Lecture 5 - Polynomial Hierarchy, Alternating TMs, Time-Space

> Rafael Oliveira rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• Polynomial Hierarchy (PH)

• Time vs Alternations: time-space tradeoffs

Often times interested in problems of the form: "find the smallest/largest object with certain property"

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- $\blacktriangleright \text{ MIN-EQ-DNF}: \{ \langle \varphi, k \rangle \mid \exists \text{ DNF } \psi \text{ of size } \leq k \text{ s.t. } \psi \equiv \varphi \}$

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- ▶ MIN-EQ-DNF : { $\langle \varphi, k \rangle \mid \exists$ DNF ψ of size $\leq k$ s.t. $\psi \equiv \varphi$ }
- EXACT-INDSET := $\{\langle G, k \rangle \mid$

G has largest independent set of size k}

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- $\blacktriangleright \text{ MIN-EQ-DNF}: \{ \langle \varphi, k \rangle \mid \exists \text{ DNF } \psi \text{ of size } \leq k \text{ s.t. } \psi \equiv \varphi \}$

- There isn't obvious notion (or none at all) of a small/efficient certificate for the problems above
- ▶ Seem to need both \exists, \forall quantifiers

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- $\blacktriangleright \text{ MIN-EQ-DNF}: \{ \langle \varphi, k \rangle \mid \exists \text{ DNF } \psi \text{ of size } \leq k \text{ s.t. } \psi \equiv \varphi \}$

- There isn't obvious notion (or none at all) of a small/efficient certificate for the problems above
- ▶ Seem to need both \exists, \forall quantifiers

Definition

The class Σ_2^p is the set of languages $L\subseteq\{0,1\}^*$ such that there is poly-time TM M and polynomial q such that

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} \ M(x,u,v) = 1.$$

Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)

For $i \geq 1$, a language $L \subseteq \{0,1\}^*$ is in Σ_i^p if there is a poly-time TM M and a polynomial $q : \mathbb{N} \to \mathbb{N}$ s.t.

$$x \in L \Leftrightarrow \exists u_1 \in \{0, 1\}^{q(|x|)} \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)}$$
$$M(x, u_1, \dots, u_i) = 1.$$

where $Q_i = \exists$ iff i odd.

The polynomial hierarchy is the set $PH := \bigcup_i \Sigma_i^p$.

Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)

For $i \geq 1$, a language $L \subseteq \{0,1\}^*$ is in Σ_i^p if there is a poly-time TM M and a polynomial $q : \mathbb{N} \to \mathbb{N}$ s.t.

$$x \in L \Leftrightarrow \exists u_1 \in \{0, 1\}^{q(|x|)} \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)}$$
$$M(x, u_1, \dots, u_i) = 1.$$

where $Q_i = \exists$ iff i odd.

The polynomial hierarchy is the set $PH := \bigcup_i \Sigma_i^p$.

Can also define $\Pi_i^p := \{\overline{L} \mid L \in \Sigma_i^p\}$. Equivalently, $L \in \Pi_i^p$ iff: $x \in L \Leftrightarrow \forall u_1 \in \{0, 1\}^{q(|x|)} \exists u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)}$ $M(x, u_1, \dots, u_i) = 1.$

where we alternate the quatifiers.

PH in terms of oracles

Theorem

For every
$$i \ge 2$$
, $\Sigma_i^p = NP^{\Sigma_{i-1}^p}$.

• Will prove statement above for i = 2.

PH in terms of oracles

Theorem

For every
$$i \ge 2$$
, $\Sigma_i^p = NP^{\Sigma_{i-1}^p}$.

• Will prove statement above for i = 2.

▶ Want to show $\Sigma_2^p = \mathsf{NP}^{\mathsf{NP}} = \mathsf{NP}^{\mathsf{SAT}}$

$$\Sigma_2^p \subseteq \mathsf{NP}^{\mathsf{NP}}$$

1. $L \in \Sigma_2^p$, then for $p : \mathbb{N} \to \mathbb{N}$ polynomial and poly-time TM V $x \in L \Leftrightarrow \exists u_1 \in \{0, 1\}^{p(|x|)} \forall u_2 \in \{0, 1\}^{p(|x|)} V(x, u_1, u_2).$

$$\Sigma_2^p \subseteq \mathsf{NP}^{\mathsf{NP}}$$

1. $L \in \Sigma_2^p$, then for $p : \mathbb{N} \to \mathbb{N}$ polynomial and poly-time TM V

 $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{p(|x|)} \forall u_2 \in \{0,1\}^{p(|x|)} V(x,u_1,u_2).$

2. Construction of NTM $M \in NP^{NP}$

• On input $x \in \{0,1\}^n$, M guesses $u_1 \in \{0,1\}^{p(n)}$ and asks NP oracle:

 $\exists u_2 \in \{0,1\}^{p(n)} V(x,u_1,u_2) = 0$

$$\Sigma_2^p \subseteq \mathsf{NP}^{\mathsf{NP}}$$

1. $L \in \Sigma_2^p$, then for $p : \mathbb{N} \to \mathbb{N}$ polynomial and poly-time TM V

 $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{p(|x|)} \forall u_2 \in \{0,1\}^{p(|x|)} V(x,u_1,u_2).$

2. Construction of NTM $M \in NP^{NP}$

• On input $x \in \{0,1\}^n$, M guesses $u_1 \in \{0,1\}^{p(n)}$ and asks NP oracle:

 $\exists u_2 \in \{0,1\}^{p(n)} V(x,u_1,u_2) = 0$

By Cook-Levin and V being a TM, above query can be described by a SAT instance

$$\Sigma_2^p \subseteq \mathsf{NP}^{\mathsf{NP}}$$

1. $L \in \Sigma_2^p$, then for $p : \mathbb{N} \to \mathbb{N}$ polynomial and poly-time TM V

 $x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{p(|x|)} \forall u_2 \in \{0,1\}^{p(|x|)} V(x,u_1,u_2).$

- 2. Construction of NTM $M \in NP^{NP}$
 - On input $x \in \{0,1\}^n$, M guesses $u_1 \in \{0,1\}^{p(n)}$ and asks NP oracle:

$$\exists u_2 \in \{0,1\}^{p(n)} V(x,u_1,u_2) = 0$$

- By Cook-Levin and V being a TM, above query can be described by a SAT instance
- Thus M accepts $\Leftrightarrow x \in L$

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

1. $L \in \mathsf{NP}^{\mathsf{SAT}}.$ Thus, there is oracle NTM M which decides L in poly-time.

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

- 1. $L \in \mathsf{NP}^{\mathsf{SAT}}.$ Thus, there is oracle NTM M which decides L in poly-time.
- 2. There is $p: \mathbb{N} \to \mathbb{N}$ polynomial such that on input $x \in L \cap \{0, 1\}^n$:

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

- 1. $L \in \mathsf{NP}^{\mathsf{SAT}}$. Thus, there is oracle NTM M which decides L in poly-time.
- 2. There is $p : \mathbb{N} \to \mathbb{N}$ polynomial such that on input $x \in L \cap \{0, 1\}^n$:
- 3. Let NTM M' be such that on input x,
 - $\blacktriangleright~M'$ guesses an accepting path and all oracle queries of M(x) with their respective answers

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

- 1. $L \in \mathsf{NP}^{\mathsf{SAT}}$. Thus, there is oracle NTM M which decides L in poly-time.
- 2. There is $p : \mathbb{N} \to \mathbb{N}$ polynomial such that on input $x \in L \cap \{0, 1\}^n$:
- 3. Let NTM M' be such that on input x,
 - ► M' guesses an accepting path and all oracle queries of M(x) with their respective answers
 - ► For each oracle query with YES answer, *M*′ guesses a satisfying assignment

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

- 1. $L \in NP^{SAT}$. Thus, there is oracle NTM M which decides L in poly-time.
- 2. There is $p : \mathbb{N} \to \mathbb{N}$ polynomial such that on input $x \in L \cap \{0, 1\}^n$:
- 3. Let NTM M' be such that on input x,
 - M' guesses an accepting path and all oracle queries of M(x) with their respective answers
 - For each oracle query with YES answer, M' guesses a satisfying assignment
 - $\blacktriangleright M'$ left with the questions with NO answer, say ϕ_1,\ldots,ϕ_k formulae

 $\begin{array}{l} M' \text{ asks its oracle whether } \phi_1 \vee \cdots \vee \phi_k \text{ is satisfiable} \\ \text{Returns YES} \Leftrightarrow \text{ answer to the above is NO} \end{array}$

$$\mathsf{NP}^{\mathsf{SAT}} \subseteq \Sigma_2^p$$

- 1. $L \in NP^{SAT}$. Thus, there is oracle NTM M which decides L in poly-time.
- 2. There is $p : \mathbb{N} \to \mathbb{N}$ polynomial such that on input $x \in L \cap \{0, 1\}^n$:
- 3. Let NTM M' be such that on input x,
 - M' guesses an accepting path and all oracle queries of M(x) with their respective answers
 - ► For each oracle query with YES answer, *M*′ guesses a satisfying assignment
 - $\blacktriangleright M'$ left with the questions with NO answer, say ϕ_1,\ldots,ϕ_k formulae

 $\begin{array}{l}M' \text{ asks its oracle whether } \phi_1 \vee \cdots \vee \phi_k \text{ is satisfiable}\\ \text{Returns YES} \Leftrightarrow \text{ answer to the above is NO} \end{array}$

4. Conversely if M'(x) has accepting computation, then M(x) = 1 and thus $x \in L$.

1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$

1. Note that $NP = \Sigma_1^p$ and $coNP = \Pi_1^p$ 2. $\Sigma_i^p \subseteq \Pi_{i+1}^p \subseteq \Sigma_{i+2}^p$

- 1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$
- 2. $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$
- 3. For any $i \ge 1$, Σ_i^p and Π_i^p have complete problems (under poly-time mapping reductions)

- 1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$
- 2. $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$
- 3. For any $i \ge 1$, Σ_i^p and Π_i^p have complete problems (under poly-time mapping reductions)

4. If
$$\Sigma_i^p = \prod_i^p$$
 for some i , then $\mathsf{PH} = \Sigma_i^p$.

- 1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$
- 2. $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$
- 3. For any $i \ge 1$, Σ_i^p and Π_i^p have complete problems (under poly-time mapping reductions)
- 4. If $\Sigma_i^p = \prod_i^p$ for some i, then $\mathsf{PH} = \Sigma_i^p$.
- 5. If $\Sigma_i^p = \Sigma_{i+1}^p$ for some i then $\Sigma_j^p = \Pi_j^p = \Sigma_i^p$ for all $j \ge i$

- 1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$
- 2. $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$
- 3. For any $i \ge 1$, Σ_i^p and Π_i^p have complete problems (under poly-time mapping reductions)
- 4. If $\Sigma_i^p = \prod_i^p$ for some i, then $\mathsf{PH} = \Sigma_i^p$.
- 5. If $\Sigma_i^p = \Sigma_{i+1}^p$ for some i then $\Sigma_j^p = \Pi_j^p = \Sigma_i^p$ for all $j \ge i$ 6. If $\Pi_i^p = \Pi_{i+1}^p$ for some i then $\Sigma_j^p = \Pi_j^p = \Pi_i^p$ for all $j \ge i$

- 1. Note that $\mathsf{NP} = \Sigma_1^p$ and $\mathsf{coNP} = \Pi_1^p$
- 2. $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$
- 3. For any $i \ge 1$, Σ_i^p and Π_i^p have complete problems (under poly-time mapping reductions)
- 4. If $\Sigma_i^p = \prod_i^p$ for some i, then $\mathsf{PH} = \Sigma_i^p$.
- 5. If $\Sigma_i^p = \Sigma_{i+1}^p$ for some i then $\Sigma_j^p = \Pi_j^p = \Sigma_i^p$ for all $j \ge i$ 6. If $\Pi_i^p = \Pi_{i+1}^p$ for some i then $\Sigma_i^p = \Pi_i^p = \Pi_i^p$ for all $j \ge i$
- 7. If PH has a complete problem, then PH collapses.

Proposition

If NP = coNP then $\Sigma_i^p = NP$ for every $i \ge 1$.

1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$

Proposition

If NP = coNP then $\Sigma_i^p = NP$ for every $i \ge 1$.

1. We first prove $NP = coNP \Rightarrow \Sigma_2^p = NP$

$$\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$$
 (earlier proposition)

Proposition

- 1. We first prove $\mathsf{NP} = \mathsf{coNP} \Rightarrow \Sigma_2^p = \mathsf{NP}$
 - $\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L

Proposition

- 1. We first prove $\mathsf{NP} = \mathsf{coNP} \Rightarrow \Sigma_2^p = \mathsf{NP}$
 - $\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$ (earlier proposition)
 - $\blacktriangleright \ L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding SAT

Proposition

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - ► $\Sigma_2^p = NP^{SAT}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $\,M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers

Proposition

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - $\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $\,M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers
 - $1.2\,$ for each YES answer, guess satisfying assignment

Proposition

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - $\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers
 - $1.2\,$ for each YES answer, guess satisfying assignment
 - 1.3 for each NO answer to $\varphi,\,M''$ guesses accepting computation of $M'(\varphi)$

Proposition

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - $\Sigma_2^p = \mathsf{NP}^{\mathsf{SAT}}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $\,M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers
 - $1.2\,$ for each YES answer, guess satisfying assignment
 - 1.3 for each NO answer to $\varphi,\,M''$ guesses accepting computation of $M'(\varphi)$

$$\blacktriangleright M(x) = 1 \Leftrightarrow M''(x) = 1$$

Proposition

If NP = coNP then $\Sigma_i^p = NP$ for every $i \ge 1$.

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - ► $\Sigma_2^p = NP^{SAT}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers
 - $1.2\,$ for each YES answer, guess satisfying assignment
 - 1.3 for each NO answer to $\varphi,\,M''$ guesses accepting computation of $M'(\varphi)$

$$\blacktriangleright M(x) = 1 \Leftrightarrow M''(x) = 1$$

2. Prove by induction $\Sigma_i^p = \mathsf{NP}$ for $i \ge 2$.

Proposition

If NP = coNP then $\Sigma_i^p = NP$ for every $i \ge 1$.

- 1. We first prove $\mathsf{NP}=\mathsf{coNP}\Rightarrow\Sigma_2^p=\mathsf{NP}$
 - ► $\Sigma_2^p = NP^{SAT}$ (earlier proposition)
 - ▶ $L \in \Sigma_2^p$ then let M be SAT-oracle poly-time NTM deciding L
 - ▶ NP = coNP $\Rightarrow \exists$ NTM M' deciding \overline{SAT}
 - ▶ Let *M*["] be the NTM such that on input *x*:
 - 1.1 $\,M^{\prime\prime}$ guesses an accepting path of M(x) with oracle queries φ and answers
 - $1.2\,$ for each YES answer, guess satisfying assignment
 - 1.3 for each NO answer to $\varphi,\,M^{\prime\prime}$ guesses accepting computation of $M^\prime(\varphi)$

 $\blacktriangleright \ M(x) = 1 \Leftrightarrow M''(x) = 1$

2. Prove by induction $\Sigma_i^p = \mathsf{NP}$ for $i \ge 2$.

3. Assuming that
$$\Sigma_{i-1} = \mathsf{NP}$$
 we have
 $\Sigma_i^p = \mathsf{NP}^{\Sigma_{i-1}^p} = \mathsf{NP}^{\mathsf{NP}} = \Sigma_2^p = \mathsf{NP}$

• Polynomial Hierarchy (PH)

• Time vs Alternations: time-space tradeoffs

Definition (ATM)

An alternating TM (ATM) M is a NTM where each state $q \in \mathcal{Q} \setminus \{q_{halt}, q_{accept}\}$ is labeled with a quantifier from $\{\exists, \forall\}$. NTM M accepts input x iff:

- ▶ for each ∃ state, one of its transitions accepts,
- ▶ for each ∀ state, both of its transitions accept.

We say that M runs in time t(n) if on inputs $x \in \{0,1\}^n M$ every sequence of transition function choices halts in $\leq t(n)$ steps.

Definition (ATM)

An alternating TM (ATM) M is a NTM where each state $q \in \mathcal{Q} \setminus \{q_{halt}, q_{accept}\}$ is labeled with a quantifier from $\{\exists, \forall\}$. NTM M accepts input x iff:

- ▶ for each ∃ state, one of its transitions accepts,
- ▶ for each ∀ state, both of its transitions accept.

We say that M runs in time t(n) if on inputs $x \in \{0,1\}^n M$ every sequence of transition function choices halts in $\leq t(n)$ steps.

Definition (Alternating Time)

Language $L \subseteq \{0,1\}^*$ is in ATIME(t(n)) if there is a constant c > 0 and a $c \cdot t(n)$ ATM M such that $x \in L \Leftrightarrow M(x) = 1$.

Definition (Alternating Time)

Language $L \subseteq \{0,1\}^*$ is in ATIME(t(n)) if there is a constant c > 0 and a $c \cdot t(n)$ ATM M such that $x \in L \Leftrightarrow M(x) = 1$.

If for every input x and every directed path in $G_{M,x},\ M$'s states' quantifiers alternate at most i-1 times, then

► $L \in \Sigma_i \mathsf{TIME}(t(n))$ if q_{start} has \exists ► $L \in \Pi_i \mathsf{TIME}(t(n))$ if q_{start} has \forall

Definition (Alternating Time)

Language $L \subseteq \{0,1\}^*$ is in ATIME(t(n)) if there is a constant c > 0 and a $c \cdot t(n)$ ATM M such that $x \in L \Leftrightarrow M(x) = 1$.

If for every input x and every directed path in $G_{M,x}{\rm ,}~M{\rm 's}$ states' quantifiers alternate at most i-1 times, then

► $L \in \Sigma_i \mathsf{TIME}(t(n))$ if q_{start} has \exists ► $L \in \Pi_i \mathsf{TIME}(t(n))$ if q_{start} has \forall

Proposition

$$\begin{split} \boldsymbol{\Sigma}_{i}^{p} &= \bigcup_{c} \boldsymbol{\Sigma}_{i} \textit{TIME}(n^{c}) \\ \boldsymbol{\Pi}_{i}^{p} &= \bigcup_{c} \boldsymbol{\Pi}_{i} \textit{TIME}(n^{c}) \end{split}$$

Time-Space tradeoff

Theorem

 $SAT \notin TISP(n^{1.1}, n^{0.1})$

References I

Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach <u>Cambridge University Press</u>

Chapter 5

Chapter 3

Trevisan, Luca (2002) Lecture notes

See webpage

- Goldreich, Oded (2006)

Computational complexity: a conceptual perspective.

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html