# Lecture 5 - Polynomial Hierarchy, Alternating TMs, Time-Space 

Rafael Oliveira<br>rafael.oliveira.teaching@gmail.com<br>University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

## Overview

- Polynomial Hierarchy (PH)
- Time vs Alternations: time-space tradeoffs


## Some Problems of Interest

- Often times interested in problems of the form: "find the smallest/largest object with certain property"


## Some Problems of Interest

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- MIN-EQ-DNF : $\{\langle\varphi, k\rangle \mid \exists$ DNF $\psi$ of size $\leq k$ s.t. $\psi \equiv \varphi\}$


## Some Problems of Interest

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- MIN-EQ-DNF : $\{\langle\varphi, k\rangle \mid \exists$ DNF $\psi$ of size $\leq k$ s.t. $\psi \equiv \varphi\}$
- EXACT-INDSET $:=\{\langle G, k\rangle \mid$
$G$ has largest independent set of size $k\}$


## Some Problems of Interest

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- MIN-EQ-DNF : $\{\langle\varphi, k\rangle \mid \exists$ DNF $\psi$ of size $\leq k$ s.t. $\psi \equiv \varphi\}$
- EXACT-INDSET $:=\{\langle G, k\rangle$
$G$ has largest independent set of size $k\}$
- There isn't obvious notion (or none at all) of a small/efficient certificate for the problems above
- Seem to need both $\exists, \forall$ quantifiers


## Some Problems of Interest

- Often times interested in problems of the form: "find the smallest/largest object with certain property"
- MIN-EQ-DNF : $\{\langle\varphi, k\rangle \mid \exists$ DNF $\psi$ of size $\leq k$ s.t. $\psi \equiv \varphi\}$
- EXACT-INDSET $:=\{\langle G, k\rangle$
$G$ has largest independent set of size $k\}$
- There isn't obvious notion (or none at all) of a small/efficient certificate for the problems above
- Seem to need both $\exists, \forall$ quantifiers


## Definition

The class $\Sigma_{2}^{p}$ is the set of languages $L \subseteq\{0,1\}^{*}$ such that there is poly-time TM $M$ and polynomial $q$ such that

$$
x \in L \Leftrightarrow \exists u \in\{0,1\}^{q(|x|)} \forall v \in\{0,1\}^{q(|x|)} M(x, u, v)=1 .
$$

## Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)
For $i \geq 1$, a language $L \subseteq\{0,1\}^{*}$ is in $\Sigma_{i}^{p}$ if there is a poly-time TM $M$ and a polynomial $q: \mathbb{N} \rightarrow \mathbb{N}$ s.t.

$$
\begin{gathered}
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{q(|x|)} \forall u_{2} \in\{0,1\}^{q(|x|)} \cdots Q_{i} u_{i} \in\{0,1\}^{q(|x|)} \\
M\left(x, u_{1}, \ldots, u_{i}\right)=1 .
\end{gathered}
$$

where $Q_{i}=\exists$ iff $i$ odd.
The polynomial hierarchy is the set $\mathrm{PH}:=\bigcup_{i} \Sigma_{i}^{p}$.

## Polynomial Hierarchy (PH)

Definition (Polynomial Hierarchy)
For $i \geq 1$, a language $L \subseteq\{0,1\}^{*}$ is in $\Sigma_{i}^{p}$ if there is a poly-time TM $M$ and a polynomial $q: \mathbb{N} \rightarrow \mathbb{N}$ s.t.

$$
\begin{gathered}
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{q(|x|)} \forall u_{2} \in\{0,1\}^{q(|x|)} \cdots Q_{i} u_{i} \in\{0,1\}^{q(|x|)} \\
M\left(x, u_{1}, \ldots, u_{i}\right)=1 .
\end{gathered}
$$

where $Q_{i}=\exists$ iff $i$ odd.
The polynomial hierarchy is the set PH := $\bigcup_{i} \Sigma_{i}^{p}$.
Can also define $\Pi_{i}^{p}:=\left\{\bar{L} \mid L \in \Sigma_{i}^{p}\right\}$. Equivalently, $L \in \Pi_{i}^{p}$ iff:

$$
\begin{gathered}
x \in L \Leftrightarrow \forall u_{1} \in\{0,1\}^{q(|x|)} \exists u_{2} \in\{0,1\}^{q(|x|)} \cdots Q_{i} u_{i} \in\{0,1\}^{q(|x|)} \\
M\left(x, u_{1}, \ldots, u_{i}\right)=1 .
\end{gathered}
$$

where we alternate the quatifiers.

## PH in terms of oracles

Theorem

$$
\text { For every } i \geq 2, \Sigma_{i}^{p}=N P^{\Sigma_{i-1}^{p}} .
$$

- Will prove statement above for $i=2$.


## PH in terms of oracles

Theorem

$$
\text { For every } i \geq 2, \Sigma_{i}^{p}=N P^{\Sigma_{i-1}^{p}} .
$$

- Will prove statement above for $i=2$.
- Want to show $\Sigma_{2}^{p}=\mathrm{NP}{ }^{\mathrm{NP}}=\mathrm{NP}$ SAT


## $\Sigma_{2}^{p} \subseteq \mathrm{NP}^{\mathrm{NP}}$

1. $L \in \Sigma_{2}^{p}$, then for $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial and poly-time TM $V$

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{p(|x|)} \forall u_{2} \in\{0,1\}^{p(|x|)} V\left(x, u_{1}, u_{2}\right)
$$

$$
\Sigma_{2}^{p} \subseteq \mathrm{NP}^{\mathrm{NP}}
$$

1. $L \in \Sigma_{2}^{p}$, then for $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial and poly-time TM $V$

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{p(|x|)} \forall u_{2} \in\{0,1\}^{p(|x|)} V\left(x, u_{1}, u_{2}\right) .
$$

2. Construction of NTM $M \in \mathrm{NP}^{\mathrm{NP}}$

- On input $x \in\{0,1\}^{n}, M$ guesses $u_{1} \in\{0,1\}^{p(n)}$ and asks NP oracle:

$$
\exists u_{2} \in\{0,1\}^{p(n)} V\left(x, u_{1}, u_{2}\right)=0
$$

$$
\Sigma_{2}^{p} \subseteq \mathrm{NP}^{\mathrm{NP}}
$$

1. $L \in \Sigma_{2}^{p}$, then for $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial and poly-time TM $V$

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{p(|x|)} \forall u_{2} \in\{0,1\}^{p(|x|)} V\left(x, u_{1}, u_{2}\right) .
$$

2. Construction of NTM $M \in \mathrm{NP}^{\mathrm{NP}}$

- On input $x \in\{0,1\}^{n}, M$ guesses $u_{1} \in\{0,1\}^{p(n)}$ and asks NP oracle:

$$
\exists u_{2} \in\{0,1\}^{p(n)} V\left(x, u_{1}, u_{2}\right)=0
$$

- By Cook-Levin and $V$ being a TM, above query can be described by a SAT instance

$$
\Sigma_{2}^{p} \subseteq \mathrm{NP}^{\mathrm{NP}}
$$

1. $L \in \Sigma_{2}^{p}$, then for $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial and poly-time TM $V$

$$
x \in L \Leftrightarrow \exists u_{1} \in\{0,1\}^{p(|x|)} \forall u_{2} \in\{0,1\}^{p(|x|)} V\left(x, u_{1}, u_{2}\right) .
$$

2. Construction of NTM $M \in \operatorname{NP}^{N P}$

- On input $x \in\{0,1\}^{n}, M$ guesses $u_{1} \in\{0,1\}^{p(n)}$ and asks NP oracle:

$$
\exists u_{2} \in\{0,1\}^{p(n)} V\left(x, u_{1}, u_{2}\right)=0
$$

- By Cook-Levin and $V$ being a TM, above query can be described by a SAT instance
- Thus $M$ accepts $\Leftrightarrow x \in L$


## $N P^{S A T} \subseteq \Sigma_{2}^{p}$

1. $L \in \mathrm{NP}^{\text {SAT }}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.

## $N P^{S A T} \subseteq \Sigma_{2}^{p}$

1. $L \in \mathrm{NP}^{\mathrm{SAT}}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.
2. There is $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that on input $x \in L \cap\{0,1\}^{n}$ :

$$
\mathrm{NP} \mathrm{SAT}^{\subseteq} \subseteq \Sigma_{2}^{p}
$$

1. $L \in \mathrm{NP}^{\mathrm{SAT}}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.
2. There is $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that on input $x \in L \cap\{0,1\}^{n}:$
3. Let NTM $M^{\prime}$ be such that on input $x$,

- $M^{\prime}$ guesses an accepting path and all oracle queries of $M(x)$ with their respective answers

$$
\mathrm{NP} \mathrm{SAT}^{\mathrm{SA}} \subseteq \Sigma_{2}^{p}
$$

1. $L \in \mathrm{NP}^{\mathrm{SAT}}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.
2. There is $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that on input $x \in L \cap\{0,1\}^{n}$ :
3. Let NTM $M^{\prime}$ be such that on input $x$,

- $M^{\prime}$ guesses an accepting path and all oracle queries of $M(x)$ with their respective answers
- For each oracle query with YES answer, $M^{\prime}$ guesses a satisfying assignment

$$
\mathrm{NP} \mathrm{SAT}^{\subseteq} \subseteq \Sigma_{2}^{p}
$$

1. $L \in \mathrm{NP}^{\mathrm{SAT}}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.
2. There is $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that on input $x \in L \cap\{0,1\}^{n}:$
3. Let NTM $M^{\prime}$ be such that on input $x$,

- $M^{\prime}$ guesses an accepting path and all oracle queries of $M(x)$ with their respective answers
- For each oracle query with YES answer, $M^{\prime}$ guesses a satisfying assignment
- $M^{\prime}$ left with the questions with NO answer, say $\phi_{1}, \ldots, \phi_{k}$ formulae
$M^{\prime}$ asks its oracle whether $\phi_{1} \vee \cdots \vee \phi_{k}$ is satisfiable Returns YES $\Leftrightarrow$ answer to the above is NO

$$
\mathrm{NP} \mathrm{SAT}^{\subseteq} \subseteq \Sigma_{2}^{p}
$$

1. $L \in \mathrm{NP}^{\mathrm{SAT}}$. Thus, there is oracle NTM $M$ which decides $L$ in poly-time.
2. There is $p: \mathbb{N} \rightarrow \mathbb{N}$ polynomial such that on input $x \in L \cap\{0,1\}^{n}$ :
3. Let NTM $M^{\prime}$ be such that on input $x$,

- $M^{\prime}$ guesses an accepting path and all oracle queries of $M(x)$ with their respective answers
- For each oracle query with YES answer, $M^{\prime}$ guesses a satisfying assignment
- $M^{\prime}$ left with the questions with NO answer, say $\phi_{1}, \ldots, \phi_{k}$ formulae
$M^{\prime}$ asks its oracle whether $\phi_{1} \vee \cdots \vee \phi_{k}$ is satisfiable Returns YES $\Leftrightarrow$ answer to the above is NO

4. Conversely if $M^{\prime}(x)$ has accepting computation, then $M(x)=1$ and thus $x \in L$.

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
3. For any $i \geq 1, \Sigma_{i}^{p}$ and $\Pi_{i}^{p}$ have complete problems (under poly-time mapping reductions)

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
3. For any $i \geq 1, \Sigma_{i}^{p}$ and $\Pi_{i}^{p}$ have complete problems (under poly-time mapping reductions)
4. If $\Sigma_{i}^{p}=\Pi_{i}^{p}$ for some $i$, then $\mathrm{PH}=\Sigma_{i}^{p}$.

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
3. For any $i \geq 1, \Sigma_{i}^{p}$ and $\Pi_{i}^{p}$ have complete problems (under poly-time mapping reductions)
4. If $\Sigma_{i}^{p}=\Pi_{i}^{p}$ for some $i$, then $\mathrm{PH}=\Sigma_{i}^{p}$.
5. If $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$ for some $i$ then $\Sigma_{j}^{p}=\Pi_{j}^{p}=\Sigma_{i}^{p}$ for all $j \geq i$

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
3. For any $i \geq 1, \Sigma_{i}^{p}$ and $\Pi_{i}^{p}$ have complete problems (under poly-time mapping reductions)
4. If $\Sigma_{i}^{p}=\Pi_{i}^{p}$ for some $i$, then $\mathrm{PH}=\Sigma_{i}^{p}$.
5. If $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$ for some $i$ then $\Sigma_{j}^{p}=\Pi_{j}^{p}=\Sigma_{i}^{p}$ for all $j \geq i$
6. If $\Pi_{i}^{p}=\Pi_{i+1}^{p}$ for some $i$ then $\Sigma_{j}^{p}=\Pi_{j}^{p}=\Pi_{i}^{p}$ for all $j \geq i$

## Some Facts about PH

1. Note that $\mathrm{NP}=\Sigma_{1}^{p}$ and $\operatorname{coNP}=\Pi_{1}^{p}$
2. $\Sigma_{i}^{p} \subseteq \Pi_{i+1}^{p} \subseteq \Sigma_{i+2}^{p}$
3. For any $i \geq 1, \Sigma_{i}^{p}$ and $\Pi_{i}^{p}$ have complete problems (under poly-time mapping reductions)
4. If $\Sigma_{i}^{p}=\Pi_{i}^{p}$ for some $i$, then $\mathrm{PH}=\Sigma_{i}^{p}$.
5. If $\Sigma_{i}^{p}=\Sigma_{i+1}^{p}$ for some $i$ then $\Sigma_{j}^{p}=\Pi_{j}^{p}=\Sigma_{i}^{p}$ for all $j \geq i$
6. If $\Pi_{i}^{p}=\Pi_{i+1}^{p}$ for some $i$ then $\Sigma_{j}^{p}=\Pi_{j}^{p}=\Pi_{i}^{p}$ for all $j \geq i$
7. If PH has a complete problem, then PH collapses.

## Collapse of PH

Proposition
If $N P=$ coN $P$ then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove $\mathrm{NP}=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=\mathrm{NP}$

## Collapse of PH

## Proposition

If $N P=$ coN $P$ then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=\mathrm{NP}$

$$
\nabla \Sigma_{2}^{p}=N P^{\text {SAT }}
$$

(earlier proposition)

## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=N P$

- $\Sigma_{2}^{p}=\mathrm{NP}^{\mathrm{SAT}}$
(earlier proposition)
- $L \in \sum_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$


## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=N P$

- $\Sigma_{2}^{p}=\mathrm{NP}^{\mathrm{SAT}}$
(earlier proposition)
- $L \in \Sigma_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT


## Collapse of PH

## Proposition

If $N P=c o N P$ then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove $\mathrm{NP}=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=\mathrm{NP}$
$\triangleright \Sigma_{2}^{p}=N P^{\text {SAT }} \quad$ (earlier proposition)

- $L \in \sum_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright$ NP $=$ coNP $\Rightarrow \exists$ NTM $M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers


## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove $\mathrm{NP}=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=\mathrm{NP}$
$\triangleright \Sigma_{2}^{p}=N P^{\text {SAT }} \quad$ (earlier proposition)

- $L \in \sum_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers
1.2 for each YES answer, guess satisfying assignment


## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=N P$
$>\Sigma_{2}^{p}=\mathrm{NP}^{\mathrm{SAT}}$
(earlier proposition)

- $L \in \sum_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to $\varphi, M^{\prime \prime}$ guesses accepting computation of $M^{\prime}(\varphi)$


## Collapse of PH

## Proposition

If $N P=c o N P$ then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=N P$

- $\Sigma_{2}^{p}=\mathrm{NP}^{\mathrm{SAT}}$
(earlier proposition)
- $L \in \sum_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to $\varphi, M^{\prime \prime}$ guesses accepting computation of $M^{\prime}(\varphi)$
- $M(x)=1 \Leftrightarrow M^{\prime \prime}(x)=1$


## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=\mathrm{NP}$
$-\Sigma_{2}^{p}=\mathrm{NP}{ }^{\mathrm{SAT}}$
(earlier proposition)

- $L \in \Sigma_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to $\varphi, M^{\prime \prime}$ guesses accepting computation of $M^{\prime}(\varphi)$
- $M(x)=1 \Leftrightarrow M^{\prime \prime}(x)=1$

2. Prove by induction $\Sigma_{i}^{p}=\mathrm{NP}$ for $i \geq 2$.

## Collapse of PH

## Proposition

If $N P=$ coNP then $\Sigma_{i}^{p}=N P$ for every $i \geq 1$.

1. We first prove NP $=\operatorname{coNP} \Rightarrow \Sigma_{2}^{p}=N P$
$>\Sigma_{2}^{p}=\mathrm{NP}^{\mathrm{SAT}}$
(earlier proposition)

- $L \in \Sigma_{2}^{p}$ then let $M$ be SAT-oracle poly-time NTM deciding $L$
$\triangleright \mathrm{NP}=\mathrm{coNP} \Rightarrow \exists \mathrm{NTM} M^{\prime}$ deciding SAT
- Let $M^{\prime \prime}$ be the NTM such that on input $x$ :
$1.1 M^{\prime \prime}$ guesses an accepting path of $M(x)$ with oracle queries $\varphi$ and answers
1.2 for each YES answer, guess satisfying assignment
1.3 for each NO answer to $\varphi, M^{\prime \prime}$ guesses accepting computation of $M^{\prime}(\varphi)$
- $M(x)=1 \Leftrightarrow M^{\prime \prime}(x)=1$

2. Prove by induction $\Sigma_{i}^{p}=\mathrm{NP}$ for $i \geq 2$.
3. Assuming that $\Sigma_{i-1}=\mathrm{NP}$ we have $\Sigma_{i}^{p}=\mathrm{NP}^{\Sigma_{i-1}^{p}}=\mathrm{NP}^{\mathrm{NP}}=\Sigma_{2}^{p}=\mathrm{NP}$

## - Polynomial Hierarchy (PH)

- Time vs Alternations: time-space tradeoffs


## Alternating Turing Machines (ATM)

Definition (ATM)
An alternating TM (ATM) $M$ is a NTM where each state $q \in \mathcal{Q} \backslash\left\{q_{\text {halt }}, q_{\text {accept }}\right\}$ is labeled with a quantifier from $\{\exists, \forall\}$. NTM $M$ accepts input $x$ iff:

- for each $\exists$ state, one of its transitions accepts,
- for each $\forall$ state, both of its transitions accept.

We say that $M$ runs in time $t(n)$ if on inputs $x \in\{0,1\}^{n} M$ every sequence of transition function choices halts in $\leq t(n)$ steps.

## Alternating Turing Machines (ATM)

## Definition (ATM)

An alternating TM (ATM) $M$ is a NTM where each state $q \in \mathcal{Q} \backslash\left\{q_{\text {halt }}, q_{\text {accept }}\right\}$ is labeled with a quantifier from $\{\exists, \forall\}$. NTM $M$ accepts input $x$ iff:

- for each $\exists$ state, one of its transitions accepts,
- for each $\forall$ state, both of its transitions accept.

We say that $M$ runs in time $t(n)$ if on inputs $x \in\{0,1\}^{n} M$ every sequence of transition function choices halts in $\leq t(n)$ steps.
Definition (Alternating Time)
Language $L \subseteq\{0,1\}^{*}$ is in $\operatorname{ATIME}(t(n))$ if there is a constant $c>0$ and a $c \cdot t(n)$ ATM $M$ such that $x \in L \Leftrightarrow M(x)=1$.

## Alternating Turing Machines (ATM)

Definition (Alternating Time)
Language $L \subseteq\{0,1\}^{*}$ is in $\operatorname{ATIME}(t(n))$ if there is a constant $c>0$ and a $c \cdot t(n)$ ATM $M$ such that $x \in L \Leftrightarrow M(x)=1$.

If for every input $x$ and every directed path in $G_{M, x}, M$ 's states' quantifiers alternate at most $i-1$ times, then

- $L \in \Sigma_{i} \operatorname{TIME}(t(n))$
- $L \in \Pi_{i} \operatorname{TIME}(t(n))$
if $q_{\text {start }}$ has $\exists$
if $q_{\text {start }}$ has $\forall$


## Alternating Turing Machines (ATM)

Definition (Alternating Time)
Language $L \subseteq\{0,1\}^{*}$ is in $\operatorname{ATIME}(t(n))$ if there is a constant $c>0$ and a $c \cdot t(n)$ ATM $M$ such that $x \in L \Leftrightarrow M(x)=1$.

If for every input $x$ and every directed path in $G_{M, x}, M$ 's states' quantifiers alternate at most $i-1$ times, then

- $L \in \Sigma_{i} \operatorname{TIME}(t(n))$
- $L \in \Pi_{i} \operatorname{TIME}(t(n))$
if $q_{\text {start }}$ has $\exists$
if $q_{\text {start }}$ has $\forall$

Proposition

$$
\begin{aligned}
\Sigma_{i}^{p} & =\bigcup_{c} \Sigma_{i} \operatorname{TIME}\left(n^{c}\right) \\
\Pi_{i}^{p} & =\bigcup_{c} \Pi_{i} \operatorname{TIME}\left(n^{c}\right)
\end{aligned}
$$

## Time-Space tradeoff

Theorem

$$
S A T \notin \operatorname{TISP}\left(n^{1.1}, n^{0.1}\right)
$$

## References I

國 Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Chapter 5
Cambridge University Press
宔
Trevisan, Luca (2002)
Lecture notes
Chapter 3
See webpage
Goldreich, Oded (2006)
Computational complexity: a conceptual perspective.
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

