able to test $=0$
- if R field, then can divide

Finite BSS model

- Let R be a ring Apart from ring operations, have (in unit cost):
\square if R is ordered (like \mathbb{R}), then we have access to ≥ 0
- else, only able to test $=0$
$>$ if R field, then can divide
- Finite machine M over R :

1. Three spaces:

- Input space: $\mathcal{I}_{M}=R^{n}$
- State space: $\mathcal{S}_{M}=R^{m}$
- Output space: $\mathcal{O}_{M}=R^{\ell}$

Finite BSS model

- Let R be a ring Apart from ring operations, have (in unit cost):
\square if R is ordered (like \mathbb{R}), then we have access to ≥ 0
- else, only able to test $=0$
\Rightarrow if R field, then can divide
- Finite machine M over R :

1. Three spaces:

- Input space: $\mathcal{I}_{M}=R^{n}$
- State space: $\mathcal{S}_{M}=R^{m}$
- Output space: $\mathcal{O}_{M}=R^{\ell}$

2. directed graph G with 4 types of nodes:

- input node
- output nodes
- computation nodes
- branch nodes

Finite BSS model

- Let R be a ring

Apart from ring operations, have (in unit cost):
\square if R is ordered (like \mathbb{R}), then we have access to ≥ 0

- else, only able to test $=0$
\Rightarrow if R field, then can divide
- Finite machine M over R :

1. Three spaces:

- Input space: $\mathcal{I}_{M}=R^{n}$
- State space: $\mathcal{S}_{M}=R^{m}$
- Output space: $\mathcal{O}_{M}=R^{\ell}$

2. directed graph G with 4 types of nodes:

- input node
- output nodes in-degree 0 , outdegree 1 out-degree 0
- computation nodes outdegree 1
- branch nodes
outdegree 2

3. Each node performs a computation over R

- Input node: $I: \mathcal{I}_{M} \rightarrow \mathcal{S}_{M}$ linear map
- Computation: $g: \mathcal{S}_{M} \rightarrow \mathcal{S}_{M}$
- Branch: $h: \mathcal{S}_{M} \rightarrow R$
- Output: $O_{M}: \mathcal{S}_{M} \rightarrow \mathcal{O}_{M}$

Computation over Finite Machines

- Suppose we have the following problem (with $R=\mathbb{C}$):
- Input: $f \in \mathbb{C}[x]$
- Output: find approximation z to a root of f

Computation over Finite Machines

- Suppose we have the following problem (with $R=\mathbb{C}$):
- Input: $f \in \mathbb{C}[x]$
- Output: find approximation z to a root of f
- Algorithm: Newton's method

Infinite Tape BSS Model

- $R^{\infty}:=\bigsqcup_{n \geq 0} R^{n}$
- $R_{\infty}:=$ bi-infinite direct sum space

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0} \cdot x_{1}, x_{2}, \ldots\right)
$$

with $x_{k}=0$ for $|k|$ sufficiently large

Infinite Tape BSS Model

- $R_{\infty}:=$ bi-infinite direct sum space

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0} \cdot x_{1}, x_{2}, \ldots\right)
$$

with $x_{k}=0$ for $|k|$ sufficiently large

- Polynomials and rational functions $h: R^{m} \rightarrow R$ on R_{∞} defined by evaluation at coordinates $[m]:=\{1,2, \ldots, m\}$

Infinite Tape BSS Model

- $R_{\infty}:=$ bi-infinite direct sum space

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0} \cdot x_{1}, x_{2}, \ldots\right)
$$

with $x_{k}=0$ for $|k|$ sufficiently large

- Polynomials and rational functions $h: R^{m} \rightarrow R$ on R_{∞} defined by evaluation at coordinates $[m]:=\{1,2, \ldots, m\}$
- Infinite tape model has in addition to the finite model an extra node called shift nodes σ, where $\sigma_{l}(x)_{i}=x_{i+1}$ and $\sigma_{r}(x)_{i}=x_{i-1}$

Shifts the distinguished marker

Infinite Tape BSS Model

- $R_{\infty}:=$ bi-infinite direct sum space

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0} \cdot x_{1}, x_{2}, \ldots\right)
$$

with $x_{k}=0$ for $|k|$ sufficiently large

- Polynomials and rational functions $h: R^{m} \rightarrow R$ on R_{∞} defined by evaluation at coordinates $[m]:=\{1,2, \ldots, m\}$
- Infinite tape model has in addition to the finite model an extra node called shift nodes σ, where $\sigma_{l}(x)_{i}=x_{i+1}$ and $\sigma_{r}(x)_{i}=x_{i-1}$
- Input/output maps $I_{\infty}: R^{\infty} \rightarrow R_{\infty}$ and $O_{\infty}: R_{\infty} \rightarrow R^{\infty}$:

$$
\begin{aligned}
& \text { - } I_{\infty}(x)=\left(\ldots, 0, \hat{n} . x_{1}, \ldots, x_{n}, 0,0, \ldots\right) \\
& x \in R^{n} \\
& \nabla_{\infty}\left(\ldots, x_{0} \cdot x_{1}, \ldots, x_{\ell}, \ldots\right)=\left\{\begin{array}{l}
0 \in R^{0}, \text { if } \ell=0 \\
\left(x_{1}, \ldots, x_{\ell}\right) \in R^{\ell} \text { otherwise }
\end{array}\right. \\
& \text { where } \ell=\min _{i \geq 0}\left\{x_{-i}=0\right\}
\end{aligned}
$$

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation ${ }^{1}$

[^0]
Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- $\mathrm{P}_{R}:=$ class of languages decided by poly-time R-machines

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- $\mathrm{P}_{R}:=$ class of languages decided by poly-time R-machines
- Can now define reductions in similar way to boolean setting.

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- $\mathrm{P}_{R}:=$ class of languages decided by poly-time R-machines
- Can now define reductions in similar way to boolean setting.
- Projections: given language L, let

$$
\Pi(L):=\left\{x \in R^{\infty} \quad \mid \exists y \in R^{\infty} \text { s.t. }(x, y) \in L\right\}
$$

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- $\mathrm{P}_{R}:=$ class of languages decided by poly-time R-machines
- Can now define reductions in similar way to boolean setting.
- Projections: given language L, let

$$
\begin{gathered}
\Pi(L):=\left\{x \in R^{\infty} \mid \exists y \in R^{\infty} \text { s.t. }(x, y) \in L\right\} \\
\operatorname{NP}_{R}:=\left\{\Pi(L) \mid L \in \mathrm{P}_{R}\right\}
\end{gathered}
$$

Languages and decision problems

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_{L} is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- $\mathrm{P}_{R}:=$ class of languages decided by poly-time R-machines
- Can now define reductions in similar way to boolean setting.
- Projections: given language L, let

$$
\begin{gathered}
\Pi(L):=\left\{x \in R^{\infty} \mid \exists y \in R^{\infty} \text { s.t. }(x, y) \in L\right\} \\
\operatorname{NP}_{R}:=\left\{\Pi(L) \mid L \in \mathrm{P}_{R}\right\}
\end{gathered}
$$

- Boolean parts: given complexity class \mathcal{C}

$$
0 / 1-\mathcal{C}:=\left\{L \cap\{0,1\}^{*} \quad \mid L \in \mathcal{C}\right\}
$$

Complete Problems

- Hilbert Nullstellensatz (HN):
$>$ Input: polynomials $p_{1}, \ldots, p_{r} \in R\left[x_{1}, \ldots, x_{n}\right]$
$>$ Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha)=0$ for all $i \in[r]$

Complete Problems

- Hilbert Nullstellensatz (HN):
$>$ Input: polynomials $p_{1}, \ldots, p_{r} \in R\left[x_{1}, \ldots, x_{n}\right]$
$>$ Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha)=0$ for all $i \in[r]$
- $H N_{\mathbb{C}}$ is $\mathrm{NP}_{\mathbb{C}^{-c o m p l e t e}}$
$-0 / 1-H N_{\mathbb{C}}$ is $0 / 1-\mathrm{NP}_{\mathbb{C}^{-} \text {complete. }}$

Complete Problems

- Hilbert Nullstellensatz (HN):
\rightarrow Input: polynomials $p_{1}, \ldots, p_{r} \in R\left[x_{1}, \ldots, x_{n}\right]$
$>$ Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha)=0$ for all $i \in[r]$
- $H N_{\mathbb{C}}$ is $\mathrm{NP}_{\mathbb{C}^{-} \text {complete. }}$
- $0 / 1-H N_{\mathbb{C}}$ is $0 / 1-\mathrm{NP}_{\mathbb{C}^{-} \text {-complete. }}$
- Semi-algebraic fesibility (SA-FEAS):
- Input: polynomials $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s} \in R\left[x_{1}, \ldots, x_{n}\right]$ where R is ordered ring
\Rightarrow Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha) \geq 0$ and $q_{i}>0$ for all $i \in[r]$

Complete Problems

- Hilbert Nullstellensatz (HN):
\rightarrow Input: polynomials $p_{1}, \ldots, p_{r} \in R\left[x_{1}, \ldots, x_{n}\right]$
$>$ Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha)=0$ for all $i \in[r]$
- $H N_{\mathbb{C}}$ is $\mathrm{NP}_{\mathbb{C}^{-} \text {complete. }}$
- $0 / 1-H N_{\mathbb{C}}$ is $0 / 1-\mathrm{NP}_{\mathbb{C}^{-} \text {-complete. }}$
- Semi-algebraic fesibility (SA-FEAS):
\rightarrow Input: polynomials $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{s} \in R\left[x_{1}, \ldots, x_{n}\right]$ where R is ordered ring
\Rightarrow Output: YES, if there is $\alpha \in R^{n}$ such that $p_{i}(\alpha) \geq 0$ and $q_{i}>0$ for all $i \in[r]$
- $S A-F E A S$ is $\mathrm{NP}_{\mathbb{R}}$-hard

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine
- If $R=\mathbb{R}$ then $\mathrm{P}_{/ \text {poly }} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine
- If $R=\mathbb{R}$ then $\mathrm{P}_{/ \text {poly }} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

- $0 / 1-\mathrm{P}_{\mathbb{C}} \subseteq \mathrm{BPP}$

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine
- If $R=\mathbb{R}$ then $\mathrm{P}_{/ \text {poly }} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

- $0 / 1-\mathrm{P}_{\mathbb{C}} \subseteq \mathrm{BPP}$
- $0 / 1-\mathrm{NP}_{\mathbb{C}} \subseteq$ PSPACE

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine
- If $R=\mathbb{R}$ then $\mathrm{P}_{/ \text {poly }} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

- $0 / 1-\mathrm{P}_{\mathbb{C}} \subseteq \mathrm{BPP}$
- $0 / 1-\mathrm{NP}_{\mathbb{C}} \subseteq$ PSPACE
- Under GRH

$$
0 / 1-\mathrm{NP}_{\mathbb{C}} \subseteq \mathrm{PH}
$$

Relation to other models

- If $R=\mathbb{Z} / 2 \mathbb{Z}$ then infinite tape BSS is a classical Turing Machine
- If $R=\mathbb{R}$ then $\mathrm{P}_{/ \text {poly }} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

- $0 / 1-\mathrm{P}_{\mathbb{C}} \subseteq \mathrm{BPP}$
- $0 / 1-\mathrm{NP}_{\mathbb{C}} \subseteq$ PSPACE
- Under GRH

$$
0 / 1-\mathrm{NP}_{\mathbb{C}} \subseteq \mathrm{PH}
$$

- If K, L are algebraically closed fields of characteristic zero, then

$$
\mathrm{NP}_{K}=\mathrm{P}_{k} \Leftrightarrow \mathrm{NP}_{L}=\mathrm{P}_{L}
$$

- Uniform Computation over a Ring (Field)
- Algebraic Circuits

Definition \& Reductions

Complexity Classes

- VP

$$
\begin{aligned}
& \left\{F_{n}\right\}_{n} \in \mathrm{VP} \Leftrightarrow \exists c \in \mathbb{N} \text { and }\left\{C_{n}\right\}_{n} \text { circuit s.t. } \\
& S\left(C_{n}\right) \leq n^{c}, \operatorname{deg}\left(C_{n}\right) \leq n^{c}, \text { and } C_{n}(x)=F_{n}(x)
\end{aligned}
$$

Complexity Classes

- VP
- VNP
$\left\{F_{n}\right\}_{n} \in \mathrm{VNP} \Leftrightarrow \exists c \in \mathbb{N}$ and $\left\{C_{n}\right\}_{n} \in \mathrm{VP}, t(n) \leq n^{c}$ s.t.

$$
F_{n}(x)=\sum_{b \in\{0,1\}^{m}} C_{t(n)}(x, b)
$$

Complete polynomial: $\operatorname{Per}_{n}(X)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i \sigma(i)}$

Complexity Classes

- VP
- VNP

Complete polynomial: $\operatorname{Per}_{n}(X)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i \sigma(i)}$

- VBP

Complete polynomial: $\operatorname{Det}_{n}(X)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \prod_{i=1}^{n} X_{i \sigma(i)}$

Complexity Classes

- VP
- VNP

Complete polynomial: $\operatorname{Per}_{n}(X)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i \sigma(i)}$

- VBP

Complete polynomial: $\operatorname{Det}_{n}(X)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \prod_{i=1}^{n} X_{i \sigma(i)}$

- VNC

Theorem 1

$$
V P=V N C=V N C^{2}
$$

Polynomial Identity Testing

References I

Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Chapter 16
Cambridge University Press
Blum, L. and Cucker, F and Shub, M. and Smale, S. (1998)
Complexity and real computation
Chapters 1-5 Springer Science \& Business Media

[^0]: ${ }^{1}$ Can define different costs for handling different elements of R, which yield different complexity measures. See [BCSS], Chapter 4.

