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Overview

@ Polynomial Hierarchy (PH)

@ Time vs Alternations: time-space tradeoffs
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» Often times interested in problems of the form: "find the
smallest/largest object with certain property”

> MIN-EQ-DNF : {{, k) | 3 DNF ¢ of size < ks.t. )= ¢}

» EXACT-INDSET := {(G, k) |
G has largest independent set of size k}

» There isn't obvious notion (or none at all) of a small/efficient
certificate for the problems above

» Seem to need both 9,V quantifiers
Definition
The class Y is the set of languages L C {0,1}* such that there is
poly-time TM M and polynomial ¢ such that

z e L= Jue {0,110y e {0,1390°D M (2, u,v) = 1.




Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)
For i > 1, a language L C {0,1}* is in X if there is a poly-time
TM M and a polynomial ¢ : N — N s.t.

z € L Juy € {0,190y, e {0, 139020 ... Q,u; € {0, 1}90eD
M(z,ug,. .., u;) = 1.

where Q; = 3 iff ¢ odd.
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Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)
For i > 1, a language L C {0,1}* is in X if there is a poly-time
TM M and a polynomial ¢ : N — N s.t.

z e L < Ju e {0,117y, e {0,13902D) ... Qu; € {0,1}902)
M(z,ug,. .., u;) = 1.

where Q; = 3 iff ¢ odd.

The polynomial hierarchy is the set PH := J, Ef.

Can also define Il := {L | L € X'}. Equivalently, L € II iff:

z € L < Yuy € {0,1}90%0 3y, € {0,13902D ... Q;u; € {0, 1}40=D
M(z,uy,...,u;) = 1.

where we alternate the quatifiers.
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PH in terms of oracles

Theorem

For every i > 2, X' = NP> 1.

» Will prove statement above for i = 2.
> Want to show ¥5 = NPNP = NP3AT
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»b c NPNP
1. L € ¥E, then for p: N — N polynomial and poly-time TM V
z e L e Ju e {0,111 )vuy € {0, 13200V (2, 1y, ug).

2. Construction of NTM M e NPNP
On input = € {0,1}", M guesses u; € {0,1}?(") and asks NP
oracle:
Juy € {0, 1PV (2, u1,up) = 0

By Cook-Levin and V' being a TM, above query can be
described by a SAT instance
Thus M accepts < x € L




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.

2. Thereis p : N — N polynomial such that on input
x e LN{0,1}™




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.

2. Thereis p : N — N polynomial such that on input
x e LN{0,1}™

3. Let NTM M’ be such that on input z,

M’ guesses an accepting path and all oracle queries of M (x)
with their respective answers




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.

2. Thereis p : N — N polynomial such that on input
x e LN{0,1}™

3. Let NTM M’ be such that on input z,

M’ guesses an accepting path and all oracle queries of M (x)
with their respective answers

For each oracle query with YES answer, M’ guesses a
satisfying assignment




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.

2. Thereis p : N — N polynomial such that on input
x e LN{0,1}™

3. Let NTM M’ be such that on input z,

M’ guesses an accepting path and all oracle queries of M (x)
with their respective answers
For each oracle query with YES answer, M’ guesses a
satisfying assignment
M’ left with the questions with NO answer, say ¢1, ..., ¢
formulae

M’ asks its oracle whether ¢ V - -V ¢y is satisfiable

Returns YES < answer to the above is NO




NP3AT C 38

1. L € NP3AT, Thus, there is oracle NTM M which decides L in
poly-time.
2. Thereis p : N — N polynomial such that on input
x € LN{0,1}™
3. Let NTM M’ be such that on input z,
M’ guesses an accepting path and all oracle queries of M (x)
with their respective answers
For each oracle query with YES answer, M’ guesses a
satisfying assignment
M’ left with the questions with NO answer, say ¢1, ..., ¢
formulae
M’ asks its oracle whether ¢ V - -V ¢y is satisfiable
Returns YES < answer to the above is NO
4. Conversely if M'(x) has accepting computation, then
M(z) =1 and thus z € L.
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Some Facts about PH

1. Note that NP = X% and coNP = IT}
2. %) CIy, C XY,

3. For any i > 1, ¥¥ and IIY have complete problems (under

poly-time mapping reductions)

4. 1f XP = II? for some i, then PH = X%,

5. 1F P =
6. IFTIP =

for some i then X0 =TI} = %37 for all j > i
for some i then Zp % = 11 for all j > i

H—l
z+1




Some Facts about PH

1. Note that NP = X% and coNP = IT}
2. %) CIy, C XY,

W

N o s

For any i > 1, X and II¥ have complete problems (under
poly-time mapping reductions)

If £¥ =TI for some i, then PH = X7.
If X = for some i then Ep H? =X forall j >
If II7 =117, , for some 4 then Zp HZ; =11¥ for all j > i

If PH has a complete problem, then PH collapses.

H—l
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Proposition
If NP = coNP then X! = NP for every i > 1.

1. We first prove NP = coNP = 38 = NP
¥h = NPSAT (earlier proposition)
L € X8 then let M be SAT-oracle poly-time NTM deciding L
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Collapse of PH

Proposition
If NP = coNP then X! = NP for every i > 1.

1. We first prove NP = coNP = 38 = NP
¥h = NPSAT (earlier proposition)
L € X8 then let M be SAT-oracle poly-time NTM deciding L
NP = coNP = 3 NTM M’ deciding SAT
Let M be the NTM such that on input z:
1.1 M" guesses an accepting path of M (z) with oracle queries ¢
and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to ¢, M" guesses accepting computation
of M'(p)
ME)=1< M'(z)=1

2. Prove by induction X! = NP for i > 2.




Collapse of PH

Proposition
If NP = coNP then X! = NP for every i > 1.

1. We first prove NP = coNP = 38 = NP
¥h = NPSAT (earlier proposition)
L € X8 then let M be SAT-oracle poly-time NTM deciding L
NP = coNP = 3 NTM M’ deciding SAT
Let M be the NTM such that on input z:
1.1 M" guesses an accepting path of M (z) with oracle queries ¢
and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to ¢, M" guesses accepting computation
of M'(p)

M) =1 M"(z) =1
2. Prove by induction X! = NP for i > 2.

3. Assuming that X;_1 = NP we have
SP = NP¥-1 = NPNP = 58 — NP
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Alternating Turing Machines (ATM)

Definition (ATM)
An alternating TM (ATM) M is a NTM where each state
q € Q\ {qhaits Gaccept } is labeled with a quantifier from {3,V}.
NTM M accepts input z iff:
> for each d state, one of its transitions accepts,
> for each V state, both of its transitions accept.

We say that M runs in time t(n) if on inputs = € {0,1}" M every
sequence of transition function choices halts in < t(n) steps.
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Alternating Turing Machines (ATM)

Definition (Alternating Time)

Language L C {0,1}* is in ATIME(#(n)) if there is a constant
¢>0andac-t(n) ATM M such that z € L & M(z) = 1.

If for every input = and every directed path in Gy, M's states’
quantifiers alternate at most ¢ — 1 times, then

> L e X, TIME(t(n)) if ¢start has 3
> L e HZTlME<t(TL>) if ¢start has V
Proposition

oF = =i TIME(n®)

¥ = | 1L TIME(n®)




Time-Space tradeoff

Theorem

SAT & TISP(n'!, n%1)
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