Lecture 7 - Algebraic computation, Uniform and Non-uniform

Rafael Oliveira

rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• Uniform Computation over a Ring (Field)

• Algebraic Circuits

Problems of interest

Let R be a ring (commutative with unit)

- System of polynomial equations
- Semi-algebraic systems of equations
- Root finding

decision decision search

• Let R be a ring

Apart from ring operations, have (in unit cost):

- ▶ if R is ordered (like \mathbb{R}), then we have access to ≥ 0
- \blacktriangleright else, only able to test = 0
- \blacktriangleright if R field, then can divide

Let R be a ring Apart from ring operations, have (in unit cost):
if R is ordered (like ℝ), then we have access to ≥ 0
else, only able to test = 0
if R field, then can divide
Finite machine M over R:
1. Three spaces:
Input space: I_M = Rⁿ
State space: S_M = R^m
Output space: O_M = R^ℓ

Let R be a ring Apart from ring operations, have (in unit cost): • if R is ordered (like \mathbb{R}), then we have access to ≥ 0 \blacktriangleright else, only able to test = 0 if R field, then can divide Finite machine M over R: 1. Three spaces: lnput space: $\mathcal{I}_M = \mathbb{R}^n$ State space: $S_M = R^m$ • Output space: $\mathcal{O}_M = R^\ell$ 2. directed graph G with 4 types of nodes: input node in-degree 0, outdegree 1 output nodes out-degree 0 outdegree 1 computation nodes branch nodes

outdegree 2

Let R be a ring Apart from ring operations, have (in unit cost): • if R is ordered (like \mathbb{R}), then we have access to ≥ 0 \blacktriangleright else, only able to test = 0 if R field, then can divide Finite machine M over R: 1. Three spaces: lnput space: $\mathcal{I}_M = \mathbb{R}^n$ State space: $S_M = R^m$ • Output space: $\mathcal{O}_M = R^\ell$ 2. directed graph G with 4 types of nodes: input node in-degree 0, outdegree 1 output nodes out-degree 0 computation nodes outdegree 1 branch nodes outdegree 2 3. Each node performs a computation over Rlnput node: $I : \mathcal{I}_M \to \mathcal{S}_M$ linear map • Computation: $q: S_M \to S_M$ polynomial (rational) map **b** Branch: $h: \mathcal{S}_M \to R$ testing = 0 or ≥ 0

• Output: $O_M : S_M \to \mathcal{O}_M$

linear map

Computation over Finite Machines

Suppose we have the following problem (with $R = \mathbb{C}$):

- ▶ Input: $f \in \mathbb{C}[x]$
- Output: find approximation z to a root of f

Computation over Finite Machines

Suppose we have the following problem (with $R = \mathbb{C}$):

▶ Input: $f \in \mathbb{C}[x]$

• Output: find approximation z to a root of f

Algorithm: Newton's method

$$(\ldots, x_{-2}, x_{-1}, x_0.x_1, x_2, \ldots)$$

with $x_k = 0$ for |k| sufficiently large

▶ $R_{\infty} :=$ bi-infinite direct sum space

$$(\ldots, x_{-2}, x_{-1}, x_0.x_1, x_2, \ldots)$$

with $x_k = 0$ for |k| sufficiently large

▶ Polynomials and rational functions h : R^m → R on R_∞ defined by evaluation at coordinates [m] := {1, 2, ..., m}

• $R_{\infty} :=$ bi-infinite direct sum space

 $(\ldots, x_{-2}, x_{-1}, x_0.x_1, x_2, \ldots)$

with $x_k = 0$ for |k| sufficiently large

- ▶ Polynomials and rational functions h : R^m → R on R_∞ defined by evaluation at coordinates [m] := {1, 2, ..., m}
- Infinite tape model has in addition to the finite model an extra node called shift nodes σ, where σ_l(x)_i = x_{i+1} and σ_r(x)_i = x_{i-1}

Shifts the distinguished marker

• $R_{\infty} :=$ bi-infinite direct sum space

$$(\ldots, x_{-2}, x_{-1}, x_0.x_1, x_2, \ldots)$$

with $x_k = 0$ for |k| sufficiently large

- ▶ Polynomials and rational functions h : R^m → R on R_∞ defined by evaluation at coordinates [m] := {1, 2, ..., m}
- ▶ Infinite tape model has in addition to the finite model an extra node called shift nodes σ , where $\sigma_l(x)_i = x_{i+1}$ and $\sigma_r(x)_i = x_{i-1}$
- ▶ Input/output maps $I_{\infty}: R^{\infty} \to R_{\infty}$ and $O_{\infty}: R_{\infty} \to R^{\infty}$:

$$I_{\infty}(x) = (\dots, 0, \hat{n}.x_1, \dots, x_n, 0, 0, \dots) \qquad x \in \mathbb{R}^n$$

$$O_{\infty}(\dots, x_0.x_1, \dots, x_{\ell}, \dots) = \begin{cases} 0 \in \mathbb{R}^0, \text{ if } \ell = 0 \\ (x_1, \dots, x_{\ell}) \in \mathbb{R}^{\ell} \text{ otherwise} \end{cases}$$
where $\ell = \min_{i \ge 0} \{ x_{-i} = 0 \}$

- $\blacktriangleright \ \mathsf{A} \ \mathsf{language} \ L \subseteq \mathbb{R}^{\infty}$
- $\blacktriangleright L$ is computable/decidable if its characteristic function χ_L is decidable by R-machine

- $\blacktriangleright A \text{ language } L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation¹

¹Can define different costs for handling different elements of R, which yield different complexity measures. See **[BCSS]**, Chapter 4.

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- ▶ $P_R :=$ class of languages decided by poly-time *R*-machines

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- ▶ $P_R :=$ class of languages decided by poly-time *R*-machines
- ▶ Can now define reductions in similar way to boolean setting.

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- ▶ $P_R :=$ class of languages decided by poly-time *R*-machines
- ▶ Can now define reductions in similar way to boolean setting.
- ▶ Projections: given language *L*, let

$$\Pi(L):=\{x\in R^\infty \ | \ \exists y\in R^\infty \text{ s.t. } (x,y)\in L\}$$

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- ▶ $P_R :=$ class of languages decided by poly-time *R*-machines
- ▶ Can now define reductions in similar way to boolean setting.
- ▶ Projections: given language L, let

$$\Pi(L) := \{ x \in R^{\infty} \mid \exists y \in R^{\infty} \text{ s.t. } (x, y) \in L \}$$

$$\mathsf{NP}_R := \{ \Pi(L) \mid L \in \mathsf{P}_R \}$$

- A language $L \subseteq \mathbb{R}^{\infty}$
- L is computable/decidable if its characteristic function χ_L is decidable by R-machine
- Complexity of computing a problem: number of nodes traversed in computation
- ▶ $P_R :=$ class of languages decided by poly-time *R*-machines
- ▶ Can now define reductions in similar way to boolean setting.
- ▶ Projections: given language *L*, let

$$\Pi(L) := \{ x \in R^{\infty} \mid \exists y \in R^{\infty} \text{ s.t. } (x, y) \in L \}$$

$$\mathsf{NP}_R := \{ \Pi(L) \mid L \in \mathsf{P}_R \}$$

• Boolean parts: given complexity class C

$$0/1 - \mathcal{C} := \{L \cap \{0, 1\}^* \mid L \in \mathcal{C}\}$$

Hilbert Nullstellensatz (HN):

- lnput: polynomials $p_1, \ldots, p_r \in R[x_1, \ldots, x_n]$
- Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) = 0$ for all $i \in [r]$

- Hilbert Nullstellensatz (HN):
 - lnput: polynomials $p_1, \ldots, p_r \in R[x_1, \ldots, x_n]$
 - Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) = 0$ for all $i \in [r]$
- ▶ $HN_{\mathbb{C}}$ is NP_C-complete.
- ▶ $0/1 HN_{\mathbb{C}}$ is $0/1 \mathsf{NP}_{\mathbb{C}}$ -complete.

- Hilbert Nullstellensatz (HN):
 - ▶ Input: polynomials $p_1, \ldots, p_r \in R[x_1, \ldots, x_n]$
 - Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) = 0$ for all $i \in [r]$
- ▶ $HN_{\mathbb{C}}$ is NP_C-complete.
- ▶ $0/1 HN_{\mathbb{C}}$ is $0/1 \mathsf{NP}_{\mathbb{C}}$ -complete.
- Semi-algebraic fesibility (SA-FEAS):
 - lnput: polynomials $p_1, \ldots, p_r, q_1, \ldots, q_s \in R[x_1, \ldots, x_n]$ where R is ordered ring
 - Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) \ge 0$ and $q_i > 0$ for all $i \in [r]$

- ► Hilbert Nullstellensatz (HN):
 - ▶ Input: polynomials $p_1, \ldots, p_r \in R[x_1, \ldots, x_n]$
 - Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) = 0$ for all $i \in [r]$
- ▶ $HN_{\mathbb{C}}$ is NP_C-complete.
- ▶ $0/1 HN_{\mathbb{C}}$ is $0/1 \mathsf{NP}_{\mathbb{C}}$ -complete.
- Semi-algebraic fesibility (SA-FEAS):
 - lnput: polynomials $p_1, \ldots, p_r, q_1, \ldots, q_s \in R[x_1, \ldots, x_n]$ where R is ordered ring
 - Output: YES, if there is $\alpha \in R^n$ such that $p_i(\alpha) \ge 0$ and $q_i > 0$ for all $i \in [r]$
- ▶ SA FEAS is NP_R-hard

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If
$$R = \mathbb{R}$$
 then $\mathsf{P}_{/poly} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If
$$R = \mathbb{R}$$
 then $\mathsf{P}_{/poly} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

▶
$$0/1 - \mathsf{P}_{\mathbb{C}} \subseteq \mathsf{BPP}$$

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If
$$R = \mathbb{R}$$
 then $\mathsf{P}_{/poly} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

▶
$$0/1 - \mathsf{P}_{\mathbb{C}} \subseteq \mathsf{BPP}$$

▶
$$0/1 - \mathsf{NP}_{\mathbb{C}} \subseteq \mathsf{PSPACE}$$

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If
$$R = \mathbb{R}$$
 then $\mathsf{P}_{/poly} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

▶
$$0/1 - \mathsf{P}_{\mathbb{C}} \subseteq \mathsf{BPP}$$

▶
$$0/1 - \mathsf{NP}_{\mathbb{C}} \subseteq \mathsf{PSPACE}$$

Under GRH

 $0/1 - \mathsf{NP}_{\mathbb{C}} \subseteq \mathsf{PH}$

▶ If $R = \mathbb{Z}/2\mathbb{Z}$ then infinite tape BSS is a classical Turing Machine

▶ If
$$R = \mathbb{R}$$
 then $\mathsf{P}_{/poly} \subset P_{\mathbb{R}}$

Can encode the advice in one entry of the tape - access its bits using ≥ 0 branch nodes

▶
$$0/1 - \mathsf{P}_{\mathbb{C}} \subseteq \mathsf{BPP}$$

▶
$$0/1 - \mathsf{NP}_{\mathbb{C}} \subseteq \mathsf{PSPACE}$$

Under GRH

$$0/1 - \mathsf{NP}_{\mathbb{C}} \subseteq \mathsf{PH}$$

▶ If *K*, *L* are algebraically closed fields of characteristic zero, then

$$\mathsf{NP}_K = \mathsf{P}_k \Leftrightarrow \mathsf{NP}_L = \mathsf{P}_L$$

• Uniform Computation over a Ring (Field)

• Algebraic Circuits

Definition & Reductions

► VP

 $\{F_n\}_n \in \mathsf{VP} \Leftrightarrow \exists c \in \mathbb{N} \text{ and } \{C_n\}_n \text{ circuit s.t.}$ $S(C_n) \leq n^c, \deg(C_n) \leq n^c, \text{ and } C_n(x) = F_n(x)$

► VP ► VNP

> $\{F_n\}_n \in \mathsf{VNP} \Leftrightarrow \exists c \in \mathbb{N} \text{ and } \{C_n\}_n \in \mathsf{VP}, t(n) \leq n^c \text{ s.t.}$ $F_n(x) = \sum_{b \in \{0,1\}^m} C_{t(n)}(x,b)$ Complete polynomial: $\mathsf{Per}_n(X) = \sum_{\sigma \in S_m} \prod_{i=1}^n X_{i\sigma(i)}$

► VP

VNP

Complete polynomial: ${\rm Per}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$ \blacktriangleright VBP

Complete polynomial: $\text{Det}_n(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$

► VP

VNP

Complete polynomial: $\operatorname{Per}_n(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}$ \blacktriangleright VBP Complete polynomial: $\operatorname{Det}_n(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i=1}^n X_{i\sigma(i)}$ \triangleright VNC

Theorem 1

$$VP = VNC = VNC^2$$

Polynomial Identity Testing

References I

Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach <u>Cambridge University Press</u>

Chapter 16

Blum, L. and Cucker, F and Shub, M. and Smale, S. (1998) Complexity and real computation Springer Science & Business Media

Chapters 1-5