Lecture 2 - Ladner's Theorem, Oracle TMs, Relativization

Rafael Oliveira rafael.oliveira.teaching@gmail.com University of Waterloo

CS 860 - Graduate Complexity Theory Fall 2022

• Ladner's Theorem: NP-intermediate problems

• Oracle TMs & Relativization: limits of diagonalization

Theorem ([Ladner 1975])

If $P \neq NP$ then there exists a language $L \in NP \setminus P$ that is not NP-complete.¹

¹Ladner actually proved more - a hierarchy of intermediate problems.

Theorem ([Ladner 1975])

If $P \neq NP$ then there exists a language $L \in NP \setminus P$ that is not NP-complete.¹

1. For every function $h:\mathbb{N}\to\mathbb{N},$ let

$$\mathsf{SAT}_h := \{\psi 01^{n^{h(n)}} \mid \psi \in \mathsf{SAT} \text{ and } n = |\psi|\}$$

¹Ladner actually proved more - a hierarchy of intermediate problems.

Theorem ([Ladner 1975])

If $P \neq NP$ then there exists a language $L \in NP \setminus P$ that is not NP-complete.¹

1. For every function $h:\mathbb{N}\to\mathbb{N},$ let

$$\mathsf{SAT}_h := \{\psi 01^{n^{h(n)}} \mid \psi \in \mathsf{SAT} \text{ and } n = |\psi|\}$$

2. Take
$$H(n)$$
 to be:

▶ the smallest integer $i < \log \log n$ such that for every $x \in \{0,1\}^*$ with $|x| \le \log n$,

$$M_i(x) = \mathsf{SAT}_H(x)$$
 within $i|x|^i$ steps.

▶ else, $H(n) = \lceil \log \log n \rceil$.

¹Ladner actually proved more - a hierarchy of intermediate problems.

Theorem ([Ladner 1975])

If $P \neq NP$ then there exists a language $L \in NP \setminus P$ that is not NP-complete.¹

1. For every function $h:\mathbb{N}\to\mathbb{N},$ let

$$\mathsf{SAT}_h := \{\psi 01^{n^{h(n)}} \mid \psi \in \mathsf{SAT} \text{ and } n = |\psi|\}$$

2. Take
$$H(n)$$
 to be:

▶ the smallest integer $i < \log \log n$ such that for every $x \in \{0,1\}^*$ with $|x| \le \log n$,

$$M_i(x) = \mathsf{SAT}_H(x)$$
 within $i|x|^i$ steps.

▶ else, $H(n) = \lceil \log \log n \rceil$.

3. H can be computed in $O(n^3)$ time

¹Ladner actually proved more - a hierarchy of intermediate problems.

 $\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$

 $\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$

1. $SAT_H \in P \Rightarrow$ there is $c \in \mathbb{N}$ constant and TM M such that M computes SAT_H in time cn^c .

$$\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$$

- 1. $SAT_H \in P \Rightarrow$ there is $c \in \mathbb{N}$ constant and TM M such that M computes SAT_H in time cn^c .
- 2. TM M represented by infinitely many strings, let t > c be a constant such that $M = M_t$.

$$\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$$

- 1. $SAT_H \in P \Rightarrow$ there is $c \in \mathbb{N}$ constant and TM M such that M computes SAT_H in time cn^c .
- 2. TM M represented by infinitely many strings, let t > c be a constant such that $M = M_t$.
- 3. By definition of H and $M = M_t$, we have $H(n) \le t$ for all $n > 2^{2^t}$. Thus, H(n) = O(1).

 $\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$

 $\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$

1. $H(n) = O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.

 $\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$

1. $H(n) = O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.

2. Take $1 \leq c \leq C$ such that H(n) = c for ∞ 'ly many $n \in \mathbb{N}$.

$$\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$$

1. $H(n) = O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.

- 2. Take $1 \leq c \leq C$ such that H(n) = c for ∞ 'ly many $n \in \mathbb{N}$.
- 3. By definition of H, taking TM $M := M_c$, above implies M solves SAT_H in cn^c time.

Suppose not. Then there is $x \in \{0,1\}^*$ s.t. $M(x) \neq \mathsf{SAT}_H(x)$.

$$\mathsf{SAT}_H \in \mathsf{P} \Leftrightarrow H(n) = O(1).$$

1. $H(n) = O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.

- 2. Take $1 \leq c \leq C$ such that H(n) = c for ∞ 'ly many $n \in \mathbb{N}$.
- 3. By definition of H, taking TM $M := M_c$, above implies M solves SAT_H in cn^c time.
 - Suppose not. Then there is x ∈ {0,1}* s.t. M(x) ≠ SAT_H(x).
 If n > 2^{|x|}, then H(n) ≠ c, since we know that x as above is s.t. |x| ≤ log n and M(x) ≠ SAT_H(x).
 - contradicts H(n) = c for ∞ 'ly many n.

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete. 1. $SAT_H \in P \Rightarrow H = O(1) \Rightarrow SAT_H = SAT \Rightarrow P = NP$

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

- 1. $SAT_H \in P \Rightarrow H = O(1) \Rightarrow SAT_H = SAT \Rightarrow P = NP$
 - SAT_H = SAT since the formulas are padded with a polynomial number of 1's
 - Any algorithm to solve SAT_H can be p-converted into an algorithm solving SAT (just pad first, then solve SAT_H) Here we use that H(n) can be computed in time O(n³)!

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

1. $\mathsf{SAT}_H \in \mathsf{P} \Rightarrow H = O(1) \Rightarrow \mathsf{SAT}_H = \mathsf{SAT} \Rightarrow \mathsf{P} = \mathsf{NP}$

2. If SAT_H is NP-complete, then there is a poly-time reduction from SAT to SAT_H.

• Let $C \in \mathbb{N}$ be s.t. the reduction takes n^C time.

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

1. $\mathsf{SAT}_H \in \mathsf{P} \Rightarrow H = O(1) \Rightarrow \mathsf{SAT}_H = \mathsf{SAT} \Rightarrow \mathsf{P} = \mathsf{NP}$

- 2. If SAT_H is NP-complete, then there is a poly-time reduction from SAT to SAT_H .
 - Let $C \in \mathbb{N}$ be s.t. the reduction takes n_{α}^{C} time.

 $\blacktriangleright~\phi\in {\rm SAT}$ can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

 $|\psi| + 1 + |\psi|^{H(|\psi|)} \le |\phi|^C$

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

1. $\mathsf{SAT}_H \in \mathsf{P} \Rightarrow H = O(1) \Rightarrow \mathsf{SAT}_H = \mathsf{SAT} \Rightarrow \mathsf{P} = \mathsf{NP}$

- 2. If SAT_H is NP-complete, then there is a poly-time reduction from SAT to SAT_H .
 - Let $C \in \mathbb{N}$ be s.t. the reduction takes n_{α}^{C} time.

 $\blacktriangleright~\phi\in {\rm SAT}$ can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

$$|\psi| + 1 + |\psi|^{H(|\psi|)} \le |\phi|^C$$

▶ Since $P \neq NP$, our claim implies $H(n) = \omega(1)$ hence

 $|\psi| \le |\phi|^{1/2}$

for large enough $|\phi|$.

Assume $P \neq NP$. We'll show SAT_H is not in P nor NP-complete.

1. $\mathsf{SAT}_H \in \mathsf{P} \Rightarrow H = O(1) \Rightarrow \mathsf{SAT}_H = \mathsf{SAT} \Rightarrow \mathsf{P} = \mathsf{NP}$

- 2. If SAT_H is NP-complete, then there is a poly-time reduction from SAT to SAT_H .
 - Let $C \in \mathbb{N}$ be s.t. the reduction takes n_{α}^{C} time.

 $\blacktriangleright~\phi\in {\rm SAT}$ can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

$$|\psi| + 1 + |\psi|^{H(|\psi|)} \le |\phi|^C$$

▶ Since $P \neq NP$, our claim implies $H(n) = \omega(1)$ hence

 $|\psi| \le |\phi|^{1/2}$

for large enough $|\phi|$.

Such reduction implies that $SAT \in P!$

contradiction

Remarks

Open question: are there "natural" problems in NP which are neither in P nor NP-complete? Candidates:

- ► factoring
- graph isomorphism

Remarks

Open question: are there "natural" problems in NP which are neither in P nor NP-complete? Candidates:

- ► factoring
- graph isomorphism
- Our separations so far have all used diagonalization
- Defining "diagonalization:" any proof technique which relies only on
 - 1. existence of efficient representation of TMs by strings
 - 2. efficient simulation of TMs (universal TMs)

Remarks

 Open question: are there "natural" problems in NP which are neither in P nor NP-complete? Candidates:

- ► factoring
- graph isomorphism
- Our separations so far have all used diagonalization
- Defining "diagonalization:" any proof technique which relies only on
 - 1. existence of efficient representation of TMs by strings
 - 2. efficient simulation of TMs (universal TMs)
- any argument using the above treats TMs as black boxes Could diagonalization alone prove P vs NP?

• Ladner's Theorem: NP-intermediate problems

• Oracle TMs & Relativization: limits of diagonalization

- Given a language $O \subset \{0,1\}^*$, an oracle TM is a TM $M^O := (\Sigma, \Gamma, Q, \delta)$ s.t.:
 - 1. M^O has a special oracle tape (in addition to other tapes)

- Given a language $O \subset \{0,1\}^*$, an oracle TM is a TM $M^O := (\Sigma, \Gamma, Q, \delta)$ s.t.:
 - 1. M^O has a special oracle tape (in addition to other tapes)
 - 2. $q_{yes}, q_{no}, q_{query} \in \mathcal{Q}$ (special states)

When M^{O} enters state $q_{query},$ then M^{O} moves to q_{yes} if content of oracle tape is in O and q_{no} otherwise

Query to O counts as 1 computational step!

- Given a language $O \subset \{0,1\}^*$, an oracle TM is a TM $M^O := (\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:
 - 1. M^O has a special oracle tape (in addition to other tapes) (special states)
 - 2. $q_{ues}, q_{no}, q_{auery} \in \mathcal{Q}$

When M^O enters state q_{auery} , then M^O moves to q_{ues} if content of oracle tape is in O and q_{no} otherwise

Query to O counts as 1 computational step!

Similar definition for NTMs

- Given a language $O \subset \{0,1\}^*$, an oracle TM is a TM $M^O := (\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:
 - 1. M^O has a special oracle tape (in addition to other tapes) (special states)
 - 2. $q_{yes}, q_{no}, q_{query} \in \mathcal{Q}$

When M^O enters state q_{auery} , then M^O moves to q_{ues} if content of oracle tape is in O and q_{no} otherwise

Query to O counts as 1 computational step!

- Similar definition for NTMs
- Complexity classes:
 - ▶ P^O := set of languages decided by poly-time deterministic *Q*-oracle TMs
 - ▶ NP^O := set of languages decided by poly-time nondeterministic O-oracle TMs

Can also define A^B where A, B are complexity classes.

- Given a language $O \subset \{0,1\}^*$, an oracle TM is a TM $M^O := (\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:
 - 1. M^O has a special oracle tape (in addition to other tapes) (special states)
 - 2. $q_{yes}, q_{no}, q_{query} \in \mathcal{Q}$

When M^O enters state q_{auery} , then M^O moves to q_{ues} if content of oracle tape is in O and q_{no} otherwise

Query to O counts as 1 computational step!

- Similar definition for NTMs
- Complexity classes:
 - ▶ P^O := set of languages decided by poly-time deterministic *Q*-oracle TMs
 - ▶ NP^O := set of languages decided by poly-time nondeterministic *O*-oracle TMs

Can also define A^B where A, B are complexity classes.

Oracle TMs satisfy diagonalization properties! (relativize)

1. $\overline{\mathsf{SAT}}$ class of unsatisfiable formulae, then $\overline{\mathsf{SAT}} \in \mathsf{P}^{\mathsf{SAT}}.$

SAT class of unsatisfiable formulae, then SAT ∈ P^{SAT}.
 if O ∈ P then P^O = P

- 1. \overline{SAT} class of unsatisfiable formulae, then $\overline{SAT} \in P^{SAT}$.
- 2. if $O \in \mathsf{P}$ then $\mathsf{P}^O = \mathsf{P}$
- 3. $EXPCOM := \{ \langle M, x, 1^n \rangle \mid M(x) = 1 \text{ within } 2^n \text{ steps} \}$

SAT class of unsatisfiable formulae, then SAT ∈ P^{SAT}.
 if O ∈ P then P^O = P
 EXPCOM := {⟨M, x, 1ⁿ⟩ | M(x) = 1 within 2ⁿ steps}

Claim

$$P^{EXPCOM} = NP^{EXPCOM} = EXP := \bigcup_{c \in \mathbb{N}} DTIME(2^{n^c})$$

SAT class of unsatisfiable formulae, then SAT ∈ P^{SAT}.
 if O ∈ P then P^O = P
 EXPCOM := {⟨M, x, 1ⁿ⟩ | M(x) = 1 within 2ⁿ steps}

Claim

$$P^{EXPCOM} = NP^{EXPCOM} = EXP := \bigcup_{c \in \mathbb{N}} DTIME(2^{n^c})$$

► EXP \subseteq P^{EXPCOM} since P^{EXPCOM} can perform exponential-time computation in one step

SAT class of unsatisfiable formulae, then SAT ∈ P^{SAT}.
 if O ∈ P then P^O = P
 EXPCOM := {⟨M, x, 1ⁿ⟩ | M(x) = 1 within 2ⁿ steps}

Claim

$$P^{EXPCOM} = NP^{EXPCOM} = EXP := \bigcup_{c \in \mathbb{N}} DTIME(2^{n^c})$$

EXP ⊆ P^{EXPCOM} since P^{EXPCOM} can perform exponential-time computation in one step
 NP^{EXPCOM} ⊆ EXP since can simulate every M^{EXPCOM} ∈ NP^{EXPCOM} in exponential-time

SAT class of unsatisfiable formulae, then SAT ∈ P^{SAT}.
 if O ∈ P then P^O = P
 EXPCOM := {⟨M, x, 1ⁿ⟩ | M(x) = 1 within 2ⁿ steps}

Claim

$$P^{EXPCOM} = NP^{EXPCOM} = EXP := \bigcup_{c \in \mathbb{N}} DTIME(2^{n^c})$$

EXP ⊆ P^{EXPCOM} since P^{EXPCOM} can perform exponential-time computation in one step
 NP^{EXPCOM} ⊆ EXP since can simulate every M^{EXPCOM} ∈ NP^{EXPCOM} in exponential-time
 EXP ⊂ P^{EXPCOM} ⊂ NP^{EXPCOM} ⊂ EXP.

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

Corollary

No proof for P vs NP can relativize!

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

Take A = EXPCOM.

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

1. For any language $B \subset \{0,1\}^*$, let

 $U_B := \{1^n \mid B \text{ contains some string of length } n\}$

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

1. For any language $B \subset \{0,1\}^*,$ let

 $U_B := \{1^n \mid B \text{ contains some string of length } n\}$

2. For any $B, U_B \in NP^B$ Guess string $x \in \{0, 1\}^n$ and ask oracle

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

$$P^A = NP^A$$
 and $P^B \neq NP^B$.

1. For any language $B \subset \{0,1\}^*,$ let

 $U_B := \{1^n \mid B \text{ contains some string of length } n\}$

- 2. For any $B, U_B \in \mathsf{NP}^B$
- 3. We'll construct B such that $U_B \notin \mathsf{P}^B$

ldea: diagonalization! :D Property: for every *i*, M_i^B does not decide U_B in time $2^n/10$.

▶ Idea: diagonalization! :D Property: for every *i*, M_i^B does not decide U_B in time $2^n/10$. Construct *B* in stages: $B = \bigcup_{i \in \mathbb{N}} B_i$. Each B_i is a finite set.

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B

- Idea: diagonalization! :D Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B
 - $\begin{array}{l} \blacktriangleright \mbox{ Run } M^B_i(1^{n_i}) \mbox{ for } 2^{n_i}/10 \mbox{ steps } \\ M^B_i \mbox{ deterministic, so we know all queries to } B \mbox{ from } \\ M^B_i(1^{n_i})! \end{array}$

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B
 - Run $M_i^B(1^{n_i})$ for $2^{n_i}/10$ steps
 - whenever $M_i^B(1^{n_i})$ queries previously determined strings, answer consistently. Else, answer NO.

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B
 - Run $M_i^B(1^{n_i})$ for $2^{n_i}/10$ steps
 - whenever $M_i^B(1^{n_i})$ queries previously determined strings, answer consistently. Else, answer NO.
 - ▶ Have determined if $x \in B \cap \{0, 1\}^{n_i}$ for at most $2^{n_i}/10$ strings! (and all of them NO answer!)

If $M_i^B(1^{n_i}) = 1$ then declare $\{0, 1\}^{n_i} \cap B = \emptyset$. Else, add a non-queried string from $\{0, 1\}^{n_i}$ to B.

${\rm Constructing}\ B$

- Idea: diagonalization! :D
 Property: for every *i*, M_i^B does not decide U_B in time 2ⁿ/10.
 Induction:
 - 1. Start with $B = \emptyset$
 - 2. suppose we have handled TMs M_0^B, \ldots, M_{i-1}^B
 - Since B = B₀ ∪ · · · ∪ B_{i-1} is finite, choose n_i larger than length of any string in B
 - Run $M_i^B(1^{n_i})$ for $2^{n_i}/10$ steps
 - whenever $M_i^B(1^{n_i})$ queries previously determined strings, answer consistently. Else, answer NO.
 - ▶ Have determined if $x \in B \cap \{0, 1\}^{n_i}$ for at most $2^{n_i}/10$ strings! (and all of them NO answer!)

If $M_i^B(1^{n_i}) = 1$ then declare $\{0, 1\}^{n_i} \cap B = \emptyset$. Else, add a non-queried string from $\{0, 1\}^{n_i}$ to B.

3. Thus, for any $f(n)=o(2^n),$ as any TM has ∞ 'ly many string representations, above construction implies

 $U_B \notin \mathsf{DTIME}^B(f(n)) \forall f(n) = o(2^n) \Rightarrow U_B \notin \mathsf{P}^B$

Learned powers and limitations of diagonalization

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"
- Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between oracle-machines and non-oracle machines.

I.e., non-relativize.

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"
- Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between oracle-machines and non-oracle machines.

I.e., non-relativize.

Connection to mathematical logic:

Independence results: certain mathematical statements cannot be proved or disproved in a particular set of axioms.

- 1. Independence of Euclid's fifth postulate (non-Euclidean geometries)
- 2. Continuum Hypothesis from Zermelo-Fraenkel

References I

- Arora, Sanjeev and Barak, Boaz (2009) Computational Complexity, A Modern Approach Cambridge University Press

ī.

Baker, Theodore and Gill, John and Solovay, Robert (1975) Relativizations of the P =?NP question. SIAM Journal on computing

Ladner, Richard E. (1975)

On the structure of polynomial time reducibility. Journal of the ACM (JACM)