
Lecture 5 - Polynomial Hierarchy,
Alternating TMs, Time-Space

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

Polynomial Hierarchy (PH)

Time vs Alternations: time-space tradeoffs

Some Problems of Interest
▶ Often times interested in problems of the form: ”find the

smallest/largest object with certain property”

▶ MIN-EQ-DNF : {⟨φ, k⟩ | ∃ DNF ψ of size ≤ k s.t. ψ ≡ φ}
▶ EXACT-INDSET := {⟨G, k⟩ |
G has largest independent set of size k}

▶ There isn’t obvious notion (or none at all) of a small/efficient
certificate for the problems above

▶ Seem to need both ∃, ∀ quantifiers

Definition
The class Σp

2 is the set of languages L ⊆ {0, 1}∗ such that there is
poly-time TM M and polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) M(x, u, v) = 1.

Some Problems of Interest
▶ Often times interested in problems of the form: ”find the

smallest/largest object with certain property”
▶ MIN-EQ-DNF : {⟨φ, k⟩ | ∃ DNF ψ of size ≤ k s.t. ψ ≡ φ}

▶ EXACT-INDSET := {⟨G, k⟩ |
G has largest independent set of size k}

▶ There isn’t obvious notion (or none at all) of a small/efficient
certificate for the problems above

▶ Seem to need both ∃, ∀ quantifiers

Definition
The class Σp

2 is the set of languages L ⊆ {0, 1}∗ such that there is
poly-time TM M and polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) M(x, u, v) = 1.

Some Problems of Interest
▶ Often times interested in problems of the form: ”find the

smallest/largest object with certain property”
▶ MIN-EQ-DNF : {⟨φ, k⟩ | ∃ DNF ψ of size ≤ k s.t. ψ ≡ φ}
▶ EXACT-INDSET := {⟨G, k⟩ |
G has largest independent set of size k}

▶ There isn’t obvious notion (or none at all) of a small/efficient
certificate for the problems above

▶ Seem to need both ∃, ∀ quantifiers

Definition
The class Σp

2 is the set of languages L ⊆ {0, 1}∗ such that there is
poly-time TM M and polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) M(x, u, v) = 1.

Some Problems of Interest
▶ Often times interested in problems of the form: ”find the

smallest/largest object with certain property”
▶ MIN-EQ-DNF : {⟨φ, k⟩ | ∃ DNF ψ of size ≤ k s.t. ψ ≡ φ}
▶ EXACT-INDSET := {⟨G, k⟩ |
G has largest independent set of size k}

▶ There isn’t obvious notion (or none at all) of a small/efficient
certificate for the problems above

▶ Seem to need both ∃, ∀ quantifiers

Definition
The class Σp

2 is the set of languages L ⊆ {0, 1}∗ such that there is
poly-time TM M and polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) M(x, u, v) = 1.

Some Problems of Interest
▶ Often times interested in problems of the form: ”find the

smallest/largest object with certain property”
▶ MIN-EQ-DNF : {⟨φ, k⟩ | ∃ DNF ψ of size ≤ k s.t. ψ ≡ φ}
▶ EXACT-INDSET := {⟨G, k⟩ |
G has largest independent set of size k}

▶ There isn’t obvious notion (or none at all) of a small/efficient
certificate for the problems above

▶ Seem to need both ∃, ∀ quantifiers

Definition
The class Σp

2 is the set of languages L ⊆ {0, 1}∗ such that there is
poly-time TM M and polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|) M(x, u, v) = 1.

Polynomial Hierarchy (PH)
Definition (Polynomial Hierarchy)
For i ≥ 1, a language L ⊆ {0, 1}∗ is in Σp

i if there is a poly-time
TM M and a polynomial q : N → N s.t.

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)

M(x, u1, . . . , ui) = 1.

where Qi = ∃ iff i odd.

The polynomial hierarchy is the set PH :=
∪

iΣ
p
i .

Can also define Πp
i := {L | L ∈ Σp

i }. Equivalently, L ∈ Πp
i iff:

x ∈ L⇔ ∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)

M(x, u1, . . . , ui) = 1.

where we alternate the quatifiers.

Polynomial Hierarchy (PH)
Definition (Polynomial Hierarchy)
For i ≥ 1, a language L ⊆ {0, 1}∗ is in Σp

i if there is a poly-time
TM M and a polynomial q : N → N s.t.

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)

M(x, u1, . . . , ui) = 1.

where Qi = ∃ iff i odd.

The polynomial hierarchy is the set PH :=
∪

iΣ
p
i .

Can also define Πp
i := {L | L ∈ Σp

i }. Equivalently, L ∈ Πp
i iff:

x ∈ L⇔ ∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)

M(x, u1, . . . , ui) = 1.

where we alternate the quatifiers.

PH in terms of oracles
Theorem

For every i ≥ 2, Σp
i = NPΣp

i−1 .

▶ Will prove statement above for i = 2.

▶ Want to show Σp
2 = NPNP = NPSAT

PH in terms of oracles
Theorem

For every i ≥ 2, Σp
i = NPΣp

i−1 .

▶ Will prove statement above for i = 2.
▶ Want to show Σp

2 = NPNP = NPSAT

Σp
2 ⊆ NPNP

1. L ∈ Σp
2, then for p : N → N polynomial and poly-time TM V

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|)V (x, u1, u2).

2. Construction of NTM M ∈ NPNP

▶ On input x ∈ {0, 1}n, M guesses u1 ∈ {0, 1}p(n) and asks NP
oracle:

∃u2 ∈ {0, 1}p(n)V (x, u1, u2) = 0

▶ By Cook-Levin and V being a TM, above query can be
described by a SAT instance

▶ Thus M accepts ⇔ x ∈ L

Σp
2 ⊆ NPNP

1. L ∈ Σp
2, then for p : N → N polynomial and poly-time TM V

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|)V (x, u1, u2).

2. Construction of NTM M ∈ NPNP

▶ On input x ∈ {0, 1}n, M guesses u1 ∈ {0, 1}p(n) and asks NP
oracle:

∃u2 ∈ {0, 1}p(n)V (x, u1, u2) = 0

▶ By Cook-Levin and V being a TM, above query can be
described by a SAT instance

▶ Thus M accepts ⇔ x ∈ L

Σp
2 ⊆ NPNP

1. L ∈ Σp
2, then for p : N → N polynomial and poly-time TM V

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|)V (x, u1, u2).

2. Construction of NTM M ∈ NPNP

▶ On input x ∈ {0, 1}n, M guesses u1 ∈ {0, 1}p(n) and asks NP
oracle:

∃u2 ∈ {0, 1}p(n)V (x, u1, u2) = 0

▶ By Cook-Levin and V being a TM, above query can be
described by a SAT instance

▶ Thus M accepts ⇔ x ∈ L

Σp
2 ⊆ NPNP

1. L ∈ Σp
2, then for p : N → N polynomial and poly-time TM V

x ∈ L⇔ ∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}p(|x|)V (x, u1, u2).

2. Construction of NTM M ∈ NPNP

▶ On input x ∈ {0, 1}n, M guesses u1 ∈ {0, 1}p(n) and asks NP
oracle:

∃u2 ∈ {0, 1}p(n)V (x, u1, u2) = 0

▶ By Cook-Levin and V being a TM, above query can be
described by a SAT instance

▶ Thus M accepts ⇔ x ∈ L

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers

▶ For each oracle query with YES answer, M ′ guesses a
satisfying assignment

▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk
formulae

M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable
Returns YES ⇔ answer to the above is NO

4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers

▶ For each oracle query with YES answer, M ′ guesses a
satisfying assignment

▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk
formulae

M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable
Returns YES ⇔ answer to the above is NO

4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers

▶ For each oracle query with YES answer, M ′ guesses a
satisfying assignment

▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk
formulae

M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable
Returns YES ⇔ answer to the above is NO

4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers
▶ For each oracle query with YES answer, M ′ guesses a

satisfying assignment

▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk
formulae

M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable
Returns YES ⇔ answer to the above is NO

4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers
▶ For each oracle query with YES answer, M ′ guesses a

satisfying assignment
▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk

formulae
M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable

Returns YES ⇔ answer to the above is NO

4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

NPSAT ⊆ Σp
2

1. L ∈ NPSAT. Thus, there is oracle NTM M which decides L in
poly-time.

2. There is p : N → N polynomial such that on input
x ∈ L ∩ {0, 1}n:

3. Let NTM M ′ be such that on input x,
▶ M ′ guesses an accepting path and all oracle queries of M(x)

with their respective answers
▶ For each oracle query with YES answer, M ′ guesses a

satisfying assignment
▶ M ′ left with the questions with NO answer, say ϕ1, . . . , ϕk

formulae
M ′ asks its oracle whether ϕ1 ∨ · · · ∨ ϕk is satisfiable

Returns YES ⇔ answer to the above is NO
4. Conversely if M ′(x) has accepting computation, then
M(x) = 1 and thus x ∈ L.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Some Facts about PH

1. Note that NP = Σp
1 and coNP = Πp

1

2. Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2

3. For any i ≥ 1, Σp
i and Πp

i have complete problems (under
poly-time mapping reductions)

4. If Σp
i = Πp

i for some i, then PH = Σp
i .

5. If Σp
i = Σp

i+1 for some i then Σp
j = Πp

j = Σp
i for all j ≥ i

6. If Πp
i = Πp

i+1 for some i then Σp
j = Πp

j = Πp
i for all j ≥ i

7. If PH has a complete problem, then PH collapses.

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP

▶ Σp
2 = NPSAT (earlier proposition)

▶ L ∈ Σp
2 then let M be SAT-oracle poly-time NTM deciding L

▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)

▶ L ∈ Σp
2 then let M be SAT-oracle poly-time NTM deciding L

▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L

▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT

▶ Let M ′′ be the NTM such that on input x:
1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ

and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment

1.3 for each NO answer to φ, M ′′ guesses accepting computation
of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Collapse of PH
Proposition
If NP = coNP then Σp

i = NP for every i ≥ 1.
1. We first prove NP = coNP ⇒ Σp

2 = NP
▶ Σp

2 = NPSAT (earlier proposition)
▶ L ∈ Σp

2 then let M be SAT-oracle poly-time NTM deciding L
▶ NP = coNP ⇒ ∃ NTM M ′ deciding SAT
▶ Let M ′′ be the NTM such that on input x:

1.1 M ′′ guesses an accepting path of M(x) with oracle queries φ
and answers

1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to φ, M ′′ guesses accepting computation

of M ′(φ)

▶ M(x) = 1 ⇔M ′′(x) = 1

2. Prove by induction Σp
i = NP for i ≥ 2.

3. Assuming that Σi−1 = NP we have
Σp
i = NPΣp

i−1 = NPNP = Σp
2 = NP

Polynomial Hierarchy (PH)

Time vs Alternations: time-space tradeoffs

Alternating Turing Machines (ATM)
Definition (ATM)
An alternating TM (ATM) M is a NTM where each state
q ∈ Q \ {qhalt, qaccept} is labeled with a quantifier from {∃, ∀}.
NTM M accepts input x iff:
▶ for each ∃ state, one of its transitions accepts,
▶ for each ∀ state, both of its transitions accept.

We say that M runs in time t(n) if on inputs x ∈ {0, 1}n M every
sequence of transition function choices halts in ≤ t(n) steps.

Definition (Alternating Time)
Language L ⊆ {0, 1}∗ is in ATIME(t(n)) if there is a constant
c > 0 and a c · t(n) ATM M such that x ∈ L⇔M(x) = 1.

If for every input x and every directed path in GM,x, M ’s states’
quantifiers alternate at most i− 1 times, then
▶ L ∈ ΣiTIME(t(n)) if qstart has ∃
▶ L ∈ ΠiTIME(t(n)) if qstart has ∀

Proposition

Σp
i =

∪
c

ΣiTIME(nc)

Πp
i =

∪
c

ΠiTIME(nc)

Alternating Turing Machines (ATM)
Definition (ATM)
An alternating TM (ATM) M is a NTM where each state
q ∈ Q \ {qhalt, qaccept} is labeled with a quantifier from {∃, ∀}.
NTM M accepts input x iff:
▶ for each ∃ state, one of its transitions accepts,
▶ for each ∀ state, both of its transitions accept.

We say that M runs in time t(n) if on inputs x ∈ {0, 1}n M every
sequence of transition function choices halts in ≤ t(n) steps.
Definition (Alternating Time)
Language L ⊆ {0, 1}∗ is in ATIME(t(n)) if there is a constant
c > 0 and a c · t(n) ATM M such that x ∈ L⇔M(x) = 1.

If for every input x and every directed path in GM,x, M ’s states’
quantifiers alternate at most i− 1 times, then
▶ L ∈ ΣiTIME(t(n)) if qstart has ∃
▶ L ∈ ΠiTIME(t(n)) if qstart has ∀

Proposition

Σp
i =

∪
c

ΣiTIME(nc)

Πp
i =

∪
c

ΠiTIME(nc)

Alternating Turing Machines (ATM)
Definition (Alternating Time)
Language L ⊆ {0, 1}∗ is in ATIME(t(n)) if there is a constant
c > 0 and a c · t(n) ATM M such that x ∈ L⇔M(x) = 1.

If for every input x and every directed path in GM,x, M ’s states’
quantifiers alternate at most i− 1 times, then
▶ L ∈ ΣiTIME(t(n)) if qstart has ∃
▶ L ∈ ΠiTIME(t(n)) if qstart has ∀

Proposition

Σp
i =

∪
c

ΣiTIME(nc)

Πp
i =

∪
c

ΠiTIME(nc)

Alternating Turing Machines (ATM)
Definition (Alternating Time)
Language L ⊆ {0, 1}∗ is in ATIME(t(n)) if there is a constant
c > 0 and a c · t(n) ATM M such that x ∈ L⇔M(x) = 1.

If for every input x and every directed path in GM,x, M ’s states’
quantifiers alternate at most i− 1 times, then
▶ L ∈ ΣiTIME(t(n)) if qstart has ∃
▶ L ∈ ΠiTIME(t(n)) if qstart has ∀

Proposition

Σp
i =

∪
c

ΣiTIME(nc)

Πp
i =

∪
c

ΠiTIME(nc)

Time-Space tradeoff
Theorem

SAT ̸∈ TISP(n1.1, n0.1)

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach Chapter 5
Cambridge University Press

Trevisan, Luca (2002)
Lecture notes Chapter 3
See webpage

Goldreich, Oded (2006)
Computational complexity: a conceptual perspective.
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

	Polynomial Hierarchy (PH)
	Time vs Alternations: time-space tradeoffs

