Lecture 4 - Space Complexity, PSPACE, TQBF

Rafael Oliveira rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• PSPACE completeness

• TQBF and PSPACE-completeness

Reductions & completeness in PSPACE

Definition (Reductions in PSPACE)

Given two languages $L, L' \subseteq \{0, 1\}^*$, we say that $L \leq_m L'$ if there is a poly-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that

 $x \in L \Leftrightarrow f(x) \in L'.$

Reductions & completeness in PSPACE

Definition (Reductions in PSPACE)

Given two languages $L, L' \subseteq \{0, 1\}^*$, we say that $L \leq_m L'$ if there is a poly-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that

$$x \in L \Leftrightarrow f(x) \in L'.$$

Definition

A language L' is PSPACE-hard if for every $L \in PSPACE$, $L \leq_m L'$. If $L' \in PSPACE$ we say L' is PSPACE-complete.

Reductions & completeness in PSPACE

Definition (Reductions in PSPACE)

Given two languages $L, L' \subseteq \{0, 1\}^*$, we say that $L \leq_m L'$ if there is a poly-time computable function $f : \{0, 1\}^* \to \{0, 1\}^*$ such that

 $x \in L \Leftrightarrow f(x) \in L'.$

Definition

A language L' is PSPACE-hard if for every $L \in PSPACE$, $L \leq_m L'$. If $L' \in PSPACE$ we say L' is PSPACE-complete.

Proposition (A complete language)

The following language is PSPACE-complete:

SPACE-TMSAT := { $\langle M, x, 1^s \rangle \mid M(x) = 1 \text{ and } M \text{ uses } s \text{ space }$ }

• PSPACE completeness

• TQBF and PSPACE-completeness

Definition (Quantified boolean formula)

A quantified boolean formula (QBF) is a formula of the form

$$Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$$

where each $Q_i \in \{\exists, \forall\}$, $x_i \in \{0, 1\}$ and φ is a plain (no quantifiers) boolean formula.

Definition (Quantified boolean formula)

A quantified boolean formula (QBF) is a formula of the form

$$Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$$

where each $Q_i \in \{\exists, \forall\}$, $x_i \in \{0, 1\}$ and φ is a plain (no quantifiers) boolean formula.

• by using auxiliary variables can assume φ is CNF or DNF

Definition (Quantified boolean formula)

A quantified boolean formula (QBF) is a formula of the form

$$Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$$

where each $Q_i \in \{\exists, \forall\}$, $x_i \in \{0, 1\}$ and φ is a plain (no quantifiers) boolean formula.

- \blacktriangleright by using auxiliary variables can assume φ is CNF or DNF
- since all variables have a quantifier, the QBF is always either true or false

Definition (Quantified boolean formula)

A quantified boolean formula (QBF) is a formula of the form

$$Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$$

where each $Q_i \in \{\exists, \forall\}$, $x_i \in \{0, 1\}$ and φ is a plain (no quantifiers) boolean formula.

- by using auxiliary variables can assume φ is CNF or DNF
- since all variables have a quantifier, the QBF is always either true or false
- Examples:

$$\forall x \exists y \ (x \land y) \lor (\overline{x} \land \overline{y})$$

$$\exists x, y \forall a, b \ (a \land x) \oplus (b \land y)$$

NP and coNP

We can interpret NP and coNP-complete problems (SAT and \overline{SAT}) in terms of quantified boolean formulas

► For SAT:

(satisfiability)

Input: $\exists x_1, \ldots, x_n \ \varphi(x_1, \ldots, x_n)$ **Output:** is the above true?

NP and coNP

We can interpret NP and coNP-complete problems (SAT and \overline{SAT}) in terms of quantified boolean formulas

► For SAT:

(satisfiability)

Input: $\exists x_1, \ldots, x_n \ \varphi(x_1, \ldots, x_n)$ **Output:** is the above true?

► For SAT:

(tautology)

Input: $\forall x_1, \ldots, x_n \quad \varphi(x_1, \ldots, x_n)$ **Output:** is the above true?

TQBF

Definition (TQBF)

The language TQBF is the set of all true quantified boolean formulae $% \left({{{\rm{T}}_{{\rm{B}}}} \right)$

 $\mathsf{TQBF} := \{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \ \varphi(x_1, \dots, x_n) \text{ is a true QBF } \}$

TQBF

Definition (TQBF)

The language TQBF is the set of all true quantified boolean formulae

 $\mathsf{TQBF} := \{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \ \varphi(x_1, \dots, x_n) \text{ is a true QBF } \}$

Theorem TQBF is PSPACE-complete.

 $\mathsf{TQBF} \in \mathsf{PSPACE}$

1. Let $\psi := Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$ be a QBF $\blacktriangleright m :=$ size of φ

 $\mathsf{TQBF} \in \mathsf{PSPACE}$

1. Let $\psi := Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \quad \varphi(x_1, \dots, x_n)$ be a QBF $\blacktriangleright m :=$ size of φ

2. We will construct a TM M which decides whether $\psi \in \mathsf{TQBF}$ using space O(n(m+n))

Idea: eliminate one variable at a time

 $\mathsf{TQBF} \in \mathsf{PSPACE}$

1. Let $\psi := Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \ \varphi(x_1, \dots, x_n)$ be a QBF $\blacktriangleright m :=$ size of φ

- 2. We will construct a TM M which decides whether $\psi \in \mathsf{TQBF}$ using space O(n(m+n))
 - Idea: eliminate one variable at a time
 - For $b \in \{0,1\}$, let $\psi|_{x_1=b}$ be the QBF

$$\psi|_{x_1=b} := Q_2 x_2 \cdots Q_n x_n \ \varphi(b, x_2, \dots, x_n)$$

 $\mathsf{TQBF} \in \mathsf{PSPACE}$

1. Let $\psi := Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \ \varphi(x_1, \dots, x_n)$ be a QBF $\blacktriangleright m :=$ size of φ

- 2. We will construct a TM M which decides whether $\psi \in \mathsf{TQBF}$ using space O(n(m+n))
 - Idea: eliminate one variable at a time
 - For $b \in \{0,1\}$, let $\psi|_{x_1=b}$ be the QBF

$$\psi|_{x_1=b} := Q_2 x_2 \cdots Q_n x_n \ \varphi(b, x_2, \dots, x_n)$$

▶ If $Q_1 = \exists$, then

$$M(\psi) = 1 \Leftrightarrow M(\psi|_{x_1=0}) = 1 \text{ OR } M(\psi|_{x_1=1}) = 1$$

else, $Q_1 = \forall$ and

 $M(\psi) = 1 \Leftrightarrow M(\psi|_{x_1=0}) = 1 \text{ AND } M(\psi|_{x_1=1}) = 1$

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let $\boldsymbol{s}(n,m)$ be the space used by \boldsymbol{M} on inputs of size (n,m)

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let $\boldsymbol{s}(n,m)$ be the space used by \boldsymbol{M} on inputs of size (n,m)
- 3. Space can be reused!
 - If n = 0, there are no variables and the formula can be evaluated in O(m) space

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let s(n,m) be the space used by M on inputs of size (n,m)
- 3. Space can be reused!
 - If n = 0, there are no variables and the formula can be evaluated in O(m) space
 - ▶ If n > 0, note that each recursive call can use the same space.

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let s(n,m) be the space used by M on inputs of size (n,m)
- 3. Space can be reused!
 - If n = 0, there are no variables and the formula can be evaluated in O(m) space
 - ▶ If n > 0, note that each recursive call can use the same space.
 - After computing $M(\psi|_{x_1=0})$, M just needs to store the value of the bit $M(\psi|_{x_1=0})$ and use remaining space to compute $M(\psi|_{x_1=1})$

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let $\boldsymbol{s}(n,m)$ be the space used by \boldsymbol{M} on inputs of size (n,m)
- 3. Space can be reused!
 - If n = 0, there are no variables and the formula can be evaluated in O(m) space
 - ▶ If n > 0, note that each recursive call can use the same space.
 - After computing $M(\psi|_{x_1=0})$, M just needs to store the value of the bit $M(\psi|_{x_1=0})$ and use remaining space to compute $M(\psi|_{x_1=1})$
 - ▶ $M(\psi|_{x_1=0})$ uses $c \cdot (m+n)$ space to store $\psi|_{x_1=b}$ for each recursive call (*c* constant), hence

$$s(n,m)=s(n-1,m)+c\cdot(m+n)$$

Space analysis of our recursive algorithm ${\cal M}$

- 1. size of input ψ is (n,m) (variables, formula size)
- 2. Let s(n,m) be the space used by M on inputs of size (n,m)
- 3. Space can be reused!
 - If n = 0, there are no variables and the formula can be evaluated in O(m) space
 - ▶ If n > 0, note that each recursive call can use the same space.
 - After computing $M(\psi|_{x_1=0})$, M just needs to store the value of the bit $M(\psi|_{x_1=0})$ and use remaining space to compute $M(\psi|_{x_1=1})$
 - ▶ $M(\psi|_{x_1=0})$ uses $c \cdot (m+n)$ space to store $\psi|_{x_1=b}$ for each recursive call (*c* constant), hence

$$s(n,m)=s(n-1,m)+c\cdot(m+n)$$

 $\blacktriangleright \ s(n,m) = O(n(m+n))$

1. Let $L \in \mathsf{PSPACE}$, we need to show that $L \leq_m \mathsf{TQBF}$. Need a poly-time $f : \{0,1\}^* \to \{0,1\}^*$ such that

 $x \in L \Leftrightarrow f(x) \in \mathsf{TQBF}$

1. Let $L \in \mathsf{PSPACE}$, we need to show that $L \leq_m \mathsf{TQBF}$. Need a poly-time $f : \{0,1\}^* \to \{0,1\}^*$ such that

 $x \in L \Leftrightarrow f(x) \in \mathsf{TQBF}$

2. $L \in \mathsf{PSPACE} \Rightarrow$ there exists c constant and TM M such that M(x) uses $s(n) := n^c$ -space for $x \in \{0, 1\}^n$

1. Let $L \in \mathsf{PSPACE}$, we need to show that $L \leq_m \mathsf{TQBF}$. Need a poly-time $f : \{0,1\}^* \to \{0,1\}^*$ such that

 $x \in L \Leftrightarrow f(x) \in \mathsf{TQBF}$

- 2. $L \in \mathsf{PSPACE} \Rightarrow$ there exists c constant and TM M such that M(x) uses $s(n) := n^c$ -space for $x \in \{0, 1\}^n$
- 3. We will construct a QBF ψ of size $O(s(n)^2)$ such that

 $\psi \in \mathsf{TQBF} \Leftrightarrow M(x) = 1$

Configuration Graphs - refresher

Definition (Configuration Graphs)

Let M be a TM in SPACE(s(n)), and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

- 1. Configuration of M:
 - \blacktriangleright contents of nonblank entries of M 's tapes
 - state and head position

Configuration Graphs - refresher

Definition (Configuration Graphs)

Let M be a TM in $\mathsf{SPACE}(s(n)),$ and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

- 1. Configuration of M:
 - contents of nonblank entries of M's tapes
 - state and head position
- 2. Configuration graph of M on input x denoted $G_{M,x}$ is a directed graph s.t.
 - ▶ nodes: all configurations of M where input tape contains exactly x and work tape contains $\leq c \cdot s(n)$ non-blank cells
 - directed edge from configuration \overline{C} to $\overline{C'}$ if C' can be reached from C in one step of TM M

Configuration Graphs - refresher

Definition (Configuration Graphs)

Let M be a TM in $\mathsf{SPACE}(s(n)),$ and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

- 1. Configuration of M:
 - contents of nonblank entries of M's tapes
 - state and head position
- 2. Configuration graph of M on input x denoted $G_{M,x}$ is a directed graph s.t.
 - ▶ nodes: all configurations of M where input tape contains exactly x and work tape contains $\leq c \cdot s(n)$ non-blank cells
 - directed edge from configuration C to C' if C' can be reached from C in one step of TM M
- **b** By modifying M to erase all its work tapes before halting, can assume there is only one configuration C_{accept}

Configuration Graphs

Proposition

Let M be a (N)TM using s(n) space and $x \in \{0,1\}^n$. If $G_{M,x}$ is the configuration graph of M(x) then there is constant¹ c > 0such that

1. every vertex in $G_{M,x}$ can be described using cs(n) bits. Hence $G_{M,x}$ has $\leq 2^{cs(n)}$ nodes.

¹depending on description of M

Configuration Graphs

Proposition

Let M be a (N)TM using s(n) space and $x \in \{0,1\}^n$. If $G_{M,x}$ is the configuration graph of M(x) then there is constant¹ c > 0such that

- 1. every vertex in $G_{M,x}$ can be described using cs(n) bits. Hence $G_{M,x}$ has $\leq 2^{cs(n)}$ nodes.
- 2. There is O(s(n)) size CNF formula $\varphi_{M,x}$ such that for every two strings $C, C', \varphi_{M,x}(C, C') = 1$ iff C, C' are two neighboring configurations in $G_{M,x}$.

¹depending on description of M

1. We will construct a QBF ψ of size ${\cal O}(s(n)^2)$ such that

$\psi \in \mathsf{TQBF} \Leftrightarrow M(x) = 1$

• Let m := s(n) be the number of bits needed to encode configuration of M for $x \in \{0,1\}^n$

1. We will construct a QBF ψ of size ${\cal O}(s(n)^2)$ such that

$\psi \in \mathsf{TQBF} \Leftrightarrow M(x) = 1$

- Let m := s(n) be the number of bits needed to encode configuration of M for $x \in \{0,1\}^n$
- ▶ By item 2 of proposition, have O(m) size CNF $\varphi_{M,x}$ such that $\forall C, C' \in \{0,1\}^m$ we have

$$\varphi_{M,x}(C,C') = 1 \Leftrightarrow (C,C') \in E(G_{M,x})$$

1. We will construct a QBF ψ of size ${\cal O}(s(n)^2)$ such that

$\psi \in \mathsf{TQBF} \Leftrightarrow M(x) = 1$

- Let m := s(n) be the number of bits needed to encode configuration of M for $x \in \{0, 1\}^n$
- ▶ By item 2 of proposition, have O(m) size CNF $\varphi_{M,x}$ such that $\forall C, C' \in \{0,1\}^m$ we have

$$\varphi_{M,x}(C,C') = 1 \Leftrightarrow (C,C') \in E(G_{M,x})$$

• Construct ψ inductively such that $\forall C, C' \in \{0, 1\}^m$

 $\psi(C,C') = 1 \Leftrightarrow$ there is path $C \mapsto C'$ in $G_{M,x}$.

Construction of $\boldsymbol{\psi}$

1. we'll construct $\psi_i(C,C')$ which is true iff there is path of length 2^i from C to C'

In this case $\psi = \psi_m$ and $\psi_0 = \varphi_{M,x}$

Construction of ψ

1. we'll construct $\psi_i(C,C')$ which is true iff there is path of length 2^i from C to C'

In this case $\psi=\psi_m$ and $\psi_0=\varphi_{M,x}$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^i from $C \mapsto C'$ iff there is C'' s.t.

$$\psi_{i-1}(C, C'') = \psi_{i-1}(C'', C') = 1.$$

Construction of ψ

1. we'll construct $\psi_i(C,C')$ which is true iff there is path of length 2^i from C to C'

In this case $\psi=\psi_m$ and $\psi_0=\varphi_{M,x}$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^i from $C \mapsto C'$ iff there is C'' s.t.

$$\psi_{i-1}(C, C'') = \psi_{i-1}(C'', C') = 1.$$

3. Naively:

$$\psi_i = \exists C'' \psi_{i-1}(C, C'') \land \psi_{i-1}(C'', C')$$

Exponential blowup! Need to reuse previous formulae (circuit)

Construction of ψ

1. we'll construct $\psi_i(C,C')$ which is true iff there is path of length 2^i from C to C'

In this case $\psi=\psi_m$ and $\psi_0=\varphi_{M,x}$

2. Assume we have QBF ψ_{i-1} There is path of length 2^i from $C \mapsto C'$ iff there is C'' s.t.

$$\psi_{i-1}(C, C'') = \psi_{i-1}(C'', C') = 1.$$

3. More succinctly: $\psi_i(C,C') := \exists C'' \forall D_1, D_2$

 $\left((D_1 = C \land D_2 = C'') \lor (D_1 = C'' \land D_2 = C') \right) \Rightarrow \psi_{i-1}(D_1, D_2)$

Construction of ψ

1. we'll construct $\psi_i(C,C')$ which is true iff there is path of length 2^i from C to C'

In this case $\psi=\psi_m$ and $\psi_0=\varphi_{M,x}$

2. Assume we have QBF ψ_{i-1} There is path of length 2^i from $C \mapsto C'$ iff there is C'' s.t.

$$\psi_{i-1}(C, C'') = \psi_{i-1}(C'', C') = 1.$$

3. More succinctly: $\psi_i(C,C') := \exists C'' \forall D_1, D_2$

 $\left((D_1 = C \land D_2 = C'') \lor (D_1 = C'' \land D_2 = C') \right) \Rightarrow \psi_{i-1}(D_1, D_2)$

4. Now formula size recursion is:

$$S(\psi_i) = S(\psi_{i-1}) + O(m) \Rightarrow S(\psi) = O(m^2)$$

References I

Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach Cambridge University Press

Meyer, A. and Stockmeyer, L. (1973)

Word problems requiring exponential time STOC

Goldreich, Oded (2006)

Computational complexity: a conceptual perspective.

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html