
Lecture 7 - Algebraic computation,
Uniform and Non-uniform

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

Uniform Computation over a Ring (Field)

Algebraic Circuits

Problems of interest
Let R be a ring (commutative with unit)
▶ System of polynomial equations decision
▶ Semi-algebraic systems of equations decision
▶ Root finding search
▶

Finite BSS model
▶ Let R be a ring

Apart from ring operations, have (in unit cost):
▶ if R is ordered (like R), then we have access to ≥ 0
▶ else, only able to test = 0
▶ if R field, then can divide

▶ Finite machine M over R:
1. Three spaces:

▶ Input space: IM = Rn

▶ State space: SM = Rm

▶ Output space: OM = Rℓ

2. directed graph G with 4 types of nodes:
▶ input node in-degree 0, outdegree 1
▶ output nodes out-degree 0
▶ computation nodes outdegree 1
▶ branch nodes outdegree 2

3. Each node performs a computation over R
▶ Input node: I : IM → SM linear map
▶ Computation: g : SM → SM polynomial (rational) map
▶ Branch: h : SM → R testing = 0 or ≥ 0
▶ Output: OM : SM → OM linear map

Finite BSS model
▶ Let R be a ring

Apart from ring operations, have (in unit cost):
▶ if R is ordered (like R), then we have access to ≥ 0
▶ else, only able to test = 0
▶ if R field, then can divide

▶ Finite machine M over R:
1. Three spaces:

▶ Input space: IM = Rn

▶ State space: SM = Rm

▶ Output space: OM = Rℓ

2. directed graph G with 4 types of nodes:
▶ input node in-degree 0, outdegree 1
▶ output nodes out-degree 0
▶ computation nodes outdegree 1
▶ branch nodes outdegree 2

3. Each node performs a computation over R
▶ Input node: I : IM → SM linear map
▶ Computation: g : SM → SM polynomial (rational) map
▶ Branch: h : SM → R testing = 0 or ≥ 0
▶ Output: OM : SM → OM linear map

Finite BSS model
▶ Let R be a ring

Apart from ring operations, have (in unit cost):
▶ if R is ordered (like R), then we have access to ≥ 0
▶ else, only able to test = 0
▶ if R field, then can divide

▶ Finite machine M over R:
1. Three spaces:

▶ Input space: IM = Rn

▶ State space: SM = Rm

▶ Output space: OM = Rℓ

2. directed graph G with 4 types of nodes:
▶ input node in-degree 0, outdegree 1
▶ output nodes out-degree 0
▶ computation nodes outdegree 1
▶ branch nodes outdegree 2

3. Each node performs a computation over R
▶ Input node: I : IM → SM linear map
▶ Computation: g : SM → SM polynomial (rational) map
▶ Branch: h : SM → R testing = 0 or ≥ 0
▶ Output: OM : SM → OM linear map

Finite BSS model
▶ Let R be a ring

Apart from ring operations, have (in unit cost):
▶ if R is ordered (like R), then we have access to ≥ 0
▶ else, only able to test = 0
▶ if R field, then can divide

▶ Finite machine M over R:
1. Three spaces:

▶ Input space: IM = Rn

▶ State space: SM = Rm

▶ Output space: OM = Rℓ

2. directed graph G with 4 types of nodes:
▶ input node in-degree 0, outdegree 1
▶ output nodes out-degree 0
▶ computation nodes outdegree 1
▶ branch nodes outdegree 2

3. Each node performs a computation over R
▶ Input node: I : IM → SM linear map
▶ Computation: g : SM → SM polynomial (rational) map
▶ Branch: h : SM → R testing = 0 or ≥ 0
▶ Output: OM : SM → OM linear map

Computation over Finite Machines
▶ Suppose we have the following problem (with R = C):

▶ Input: f ∈ C[x]
▶ Output: find approximation z to a root of f

▶ Algorithm: Newton’s method

Computation over Finite Machines
▶ Suppose we have the following problem (with R = C):

▶ Input: f ∈ C[x]
▶ Output: find approximation z to a root of f

▶ Algorithm: Newton’s method

Infinite Tape BSS Model
▶ R∞ :=

⊔
n≥0R

n

▶ R∞ := bi-infinite direct sum space

(. . . , x−2, x−1, x0.x1, x2, . . .)

with xk = 0 for |k| sufficiently large

▶ Polynomials and rational functions h : Rm → R on R∞
defined by evaluation at coordinates [m] := {1, 2, . . . ,m}

▶ Infinite tape model has in addition to the finite model an
extra node called shift nodes σ, where σl(x)i = xi+1 and
σr(x)i = xi−1

▶ Input/output maps I∞ : R∞ → R∞ and O∞ : R∞ → R∞:
▶ I∞(x) = (. . . , 0, n̂.x1, . . . , xn, 0, 0, . . .) x ∈ Rn

▶ O∞(. . . , x0.x1, . . . , xℓ, . . .) =

{
0 ∈ R0, if ℓ = 0

(x1, . . . , xℓ) ∈ Rℓ otherwise
where ℓ = mini≥0{x−i = 0}

Infinite Tape BSS Model
▶ R∞ := bi-infinite direct sum space

(. . . , x−2, x−1, x0.x1, x2, . . .)

with xk = 0 for |k| sufficiently large
▶ Polynomials and rational functions h : Rm → R on R∞

defined by evaluation at coordinates [m] := {1, 2, . . . ,m}

▶ Infinite tape model has in addition to the finite model an
extra node called shift nodes σ, where σl(x)i = xi+1 and
σr(x)i = xi−1

▶ Input/output maps I∞ : R∞ → R∞ and O∞ : R∞ → R∞:
▶ I∞(x) = (. . . , 0, n̂.x1, . . . , xn, 0, 0, . . .) x ∈ Rn

▶ O∞(. . . , x0.x1, . . . , xℓ, . . .) =

{
0 ∈ R0, if ℓ = 0

(x1, . . . , xℓ) ∈ Rℓ otherwise
where ℓ = mini≥0{x−i = 0}

Infinite Tape BSS Model
▶ R∞ := bi-infinite direct sum space

(. . . , x−2, x−1, x0.x1, x2, . . .)

with xk = 0 for |k| sufficiently large
▶ Polynomials and rational functions h : Rm → R on R∞

defined by evaluation at coordinates [m] := {1, 2, . . . ,m}
▶ Infinite tape model has in addition to the finite model an

extra node called shift nodes σ, where σl(x)i = xi+1 and
σr(x)i = xi−1

Shifts the distinguished marker

▶ Input/output maps I∞ : R∞ → R∞ and O∞ : R∞ → R∞:
▶ I∞(x) = (. . . , 0, n̂.x1, . . . , xn, 0, 0, . . .) x ∈ Rn

▶ O∞(. . . , x0.x1, . . . , xℓ, . . .) =

{
0 ∈ R0, if ℓ = 0

(x1, . . . , xℓ) ∈ Rℓ otherwise
where ℓ = mini≥0{x−i = 0}

Infinite Tape BSS Model
▶ R∞ := bi-infinite direct sum space

(. . . , x−2, x−1, x0.x1, x2, . . .)

with xk = 0 for |k| sufficiently large
▶ Polynomials and rational functions h : Rm → R on R∞

defined by evaluation at coordinates [m] := {1, 2, . . . ,m}
▶ Infinite tape model has in addition to the finite model an

extra node called shift nodes σ, where σl(x)i = xi+1 and
σr(x)i = xi−1

▶ Input/output maps I∞ : R∞ → R∞ and O∞ : R∞ → R∞:
▶ I∞(x) = (. . . , 0, n̂.x1, . . . , xn, 0, 0, . . .) x ∈ Rn

▶ O∞(. . . , x0.x1, . . . , xℓ, . . .) =

{
0 ∈ R0, if ℓ = 0

(x1, . . . , xℓ) ∈ Rℓ otherwise
where ℓ = mini≥0{x−i = 0}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation1

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}
▶

NPR := {Π(L) | L ∈ PR}
▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

1Can define different costs for handling different elements of R, which yield
different complexity measures. See [BCSS], Chapter 4.

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines

▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.

▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Languages and decision problems
▶ A language L ⊆ R∞

▶ L is computable/decidable if its characteristic function χL is
decidable by R-machine

▶ Complexity of computing a problem: number of nodes
traversed in computation

▶ PR := class of languages decided by poly-time R-machines
▶ Can now define reductions in similar way to boolean setting.
▶ Projections: given language L, let

Π(L) := {x ∈ R∞ | ∃y ∈ R∞ s.t. (x, y) ∈ L}

▶
NPR := {Π(L) | L ∈ PR}

▶ Boolean parts: given complexity class C

0/1− C := {L ∩ {0, 1}∗ | L ∈ C}

Complete Problems
▶ Hilbert Nullstellensatz (HN):

▶ Input: polynomials p1, . . . , pr ∈ R[x1, . . . , xn]
▶ Output: YES, if there is α ∈ Rn such that pi(α) = 0 for all

i ∈ [r]

▶ HNC is NPC-complete.
▶ 0/1−HNC is 0/1− NPC-complete.
▶ Semi-algebraic fesibility (SA-FEAS):

▶ Input: polynomials p1, . . . , pr, q1, . . . , qs ∈ R[x1, . . . , xn] where
R is ordered ring

▶ Output: YES, if there is α ∈ Rn such that pi(α) ≥ 0 and
qi > 0 for all i ∈ [r]

▶ SA− FEAS is NPR-hard

Complete Problems
▶ Hilbert Nullstellensatz (HN):

▶ Input: polynomials p1, . . . , pr ∈ R[x1, . . . , xn]
▶ Output: YES, if there is α ∈ Rn such that pi(α) = 0 for all

i ∈ [r]

▶ HNC is NPC-complete.
▶ 0/1−HNC is 0/1− NPC-complete.

▶ Semi-algebraic fesibility (SA-FEAS):
▶ Input: polynomials p1, . . . , pr, q1, . . . , qs ∈ R[x1, . . . , xn] where

R is ordered ring
▶ Output: YES, if there is α ∈ Rn such that pi(α) ≥ 0 and

qi > 0 for all i ∈ [r]

▶ SA− FEAS is NPR-hard

Complete Problems
▶ Hilbert Nullstellensatz (HN):

▶ Input: polynomials p1, . . . , pr ∈ R[x1, . . . , xn]
▶ Output: YES, if there is α ∈ Rn such that pi(α) = 0 for all

i ∈ [r]

▶ HNC is NPC-complete.
▶ 0/1−HNC is 0/1− NPC-complete.
▶ Semi-algebraic fesibility (SA-FEAS):

▶ Input: polynomials p1, . . . , pr, q1, . . . , qs ∈ R[x1, . . . , xn] where
R is ordered ring

▶ Output: YES, if there is α ∈ Rn such that pi(α) ≥ 0 and
qi > 0 for all i ∈ [r]

▶ SA− FEAS is NPR-hard

Complete Problems
▶ Hilbert Nullstellensatz (HN):

▶ Input: polynomials p1, . . . , pr ∈ R[x1, . . . , xn]
▶ Output: YES, if there is α ∈ Rn such that pi(α) = 0 for all

i ∈ [r]

▶ HNC is NPC-complete.
▶ 0/1−HNC is 0/1− NPC-complete.
▶ Semi-algebraic fesibility (SA-FEAS):

▶ Input: polynomials p1, . . . , pr, q1, . . . , qs ∈ R[x1, . . . , xn] where
R is ordered ring

▶ Output: YES, if there is α ∈ Rn such that pi(α) ≥ 0 and
qi > 0 for all i ∈ [r]

▶ SA− FEAS is NPR-hard

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine

▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH
▶ If K,L are algebraically closed fields of characteristic zero,

then
NPK = Pk ⇔ NPL = PL

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine
▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH
▶ If K,L are algebraically closed fields of characteristic zero,

then
NPK = Pk ⇔ NPL = PL

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine
▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP

▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH
▶ If K,L are algebraically closed fields of characteristic zero,

then
NPK = Pk ⇔ NPL = PL

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine
▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE

▶ Under GRH
0/1− NPC ⊆ PH

▶ If K,L are algebraically closed fields of characteristic zero,
then

NPK = Pk ⇔ NPL = PL

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine
▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH

▶ If K,L are algebraically closed fields of characteristic zero,
then

NPK = Pk ⇔ NPL = PL

Relation to other models
▶ If R = Z/2Z then infinite tape BSS is a classical Turing

Machine
▶ If R = R then P/poly ⊂ PR

Can encode the advice in one entry of the tape - access its
bits using ≥ 0 branch nodes

▶ 0/1− PC ⊆ BPP
▶ 0/1− NPC ⊆ PSPACE
▶ Under GRH

0/1− NPC ⊆ PH
▶ If K,L are algebraically closed fields of characteristic zero,

then
NPK = Pk ⇔ NPL = PL

Uniform Computation over a Ring (Field)

Algebraic Circuits

Definition & Reductions

Complexity Classes
▶ VP

{Fn}n ∈ VP ⇔ ∃c ∈ N and {Cn}n circuit s.t.

S(Cn) ≤ nc, deg(Cn) ≤ nc, and Cn(x) = Fn(x)

▶ VNP
Complete polynomial: Pern(X) =

∑
σ∈Sn

∏n
i=1Xiσ(i)

▶ VBP
Complete polynomial: Detn(X) =

∑
σ∈Sn

(−1)σ
∏n

i=1Xiσ(i)

▶ VNC
Theorem 1

VP = VNC = VNC2

Complexity Classes
▶ VP
▶ VNP

{Fn}n ∈ VNP ⇔ ∃c ∈ N and {Cn}n ∈ VP, t(n) ≤ nc s.t.

Fn(x) =
∑

b∈{0,1}m
Ct(n)(x, b)

Complete polynomial: Pern(X) =
∑

σ∈Sn

∏n
i=1Xiσ(i)

▶ VBP
Complete polynomial: Detn(X) =

∑
σ∈Sn

(−1)σ
∏n

i=1Xiσ(i)

▶ VNC
Theorem 1

VP = VNC = VNC2

Complexity Classes
▶ VP
▶ VNP

Complete polynomial: Pern(X) =
∑

σ∈Sn

∏n
i=1Xiσ(i)

▶ VBP
Complete polynomial: Detn(X) =

∑
σ∈Sn

(−1)σ
∏n

i=1Xiσ(i)

▶ VNC
Theorem 1

VP = VNC = VNC2

Complexity Classes
▶ VP
▶ VNP

Complete polynomial: Pern(X) =
∑

σ∈Sn

∏n
i=1Xiσ(i)

▶ VBP
Complete polynomial: Detn(X) =

∑
σ∈Sn

(−1)σ
∏n

i=1Xiσ(i)

▶ VNC
Theorem 1

VP = VNC = VNC2

Polynomial Identity Testing

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach Chapter 16
Cambridge University Press

Blum, L. and Cucker, F and Shub, M. and Smale, S. (1998)
Complexity and real computation Chapters 1-5
Springer Science & Business Media

	Uniform Computation over a Ring (Field)
	Algebraic Circuits

