Lecture 4 - Space Complexity, PSPACE, TQBF

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- PSPACE completeness
- TQBF and PSPACE-completeness

Reductions \& completeness in PSPACE

Definition (Reductions in PSPACE)
Given two languages $L, L^{\prime} \subseteq\{0,1\}^{*}$, we say that $L \leq_{m} L^{\prime}$ if there is a poly-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in L^{\prime} .
$$

Reductions \& completeness in PSPACE

Definition (Reductions in PSPACE)
Given two languages $L, L^{\prime} \subseteq\{0,1\}^{*}$, we say that $L \leq_{m} L^{\prime}$ if there is a poly-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in L^{\prime} .
$$

Definition
A language L^{\prime} is PSPACE-hard if for every $L \in$ PSPACE, $L \leq_{m} L^{\prime}$. If $L^{\prime} \in$ PSPACE we say L^{\prime} is PSPACE-complete.

Reductions \& completeness in PSPACE

Definition (Reductions in PSPACE)
Given two languages $L, L^{\prime} \subseteq\{0,1\}^{*}$, we say that $L \leq_{m} L^{\prime}$ if there is a poly-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in L^{\prime} .
$$

Definition
A language L^{\prime} is PSPACE-hard if for every $L \in$ PSPACE, $L \leq_{m} L^{\prime}$. If $L^{\prime} \in$ PSPACE we say L^{\prime} is PSPACE-complete.

Proposition (A complete language)
The following language is PSPACE-complete:
SPACE-TMSAT $:=\left\{\left\langle M, x, 1^{s}\right\rangle \mid M(x)=1\right.$ and M uses s space $\}$

- PSPACE completeness

- TQBF and PSPACE-completeness

Quantified boolean formulas (QBF)

Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each $Q_{i} \in\{\exists, \forall\}, x_{i} \in\{0,1\}$ and φ is a plain (no quantifiers) boolean formula.

Quantified boolean formulas (QBF)

Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each $Q_{i} \in\{\exists, \forall\}, x_{i} \in\{0,1\}$ and φ is a plain (no quantifiers) boolean formula.

- by using auxiliary variables can assume φ is CNF or DNF

Quantified boolean formulas (QBF)

Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each $Q_{i} \in\{\exists, \forall\}, x_{i} \in\{0,1\}$ and φ is a plain (no quantifiers) boolean formula.

- by using auxiliary variables can assume φ is CNF or DNF
- since all variables have a quantifier, the QBF is always either true or false

Quantified boolean formulas (QBF)

Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each $Q_{i} \in\{\exists, \forall\}, x_{i} \in\{0,1\}$ and φ is a plain (no quantifiers) boolean formula.

- by using auxiliary variables can assume φ is CNF or DNF
- since all variables have a quantifier, the QBF is always either true or false
- Examples:

$$
\begin{gathered}
\forall x \exists y \quad(x \wedge y) \vee(\bar{x} \wedge \bar{y}) \\
\exists x, y \forall a, b \quad(a \wedge x) \oplus(b \wedge y)
\end{gathered}
$$

NP and coNP

We can interpret NP and coNP-complete problems (SAT and SAT) in terms of quantified boolean formulas

- For SAT:

Input: $\exists x_{1}, \ldots, x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$
Output: is the above true?

NP and coNP

We can interpret NP and coNP-complete problems (SAT and SAT) in terms of quantified boolean formulas

- For SAT:

Input: $\exists x_{1}, \ldots, x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$
Output: is the above true?

- For SAT:

Input: $\forall x_{1}, \ldots, x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$
Output: is the above true?

TQBF

Definition (TQBF)
The language TQBF is the set of all true quantified boolean formulae

TQBF $:=\left\{Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)\right.$ is a true QBF $\}$

TQBF

Definition (TQBF)
The language TQBF is the set of all true quantified boolean formulae

TQBF $:=\left\{Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)\right.$ is a true QBF $\}$

Theorem
TQBF is PSPACE-complete.

PSPACE-completeness of TQBF

TQBF \in PSPACE

1. Let $\psi:=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$ be a QBF

- $m:=$ size of φ

PSPACE-completeness of TQBF

TQBF \in PSPACE

1. Let $\psi:=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$ be a QBF - $m:=$ size of φ
2. We will construct a TM M which decides whether $\psi \in$ TQBF using space $O(n(m+n))$

- Idea: eliminate one variable at a time

PSPACE-completeness of TQBF

TQBF \in PSPACE

1. Let $\psi:=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$ be a QBF

- $m:=$ size of φ

2. We will construct a TM M which decides whether $\psi \in$ TQBF using space $O(n(m+n))$

- Idea: eliminate one variable at a time
- For $b \in\{0,1\}$, let $\left.\psi\right|_{x_{1}=b}$ be the QBF

$$
\left.\psi\right|_{x_{1}=b}:=Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(b, x_{2}, \ldots, x_{n}\right)
$$

PSPACE-completeness of TQBF

TQBF \in PSPACE

1. Let $\psi:=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(x_{1}, \ldots, x_{n}\right)$ be a QBF

- $m:=$ size of φ

2. We will construct a TM M which decides whether $\psi \in$ TQBF using space $O(n(m+n))$
\rightarrow Idea: eliminate one variable at a time
$>$ For $b \in\{0,1\}$, let $\left.\psi\right|_{x_{1}=b}$ be the QBF

$$
\left.\psi\right|_{x_{1}=b}:=Q_{2} x_{2} \cdots Q_{n} x_{n} \quad \varphi\left(b, x_{2}, \ldots, x_{n}\right)
$$

$>$ If $Q_{1}=\exists$, then

$$
M(\psi)=1 \Leftrightarrow M\left(\left.\psi\right|_{x_{1}=0}\right)=1 \text { OR } M\left(\left.\psi\right|_{x_{1}=1}\right)=1
$$

else, $Q_{1}=\forall$ and

$$
M(\psi)=1 \Leftrightarrow M\left(\left.\psi\right|_{x_{1}=0}\right)=1 \text { AND } M\left(\left.\psi\right|_{x_{1}=1}\right)=1
$$

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is $(n, m) \quad$ (variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is $(n, m) \quad$ (variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)
3. Space can be reused!

- If $n=0$, there are no variables and the formula can be evaluated in $O(m)$ space

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is $(n, m) \quad$ (variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)
3. Space can be reused!

- If $n=0$, there are no variables and the formula can be evaluated in $O(m)$ space
- If $n>0$, note that each recursive call can use the same space.

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is (n, m)
(variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)
3. Space can be reused!

- If $n=0$, there are no variables and the formula can be evaluated in $O(m)$ space
- If $n>0$, note that each recursive call can use the same space.
$>$ After computing $M\left(\left.\psi\right|_{x_{1}=0}\right), M$ just needs to store the value of the bit $M\left(\left.\psi\right|_{x_{1}=0}\right)$ and use remaining space to compute $M\left(\left.\psi\right|_{x_{1}=1}\right)$

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is (n, m)
(variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)
3. Space can be reused!

- If $n=0$, there are no variables and the formula can be evaluated in $O(m)$ space
- If $n>0$, note that each recursive call can use the same space.
\triangleright After computing $M\left(\left.\psi\right|_{x_{1}=0}\right), M$ just needs to store the value of the bit $M\left(\left.\psi\right|_{x_{1}=0}\right)$ and use remaining space to compute $M\left(\left.\psi\right|_{x_{1}=1}\right)$
$>M\left(\left.\psi\right|_{x_{1}=0}\right)$ uses $c \cdot(m+n)$ space to store $\left.\psi\right|_{x_{1}=b}$ for each recursive call (c constant), hence

$$
s(n, m)=s(n-1, m)+c \cdot(m+n)
$$

TQBF in PSPACE

Space analysis of our recursive algorithm M

1. size of input ψ is (n, m)
(variables, formula size)
2. Let $s(n, m)$ be the space used by M on inputs of size (n, m)
3. Space can be reused!

- If $n=0$, there are no variables and the formula can be evaluated in $O(m)$ space
- If $n>0$, note that each recursive call can use the same space.
\triangleright After computing $M\left(\left.\psi\right|_{x_{1}=0}\right), M$ just needs to store the value of the bit $M\left(\left.\psi\right|_{x_{1}=0}\right)$ and use remaining space to compute $M\left(\left.\psi\right|_{x_{1}=1}\right)$
$>M\left(\left.\psi\right|_{x_{1}=0}\right)$ uses $c \cdot(m+n)$ space to store $\left.\psi\right|_{x_{1}=b}$ for each recursive call (c constant), hence

$$
s(n, m)=s(n-1, m)+c \cdot(m+n)
$$

$>s(n, m)=O(n(m+n))$

TQBF is PSPACE-hard

1. Let $L \in$ PSPACE, we need to show that $L \leq_{m}$ TQBF. Need a poly-time $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in \mathrm{TQBF}
$$

TQBF is PSPACE-hard

1. Let $L \in$ PSPACE, we need to show that $L \leq_{m}$ TQBF. Need a poly-time $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in \mathrm{TQBF}
$$

2. $L \in \mathrm{PSPACE} \Rightarrow$ there exists c constant and TM M such that $M(x)$ uses $s(n):=n^{c}$-space for $x \in\{0,1\}^{n}$

TQBF is PSPACE-hard

1. Let $L \in$ PSPACE, we need to show that $L \leq_{m}$ TQBF. Need a poly-time $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
x \in L \Leftrightarrow f(x) \in \mathrm{TQBF}
$$

2. $L \in$ PSPACE \Rightarrow there exists c constant and TM M such that $M(x)$ uses $s(n):=n^{c}$-space for $x \in\{0,1\}^{n}$
3. We will construct a QBF ψ of size $O\left(s(n)^{2}\right)$ such that

$$
\psi \in \mathrm{TQBF} \Leftrightarrow M(x)=1
$$

Configuration Graphs - refresher

Definition (Configuration Graphs)
Let M be a TM in $\operatorname{SPACE}(s(n))$, and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

1. Configuration of M :

- contents of nonblank entries of M's tapes
- state and head position

Configuration Graphs - refresher

Definition (Configuration Graphs)
Let M be a TM in $\operatorname{SPACE}(s(n))$, and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

1. Configuration of M :

- contents of nonblank entries of M's tapes
- state and head position

2. Configuration graph of M on input x - denoted $G_{M, x}$ is a directed graph s.t.
n nodes: all configurations of M where input tape contains exactly x and work tape contains $\leq c \cdot s(n)$ non-blank cells
directed edge from configuration C to C^{\prime} if C^{\prime} can be reached from C in one step of TM M

Configuration Graphs - refresher

Definition (Configuration Graphs)
Let M be a TM in $\operatorname{SPACE}(s(n))$, and c be a constant such that M uses $\leq c \cdot s(n)$ work tape space on inputs of length n.

1. Configuration of M :

- contents of nonblank entries of M's tapes
- state and head position

2. Configuration graph of M on input x - denoted $G_{M, x}$ is a directed graph s.t.
$>$ nodes: all configurations of M where input tape contains exactly x and work tape contains $\leq c \cdot s(n)$ non-blank cells

- directed edge from configuration C to C^{\prime} if C^{\prime} can be reached from C in one step of TM M
- By modifying M to erase all its work tapes before halting, can assume there is only one configuration $C_{\text {accept }}$

Configuration Graphs

Proposition

Let M be a (N)TM using $s(n)$ space and $x \in\{0,1\}^{n}$. If $G_{M, x}$ is the configuration graph of $M(x)$ then there is constant ${ }^{1} c>0$ such that

1. every vertex in $G_{M, x}$ can be described using $\operatorname{cs}(n)$ bits. Hence $G_{M, x}$ has $\leq 2^{c s(n)}$ nodes.
${ }^{1}$ depending on description of M

Configuration Graphs

Proposition

Let M be a (N)TM using $s(n)$ space and $x \in\{0,1\}^{n}$. If $G_{M, x}$ is the configuration graph of $M(x)$ then there is constant ${ }^{1} c>0$ such that

1. every vertex in $G_{M, x}$ can be described using $\operatorname{cs}(n)$ bits. Hence $G_{M, x}$ has $\leq 2^{c s(n)}$ nodes.
2. There is $O(s(n))$ size $C N F$ formula $\varphi_{M, x}$ such that for every two strings $C, C^{\prime}, \varphi_{M, x}\left(C, C^{\prime}\right)=1$ iff C, C^{\prime} are two neighboring configurations in $G_{M, x}$.

TQBF is PSPACE-hard

1. We will construct a QBF ψ of size $O\left(s(n)^{2}\right)$ such that

$$
\psi \in \mathrm{TQBF} \Leftrightarrow M(x)=1
$$

- Let $m:=s(n)$ be the number of bits needed to encode configuration of M for $x \in\{0,1\}^{n}$

TQBF is PSPACE-hard

1. We will construct a QBF ψ of size $O\left(s(n)^{2}\right)$ such that

$$
\psi \in \mathrm{TQBF} \Leftrightarrow M(x)=1
$$

- Let $m:=s(n)$ be the number of bits needed to encode configuration of M for $x \in\{0,1\}^{n}$
- By item 2 of proposition, have $O(m)$ size CNF $\varphi_{M, x}$ such that $\forall C, C^{\prime} \in\{0,1\}^{m}$ we have

$$
\varphi_{M, x}\left(C, C^{\prime}\right)=1 \Leftrightarrow\left(C, C^{\prime}\right) \in E\left(G_{M, x}\right)
$$

TQBF is PSPACE-hard

1. We will construct a QBF ψ of size $O\left(s(n)^{2}\right)$ such that

$$
\psi \in \mathrm{TQBF} \Leftrightarrow M(x)=1
$$

- Let $m:=s(n)$ be the number of bits needed to encode configuration of M for $x \in\{0,1\}^{n}$
- By item 2 of proposition, have $O(m)$ size CNF $\varphi_{M, x}$ such that $\forall C, C^{\prime} \in\{0,1\}^{m}$ we have

$$
\varphi_{M, x}\left(C, C^{\prime}\right)=1 \Leftrightarrow\left(C, C^{\prime}\right) \in E\left(G_{M, x}\right)
$$

- Construct ψ inductively such that $\forall C, C^{\prime} \in\{0,1\}^{m}$

$$
\psi\left(C, C^{\prime}\right)=1 \Leftrightarrow \text { there is path } C \mapsto C^{\prime} \text { in } G_{M, x} .
$$

TQBF is PSPACE-hard

Construction of ψ

1. we'll construct $\psi_{i}\left(C, C^{\prime}\right)$ which is true iff there is path of length 2^{i} from C to C^{\prime}

In this case $\psi=\psi_{m}$ and $\psi_{0}=\varphi_{M, x}$

TQBF is PSPACE-hard

Construction of ψ

1. we'll construct $\psi_{i}\left(C, C^{\prime}\right)$ which is true iff there is path of length 2^{i} from C to C^{\prime}

$$
\text { In this case } \psi=\psi_{m} \text { and } \psi_{0}=\varphi_{M, x}
$$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^{i} from $C \mapsto C^{\prime}$ iff there is $C^{\prime \prime}$ s.t.

$$
\psi_{i-1}\left(C, C^{\prime \prime}\right)=\psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)=1
$$

TQBF is PSPACE-hard

Construction of ψ

1. we'll construct $\psi_{i}\left(C, C^{\prime}\right)$ which is true iff there is path of length 2^{i} from C to C^{\prime}

$$
\text { In this case } \psi=\psi_{m} \text { and } \psi_{0}=\varphi_{M, x}
$$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^{i} from $C \mapsto C^{\prime}$ iff there is $C^{\prime \prime}$ s.t.

$$
\psi_{i-1}\left(C, C^{\prime \prime}\right)=\psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)=1
$$

3. Naively:

$$
\psi_{i}=\exists C^{\prime \prime} \psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)
$$

Exponential blowup! Need to reuse previous formulae (circuit)

TQBF is PSPACE-hard

Construction of ψ

1. we'll construct $\psi_{i}\left(C, C^{\prime}\right)$ which is true iff there is path of length 2^{i} from C to C^{\prime}

$$
\text { In this case } \psi=\psi_{m} \text { and } \psi_{0}=\varphi_{M, x}
$$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^{i} from $C \mapsto C^{\prime}$ iff there is $C^{\prime \prime}$ s.t.

$$
\psi_{i-1}\left(C, C^{\prime \prime}\right)=\psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)=1
$$

3. More succinctly: $\psi_{i}\left(C, C^{\prime}\right):=\exists C^{\prime \prime} \forall D_{1}, D_{2}$

$$
\left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
$$

TQBF is PSPACE-hard

Construction of ψ

1. we'll construct $\psi_{i}\left(C, C^{\prime}\right)$ which is true iff there is path of length 2^{i} from C to C^{\prime}

$$
\text { In this case } \psi=\psi_{m} \text { and } \psi_{0}=\varphi_{M, x}
$$

2. Assume we have QBF ψ_{i-1}

There is path of length 2^{i} from $C \mapsto C^{\prime}$ iff there is $C^{\prime \prime}$ s.t.

$$
\psi_{i-1}\left(C, C^{\prime \prime}\right)=\psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)=1
$$

3. More succinctly: $\psi_{i}\left(C, C^{\prime}\right):=\exists C^{\prime \prime} \forall D_{1}, D_{2}$

$$
\left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \Rightarrow \psi_{i-1}\left(D_{1}, D_{2}\right)
$$

4. Now formula size recursion is:

$$
S\left(\psi_{i}\right)=S\left(\psi_{i-1}\right)+O(m) \Rightarrow S(\psi)=O\left(m^{2}\right)
$$

References I

R Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Cambridge University Press
国
Meyer, A. and Stockmeyer, L. (1973)
Word problems requiring exponential time
STOC
R- Goldreich, Oded (2006)
Computational complexity: a conceptual perspective.
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

