
Lecture 4 - Space Complexity,
PSPACE, TQBF

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

PSPACE completeness

TQBF and PSPACE-completeness

Reductions & completeness in PSPACE
Definition (Reductions in PSPACE)
Given two languages L,L′ ⊆ {0, 1}∗, we say that L ≤m L′ if there
is a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ L′.

Definition
A language L′ is PSPACE-hard if for every L ∈ PSPACE, L ≤m L′.
If L′ ∈ PSPACE we say L′ is PSPACE-complete.

Proposition (A complete language)
The following language is PSPACE-complete:

SPACE-TMSAT := {〈M,x, 1s〉 | M(x) = 1 and M uses s space }

Reductions & completeness in PSPACE
Definition (Reductions in PSPACE)
Given two languages L,L′ ⊆ {0, 1}∗, we say that L ≤m L′ if there
is a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ L′.

Definition
A language L′ is PSPACE-hard if for every L ∈ PSPACE, L ≤m L′.
If L′ ∈ PSPACE we say L′ is PSPACE-complete.

Proposition (A complete language)
The following language is PSPACE-complete:

SPACE-TMSAT := {〈M,x, 1s〉 | M(x) = 1 and M uses s space }

Reductions & completeness in PSPACE
Definition (Reductions in PSPACE)
Given two languages L,L′ ⊆ {0, 1}∗, we say that L ≤m L′ if there
is a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ L′.

Definition
A language L′ is PSPACE-hard if for every L ∈ PSPACE, L ≤m L′.
If L′ ∈ PSPACE we say L′ is PSPACE-complete.

Proposition (A complete language)
The following language is PSPACE-complete:

SPACE-TMSAT := {〈M,x, 1s〉 | M(x) = 1 and M uses s space }

PSPACE completeness

TQBF and PSPACE-completeness

Quantified boolean formulas (QBF)
Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn)

where each Qi ∈ {∃, ∀}, xi ∈ {0, 1} and φ is a plain (no
quantifiers) boolean formula.

▶ by using auxiliary variables can assume φ is CNF or DNF
▶ since all variables have a quantifier, the QBF is always either

true or false
▶ Examples:

∀x∃y (x ∧ y) ∨ (x ∧ y)

∃x, y∀a, b (a ∧ x)⊕ (b ∧ y)

Quantified boolean formulas (QBF)
Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn)

where each Qi ∈ {∃, ∀}, xi ∈ {0, 1} and φ is a plain (no
quantifiers) boolean formula.
▶ by using auxiliary variables can assume φ is CNF or DNF

▶ since all variables have a quantifier, the QBF is always either
true or false

▶ Examples:
∀x∃y (x ∧ y) ∨ (x ∧ y)

∃x, y∀a, b (a ∧ x)⊕ (b ∧ y)

Quantified boolean formulas (QBF)
Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn)

where each Qi ∈ {∃, ∀}, xi ∈ {0, 1} and φ is a plain (no
quantifiers) boolean formula.
▶ by using auxiliary variables can assume φ is CNF or DNF
▶ since all variables have a quantifier, the QBF is always either

true or false

▶ Examples:
∀x∃y (x ∧ y) ∨ (x ∧ y)

∃x, y∀a, b (a ∧ x)⊕ (b ∧ y)

Quantified boolean formulas (QBF)
Definition (Quantified boolean formula)
A quantified boolean formula (QBF) is a formula of the form

Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn)

where each Qi ∈ {∃, ∀}, xi ∈ {0, 1} and φ is a plain (no
quantifiers) boolean formula.
▶ by using auxiliary variables can assume φ is CNF or DNF
▶ since all variables have a quantifier, the QBF is always either

true or false
▶ Examples:

∀x∃y (x ∧ y) ∨ (x ∧ y)

∃x, y∀a, b (a ∧ x)⊕ (b ∧ y)

NP and coNP
We can interpret NP and coNP-complete problems (SAT and SAT)
in terms of quantified boolean formulas
▶ For SAT: (satisfiability)

Input: ∃x1, . . . , xn φ(x1, . . . , xn)
Output: is the above true?

▶ For SAT: (tautology)

Input: ∀x1, . . . , xn φ(x1, . . . , xn)
Output: is the above true?

NP and coNP
We can interpret NP and coNP-complete problems (SAT and SAT)
in terms of quantified boolean formulas
▶ For SAT: (satisfiability)

Input: ∃x1, . . . , xn φ(x1, . . . , xn)
Output: is the above true?

▶ For SAT: (tautology)

Input: ∀x1, . . . , xn φ(x1, . . . , xn)
Output: is the above true?

TQBF
Definition (TQBF)
The language TQBF is the set of all true quantified boolean
formulae

TQBF := {Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) is a true QBF }

Theorem
TQBF is PSPACE-complete.

TQBF
Definition (TQBF)
The language TQBF is the set of all true quantified boolean
formulae

TQBF := {Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) is a true QBF }

Theorem
TQBF is PSPACE-complete.

PSPACE-completeness of TQBF
TQBF ∈ PSPACE

1. Let ψ := Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) be a QBF
▶ m := size of φ

2. We will construct a TM M which decides whether ψ ∈ TQBF
using space O(n(m+ n))
▶ Idea: eliminate one variable at a time

▶ For b ∈ {0, 1}, let ψ|x1=b be the QBF

ψ|x1=b := Q2x2 · · ·Qnxn φ(b, x2, . . . , xn)

▶ If Q1 = ∃, then

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 OR M(ψ|x1=1) = 1

else, Q1 = ∀ and

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 AND M(ψ|x1=1) = 1

PSPACE-completeness of TQBF
TQBF ∈ PSPACE

1. Let ψ := Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) be a QBF
▶ m := size of φ

2. We will construct a TM M which decides whether ψ ∈ TQBF
using space O(n(m+ n))
▶ Idea: eliminate one variable at a time

▶ For b ∈ {0, 1}, let ψ|x1=b be the QBF

ψ|x1=b := Q2x2 · · ·Qnxn φ(b, x2, . . . , xn)

▶ If Q1 = ∃, then

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 OR M(ψ|x1=1) = 1

else, Q1 = ∀ and

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 AND M(ψ|x1=1) = 1

PSPACE-completeness of TQBF
TQBF ∈ PSPACE

1. Let ψ := Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) be a QBF
▶ m := size of φ

2. We will construct a TM M which decides whether ψ ∈ TQBF
using space O(n(m+ n))
▶ Idea: eliminate one variable at a time
▶ For b ∈ {0, 1}, let ψ|x1=b be the QBF

ψ|x1=b := Q2x2 · · ·Qnxn φ(b, x2, . . . , xn)

▶ If Q1 = ∃, then

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 OR M(ψ|x1=1) = 1

else, Q1 = ∀ and

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 AND M(ψ|x1=1) = 1

PSPACE-completeness of TQBF
TQBF ∈ PSPACE

1. Let ψ := Q1x1Q2x2 · · ·Qnxn φ(x1, . . . , xn) be a QBF
▶ m := size of φ

2. We will construct a TM M which decides whether ψ ∈ TQBF
using space O(n(m+ n))
▶ Idea: eliminate one variable at a time
▶ For b ∈ {0, 1}, let ψ|x1=b be the QBF

ψ|x1=b := Q2x2 · · ·Qnxn φ(b, x2, . . . , xn)

▶ If Q1 = ∃, then

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 OR M(ψ|x1=1) = 1

else, Q1 = ∀ and

M(ψ) = 1 ⇔M(ψ|x1=0) = 1 AND M(ψ|x1=1) = 1

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space

▶ If n > 0, note that each recursive call can use the same space.
▶ After computing M(ψ|x1=0), M just needs to store the value

of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space

▶ If n > 0, note that each recursive call can use the same space.
▶ After computing M(ψ|x1=0), M just needs to store the value

of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space
▶ If n > 0, note that each recursive call can use the same space.

▶ After computing M(ψ|x1=0), M just needs to store the value
of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space
▶ If n > 0, note that each recursive call can use the same space.
▶ After computing M(ψ|x1=0), M just needs to store the value

of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space
▶ If n > 0, note that each recursive call can use the same space.
▶ After computing M(ψ|x1=0), M just needs to store the value

of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF in PSPACE
Space analysis of our recursive algorithm M

1. size of input ψ is (n,m) (variables, formula size)
2. Let s(n,m) be the space used by M on inputs of size (n,m)

3. Space can be reused!
▶ If n = 0, there are no variables and the formula can be

evaluated in O(m) space
▶ If n > 0, note that each recursive call can use the same space.
▶ After computing M(ψ|x1=0), M just needs to store the value

of the bit M(ψ|x1=0) and use remaining space to compute
M(ψ|x1=1)

▶ M(ψ|x1=0) uses c · (m+ n) space to store ψ|x1=b for each
recursive call (c constant), hence

s(n,m) = s(n− 1,m) + c · (m+ n)

▶ s(n,m) = O(n(m+ n))

TQBF is PSPACE-hard
1. Let L ∈ PSPACE, we need to show that L ≤m TQBF.

Need a poly-time f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ TQBF

2. L ∈ PSPACE ⇒ there exists c constant and TM M such that
M(x) uses s(n) := nc-space for x ∈ {0, 1}n

3. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

TQBF is PSPACE-hard
1. Let L ∈ PSPACE, we need to show that L ≤m TQBF.

Need a poly-time f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ TQBF

2. L ∈ PSPACE ⇒ there exists c constant and TM M such that
M(x) uses s(n) := nc-space for x ∈ {0, 1}n

3. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

TQBF is PSPACE-hard
1. Let L ∈ PSPACE, we need to show that L ≤m TQBF.

Need a poly-time f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L⇔ f(x) ∈ TQBF

2. L ∈ PSPACE ⇒ there exists c constant and TM M such that
M(x) uses s(n) := nc-space for x ∈ {0, 1}n

3. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

Configuration Graphs - refresher
Definition (Configuration Graphs)
Let M be a TM in SPACE(s(n)), and c be a constant such that
M uses ≤ c · s(n) work tape space on inputs of length n.

1. Configuration of M :
▶ contents of nonblank entries of M ’s tapes
▶ state and head position

2. Configuration graph of M on input x - denoted GM,x is a
directed graph s.t.
▶ nodes: all configurations of M where input tape contains

exactly x and work tape contains ≤ c · s(n) non-blank cells
▶ directed edge from configuration C to C ′ if C ′ can be reached

from C in one step of TM M

▶ By modifying M to erase all its work tapes before halting, can
assume there is only one configuration Caccept

Configuration Graphs - refresher
Definition (Configuration Graphs)
Let M be a TM in SPACE(s(n)), and c be a constant such that
M uses ≤ c · s(n) work tape space on inputs of length n.

1. Configuration of M :
▶ contents of nonblank entries of M ’s tapes
▶ state and head position

2. Configuration graph of M on input x - denoted GM,x is a
directed graph s.t.
▶ nodes: all configurations of M where input tape contains

exactly x and work tape contains ≤ c · s(n) non-blank cells
▶ directed edge from configuration C to C ′ if C ′ can be reached

from C in one step of TM M

▶ By modifying M to erase all its work tapes before halting, can
assume there is only one configuration Caccept

Configuration Graphs - refresher
Definition (Configuration Graphs)
Let M be a TM in SPACE(s(n)), and c be a constant such that
M uses ≤ c · s(n) work tape space on inputs of length n.

1. Configuration of M :
▶ contents of nonblank entries of M ’s tapes
▶ state and head position

2. Configuration graph of M on input x - denoted GM,x is a
directed graph s.t.
▶ nodes: all configurations of M where input tape contains

exactly x and work tape contains ≤ c · s(n) non-blank cells
▶ directed edge from configuration C to C ′ if C ′ can be reached

from C in one step of TM M

▶ By modifying M to erase all its work tapes before halting, can
assume there is only one configuration Caccept

Configuration Graphs
Proposition
Let M be a (N)TM using s(n) space and x ∈ {0, 1}n. If GM,x is
the configuration graph of M(x) then there is constant1 c > 0
such that

1. every vertex in GM,x can be described using cs(n) bits. Hence
GM,x has ≤ 2cs(n) nodes.

2. There is O(s(n)) size CNF formula φM,x such that for every
two strings C,C ′, φM,x(C,C

′) = 1 iff C,C ′ are two
neighboring configurations in GM,x.

1depending on description of M

Configuration Graphs
Proposition
Let M be a (N)TM using s(n) space and x ∈ {0, 1}n. If GM,x is
the configuration graph of M(x) then there is constant1 c > 0
such that

1. every vertex in GM,x can be described using cs(n) bits. Hence
GM,x has ≤ 2cs(n) nodes.

2. There is O(s(n)) size CNF formula φM,x such that for every
two strings C,C ′, φM,x(C,C

′) = 1 iff C,C ′ are two
neighboring configurations in GM,x.

1depending on description of M

TQBF is PSPACE-hard
1. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

▶ Let m := s(n) be the number of bits needed to encode
configuration of M for x ∈ {0, 1}n

▶ By item 2 of proposition, have O(m) size CNF φM,x such that
∀C,C ′ ∈ {0, 1}m we have

φM,x(C,C
′) = 1 ⇔ (C,C ′) ∈ E(GM,x)

▶ Construct ψ inductively such that ∀C,C ′ ∈ {0, 1}m

ψ(C,C ′) = 1 ⇔ there is path C 7→ C ′ in GM,x.

TQBF is PSPACE-hard
1. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

▶ Let m := s(n) be the number of bits needed to encode
configuration of M for x ∈ {0, 1}n

▶ By item 2 of proposition, have O(m) size CNF φM,x such that
∀C,C ′ ∈ {0, 1}m we have

φM,x(C,C
′) = 1 ⇔ (C,C ′) ∈ E(GM,x)

▶ Construct ψ inductively such that ∀C,C ′ ∈ {0, 1}m

ψ(C,C ′) = 1 ⇔ there is path C 7→ C ′ in GM,x.

TQBF is PSPACE-hard
1. We will construct a QBF ψ of size O(s(n)2) such that

ψ ∈ TQBF ⇔M(x) = 1

▶ Let m := s(n) be the number of bits needed to encode
configuration of M for x ∈ {0, 1}n

▶ By item 2 of proposition, have O(m) size CNF φM,x such that
∀C,C ′ ∈ {0, 1}m we have

φM,x(C,C
′) = 1 ⇔ (C,C ′) ∈ E(GM,x)

▶ Construct ψ inductively such that ∀C,C ′ ∈ {0, 1}m

ψ(C,C ′) = 1 ⇔ there is path C 7→ C ′ in GM,x.

TQBF is PSPACE-hard
Construction of ψ

1. we’ll construct ψi(C,C
′) which is true iff there is path of

length 2i from C to C ′

In this case ψ = ψm and ψ0 = φM,x

2. Assume we have QBF ψi−1

There is path of length 2i from C 7→ C ′ iff there is C ′′ s.t.

ψi−1(C,C
′′) = ψi−1(C

′′, C ′) = 1.

3. More succinctly: ψi(C,C
′) := ∃C ′′∀D1, D2(

(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)
)
⇒ ψi−1(D1, D2)

4. Now formula size recursion is:

S(ψi) = S(ψi−1) +O(m) ⇒ S(ψ) = O(m2)

TQBF is PSPACE-hard
Construction of ψ

1. we’ll construct ψi(C,C
′) which is true iff there is path of

length 2i from C to C ′

In this case ψ = ψm and ψ0 = φM,x

2. Assume we have QBF ψi−1

There is path of length 2i from C 7→ C ′ iff there is C ′′ s.t.

ψi−1(C,C
′′) = ψi−1(C

′′, C ′) = 1.

3. More succinctly: ψi(C,C
′) := ∃C ′′∀D1, D2(

(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)
)
⇒ ψi−1(D1, D2)

4. Now formula size recursion is:

S(ψi) = S(ψi−1) +O(m) ⇒ S(ψ) = O(m2)

TQBF is PSPACE-hard
Construction of ψ

1. we’ll construct ψi(C,C
′) which is true iff there is path of

length 2i from C to C ′

In this case ψ = ψm and ψ0 = φM,x

2. Assume we have QBF ψi−1

There is path of length 2i from C 7→ C ′ iff there is C ′′ s.t.
ψi−1(C,C

′′) = ψi−1(C
′′, C ′) = 1.

3. Naively:
ψi = ∃C ′′ψi−1(C,C

′′) ∧ ψi−1(C
′′, C ′)

Exponential blowup! Need to reuse previous formulae (circuit)

4. More succinctly: ψi(C,C
′) := ∃C ′′∀D1, D2(

(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)
)
⇒ ψi−1(D1, D2)

5. Now formula size recursion is:
S(ψi) = S(ψi−1) +O(m) ⇒ S(ψ) = O(m2)

TQBF is PSPACE-hard
Construction of ψ

1. we’ll construct ψi(C,C
′) which is true iff there is path of

length 2i from C to C ′

In this case ψ = ψm and ψ0 = φM,x

2. Assume we have QBF ψi−1

There is path of length 2i from C 7→ C ′ iff there is C ′′ s.t.

ψi−1(C,C
′′) = ψi−1(C

′′, C ′) = 1.

3. More succinctly: ψi(C,C
′) := ∃C ′′∀D1, D2(

(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)
)
⇒ ψi−1(D1, D2)

4. Now formula size recursion is:

S(ψi) = S(ψi−1) +O(m) ⇒ S(ψ) = O(m2)

TQBF is PSPACE-hard
Construction of ψ

1. we’ll construct ψi(C,C
′) which is true iff there is path of

length 2i from C to C ′

In this case ψ = ψm and ψ0 = φM,x

2. Assume we have QBF ψi−1

There is path of length 2i from C 7→ C ′ iff there is C ′′ s.t.

ψi−1(C,C
′′) = ψi−1(C

′′, C ′) = 1.

3. More succinctly: ψi(C,C
′) := ∃C ′′∀D1, D2(

(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)
)
⇒ ψi−1(D1, D2)

4. Now formula size recursion is:

S(ψi) = S(ψi−1) +O(m) ⇒ S(ψ) = O(m2)

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Cambridge University Press

Meyer, A. and Stockmeyer, L. (1973)
Word problems requiring exponential time
STOC

Goldreich, Oded (2006)
Computational complexity: a conceptual perspective.
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html

	PSPACE completeness
	TQBF and PSPACE-completeness

