Lecture 2 - Ladner's Theorem, Oracle TMs, Relativization

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- Ladner's Theorem: NP-intermediate problems
- Oracle TMs \& Relativization: limits of diagonalization

NP-intermediate languages

Theorem ([Ladner 1975])
If $P \neq N P$ then there exists a language $L \in N P \backslash P$ that is not $N P$-complete. ${ }^{1}$

[^0]
NP-intermediate languages

Theorem ([Ladner 1975])
If $P \neq N P$ then there exists a language $L \in N P \backslash P$ that is not NP-complete. ${ }^{1}$

1. For every function $h: \mathbb{N} \rightarrow \mathbb{N}$, let

$$
\mathrm{SAT}_{h}:=\left\{\psi 01^{1^{h(n)}} \mid \psi \in \text { SAT and } n=|\psi|\right\}
$$

${ }^{1}$ Ladner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages

Theorem ([Ladner 1975])
If $P \neq N P$ then there exists a language $L \in N P \backslash P$ that is not $N P$-complete. ${ }^{1}$

1. For every function $h: \mathbb{N} \rightarrow \mathbb{N}$, let

$$
\operatorname{SAT}_{h}:=\left\{\psi 01^{h^{h(n)}} \mid \psi \in \text { SAT and } n=|\psi|\right\}
$$

2. Take $H(n)$ to be:
$>$ the smallest integer $i<\log \log n$ such that for every $x \in\{0,1\}^{*}$ with $|x| \leq \log n$,

$$
M_{i}(x)=\operatorname{SAT}_{H}(x) \text { within } i|x|^{i} \text { steps. }
$$

$>$ else, $H(n)=\lceil\log \log n\rceil$.
${ }^{1}$ Ladner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages

Theorem ([Ladner 1975])
If $P \neq N P$ then there exists a language $L \in N P \backslash P$ that is not $N P$-complete. ${ }^{1}$

1. For every function $h: \mathbb{N} \rightarrow \mathbb{N}$, let

$$
\operatorname{SAT}_{h}:=\left\{\psi 01^{h^{h(n)}} \mid \psi \in \text { SAT and } n=|\psi|\right\}
$$

2. Take $H(n)$ to be:
$>$ the smallest integer $i<\log \log n$ such that for every $x \in\{0,1\}^{*}$ with $|x| \leq \log n$,

$$
M_{i}(x)=\operatorname{SAT}_{H}(x) \text { within } i|x|^{i} \text { steps. }
$$

- else, $H(n)=\lceil\log \log n\rceil$.

3. H can be computed in $O\left(n^{3}\right)$ time
${ }^{1}$ Ladner actually proved more - a hierarchy of intermediate problems.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow$ there is $c \in \mathbb{N}$ constant and $\mathrm{TM} M$ such that M computes SAT_{H} in time $c n^{c}$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow$ there is $c \in \mathbb{N}$ constant and $\mathrm{TM} M$ such that M computes SAT_{H} in time $c n^{c}$.
2. TM M represented by infinitely many strings, let $t>c$ be a constant such that $M=M_{t}$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow$ there is $c \in \mathbb{N}$ constant and $\mathrm{TM} M$ such that M computes SAT_{H} in time $c n^{c}$.
2. TM M represented by infinitely many strings, let $t>c$ be a constant such that $M=M_{t}$.
3. By definition of H and $M=M_{t}$, we have $H(n) \leq t$ for all $n>2^{2^{t}}$. Thus, $H(n)=O(1)$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $H(n)=O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $H(n)=O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.
2. Take $1 \leq c \leq C$ such that $H(n)=c$ for ∞ 'ly many $n \in \mathbb{N}$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1) .
$$

1. $H(n)=O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.
2. Take $1 \leq c \leq C$ such that $H(n)=c$ for ∞ 'ly many $n \in \mathbb{N}$.
3. By definition of H, taking TM $M:=M_{c}$, above implies M solves SAT_{H} in $c n^{c}$ time.
$>$ Suppose not. Then there is $x \in\{0,1\}^{*}$ s.t. $M(x) \neq$ SAT $_{H}(x)$.

Helpful Claim

$$
\mathrm{SAT}_{H} \in \mathrm{P} \Leftrightarrow H(n)=O(1)
$$

1. $H(n)=O(1) \Rightarrow$ there is $C \in \mathbb{N}$ s.t. $H(n) \leq C$ for all $n \in \mathbb{N}$.
2. Take $1 \leq c \leq C$ such that $H(n)=c$ for ∞ 'ly many $n \in \mathbb{N}$.
3. By definition of H, taking TM $M:=M_{c}$, above implies M solves SAT_{H} in $c n^{c}$ time.

- Suppose not. Then there is $x \in\{0,1\}^{*}$ s.t. $M(x) \neq$ SAT $_{H}(x)$.
- If $n>2^{|x|}$, then $H(n) \neq c$, since we know that x as above is s.t. $|x| \leq \log n$ and $M(x) \neq \mathrm{SAT}_{H}(x)$.
- contradicts $H(n)=c$ for ∞ 'ly many n.

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$
$\Rightarrow \mathrm{SAT}_{H}=$ SAT since the formulas are padded with a polynomial number of 1's

- Any algorithm to solve SAT $_{H}$ can be p-converted into an algorithm solving SAT (just pad first, then solve SAT ${ }_{H}$) Here we use that $H(n)$ can be computed in time $O\left(n^{3}\right)$!

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$
2. If SAT_{H} is NP-complete, then there is a poly-time reduction from SAT to SAT $_{H}$.
${ }^{-}$Let $C \in \mathbb{N}$ be s.t. the reduction takes n^{C} time.

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$
2. If SAT_{H} is NP-complete, then there is a poly-time reduction from SAT to SAT $_{H}$.

- Let $C \in \mathbb{N}$ be s.t. the reduction takes n^{C} time.
- $\phi \in$ SAT can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

$$
|\psi|+1+|\psi|^{H(|\psi|)} \leq|\phi|^{C}
$$

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$
2. If SAT_{H} is NP-complete, then there is a poly-time reduction from SAT to SAT $_{H}$.

- Let $C \in \mathbb{N}$ be s.t. the reduction takes n^{C} time.
- $\phi \in$ SAT can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

$$
|\psi|+1+|\psi|^{H(|\psi|)} \leq|\phi|^{C}
$$

- Since $\mathrm{P} \neq \mathrm{NP}$, our claim implies $H(n)=\omega(1)$ hence

$$
|\psi| \leq|\phi|^{1 / 2}
$$

for large enough $|\phi|$.

Proof of Ladner's Theorem

Assume $\mathrm{P} \neq \mathrm{NP}$. We'll show SAT_{H} is not in P nor NP-complete.

1. $\mathrm{SAT}_{H} \in \mathrm{P} \Rightarrow H=O(1) \Rightarrow \mathrm{SAT}_{H}=\mathrm{SAT} \Rightarrow \mathrm{P}=\mathrm{NP}$
2. If SAT_{H} is NP-complete, then there is a poly-time reduction from SAT to SAT $_{H}$.

- Let $C \in \mathbb{N}$ be s.t. the reduction takes n^{C} time.
- $\phi \in$ SAT can only be mapped to $\psi 01^{|\psi|^{H(|\psi|)}}$ such that

$$
|\psi|+1+|\psi|^{H(|\psi|)} \leq|\phi|^{C}
$$

- Since $\mathrm{P} \neq \mathrm{NP}$, our claim implies $H(n)=\omega(1)$ hence

$$
|\psi| \leq|\phi|^{1 / 2}
$$

for large enough $|\phi|$.

- Such reduction implies that SAT \in P!
contradiction

Remarks

- Open question: are there "natural" problems in NP which are neither in P nor NP-complete?
Candidates:
- factoring
- graph isomorphism

Remarks

- Open question: are there "natural" problems in NP which are neither in P nor NP-complete?
Candidates:
- factoring
- graph isomorphism
- Our separations so far have all used diagonalization
- Defining "diagonalization:" any proof technique which relies only on

1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

Remarks

- Open question: are there "natural" problems in NP which are neither in P nor NP-complete?
Candidates:
- factoring
- graph isomorphism
- Our separations so far have all used diagonalization
- Defining "diagonalization:" any proof technique which relies only on

1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

- any argument using the above treats TMs as black boxes

Could diagonalization alone prove P vs NP?

- Ladner's Theorem: NP-intermediate problems
- Oracle TMs \& Relativization: limits of diagonalization

Oracle TMs \& Relativization

- Given a language $O \subset\{0,1\}^{*}$, an oracle TM is a TM $M^{O}:=(\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:

1. M^{O} has a special oracle tape
(in addition to other tapes)

Oracle TMs \& Relativization

- Given a language $O \subset\{0,1\}^{*}$, an oracle TM is a TM $M^{O}:=(\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:

1. M^{O} has a special oracle tape
2. $q_{\text {yes }}, q_{\text {no }}, q_{q u e r y} \in \mathcal{Q}$
(in addition to other tapes)
(special states)

When M^{O} enters state $q_{q u e r y}$, then M^{O} moves to $q_{y e s}$ if content of oracle tape is in O and $q_{n o}$ otherwise

Query to O counts as 1 computational step!

Oracle TMs \& Relativization

- Given a language $O \subset\{0,1\}^{*}$, an oracle TM is a TM $M^{O}:=(\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:

1. M^{O} has a special oracle tape
2. $q_{\text {yes }}, q_{\text {no }}, q_{q u e r y} \in \mathcal{Q}$
(in addition to other tapes)
(special states)

When M^{O} enters state $q_{q u e r y}$, then M^{O} moves to $q_{y e s}$ if content of oracle tape is in O and $q_{n o}$ otherwise

Query to O counts as 1 computational step!

- Similar definition for NTMs

Oracle TMs \& Relativization

- Given a language $O \subset\{0,1\}^{*}$, an oracle TM is a TM $M^{O}:=(\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:

1. M^{O} has a special oracle tape (in addition to other tapes)
2. $q_{\text {yes }}, q_{\text {no }}, q_{q u e r y} \in \mathcal{Q}$ (special states)

When M^{O} enters state $q_{q u e r y}$, then M^{O} moves to $q_{y e s}$ if content of oracle tape is in O and $q_{n o}$ otherwise

Query to O counts as 1 computational step!

- Similar definition for NTMs
- Complexity classes:
- $\mathrm{P}^{O}:=$ set of languages decided by poly-time deterministic O-oracle TMs
NP^{O} := set of languages decided by poly-time nondeterministic O-oracle TMs
Can also define A^{B} where A, B are complexity classes.

Oracle TMs \& Relativization

- Given a language $O \subset\{0,1\}^{*}$, an oracle TM is a TM $M^{O}:=(\Sigma, \Gamma, \mathcal{Q}, \delta)$ s.t.:

1. M^{O} has a special oracle tape (in addition to other tapes)
2. $q_{y e s}, q_{n o}, q_{q u e r y} \in \mathcal{Q}$

When M^{O} enters state $q_{q u e r y}$, then M^{O} moves to $q_{y e s}$ if content of oracle tape is in O and $q_{n o}$ otherwise

Query to O counts as 1 computational step!

- Similar definition for NTMs
- Complexity classes:
- $\mathrm{P}^{O}:=$ set of languages decided by poly-time deterministic O-oracle TMs
$\mathrm{NP}^{O}:=$ set of languages decided by poly-time nondeterministic O-oracle TMs
Can also define A^{B} where A, B are complexity classes.
- Oracle TMs satisfy diagonalization properties!

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$
3. $E X P C O M:=\left\{\left\langle M, x, 1^{n}\right\rangle \mid M(x)=1\right.$ within 2^{n} steps $\}$

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$
3. $E X P C O M:=\left\{\left\langle M, x, 1^{n}\right\rangle \mid M(x)=1\right.$ within 2^{n} steps $\}$

Claim

$$
P^{E X P C O M}=N P^{E X P C O M}=E X P:=\bigcup_{c \in \mathbb{N}} D \operatorname{TIME}\left(2^{n^{c}}\right)
$$

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$
3. $E X P C O M:=\left\{\left\langle M, x, 1^{n}\right\rangle \mid M(x)=1\right.$ within 2^{n} steps $\}$

Claim

$$
P^{E X P C O M}=N P^{E X P C O M}=E X P:=\bigcup_{c \in \mathbb{N}} D \operatorname{TIME}\left(2^{n^{c}}\right)
$$

- $\mathrm{EXP} \subseteq \mathrm{P}^{E X P C O M}$ since $\mathrm{P}^{E X P C O M}$ can perform exponential-time computation in one step

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$
3. $E X P C O M:=\left\{\left\langle M, x, 1^{n}\right\rangle \mid M(x)=1\right.$ within 2^{n} steps $\}$

Claim

$$
P^{E X P C O M}=N P^{E X P C O M}=E X P:=\bigcup_{c \in \mathbb{N}} D T I M E\left(2^{n^{c}}\right)
$$

- $\mathrm{EXP} \subseteq \mathrm{P}^{E X P C O M}$ since $\mathrm{P}^{E X P C O M}$ can perform exponential-time computation in one step
- $\mathrm{NP}^{E X P C O M} \subseteq \operatorname{EXP}$ since can simulate every $M^{E X P C O M} \in \mathrm{NP}^{E X P C O M}$ in exponential-time

Examples

1. $\overline{\text { SAT }}$ class of unsatisfiable formulae, then $\overline{\mathrm{SAT}} \in \mathrm{P}^{\text {SAT }}$.
2. if $O \in \mathrm{P}$ then $\mathrm{P}^{O}=\mathrm{P}$
3. $E X P C O M:=\left\{\left\langle M, x, 1^{n}\right\rangle \mid M(x)=1\right.$ within 2^{n} steps $\}$

Claim

$$
P^{E X P C O M}=N P^{E X P C O M}=E X P:=\bigcup_{c \in \mathbb{N}} D \operatorname{TIME}\left(2^{n^{c}}\right)
$$

- $\mathrm{EXP} \subseteq \mathrm{P}^{E X P C O M}$ since $\mathrm{P}^{E X P C O M}$ can perform exponential-time computation in one step
- $\mathrm{NP}^{E X P C O M} \subseteq E X P$ since can simulate every $M^{E X P C O M} \in \mathrm{NP}^{E X P C O M}$ in exponential-time
$-\mathrm{EXP} \subseteq \mathrm{P}^{E X P C O M} \subseteq \mathrm{NP}^{E X P C O M} \subseteq \mathrm{EXP}$.

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B} .
$$

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B}
$$

Corollary
No proof for P vs NP can relativize!

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B} .
$$

Take $A=E X P C O M$.

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B}
$$

1. For any language $B \subset\{0,1\}^{*}$, let

$$
U_{B}:=\left\{1^{n} \mid B \text { contains some string of length } n\right\}
$$

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B}
$$

1. For any language $B \subset\{0,1\}^{*}$, let

$$
U_{B}:=\left\{1^{n} \mid B \text { contains some string of length } n\right\}
$$

2. For any $B, U_{B} \in \mathrm{NP}^{B}$

Guess string $x \in\{0,1\}^{n}$ and ask oracle

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

$$
P^{A}=N P^{A} \text { and } P^{B} \neq N P^{B}
$$

1. For any language $B \subset\{0,1\}^{*}$, let

$$
U_{B}:=\left\{1^{n} \mid B \text { contains some string of length } n\right\}
$$

2. For any $B, U_{B} \in \mathrm{NP}^{B}$
3. We'll construct B such that $U_{B} \notin \mathrm{P}^{B}$

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$. Construct B in stages: $B=\bigcup_{i \in \mathbb{N}} B_{i}$.

Each B_{i} is a finite set.

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B
- Run $M_{i}^{B}\left(1^{n_{i}}\right)$ for $2^{n_{i}} / 10$ steps
M_{i}^{B} deterministic, so we know all queries to B from $M_{i}^{B}\left(1^{n_{i}}\right)!$

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B
- Run $M_{i}^{B}\left(1^{n_{i}}\right)$ for $2^{n_{i}} / 10$ steps
- whenever $M_{i}^{B}\left(1^{n_{i}}\right)$ queries previously determined strings, answer consistently. Else, answer NO.

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B
- Run $M_{i}^{B}\left(1^{n_{i}}\right)$ for $2^{n_{i}} / 10$ steps
- whenever $M_{i}^{B}\left(1^{n_{i}}\right)$ queries previously determined strings, answer consistently. Else, answer NO.
- Have determined if $x \in^{?} B \cap\{0,1\}^{n_{i}}$ for at most $2^{n_{i}} / 10$ strings! (and all of them NO answer!) If $M_{i}^{B}\left(1^{n_{i}}\right)=1$ then declare $\{0,1\}^{n_{i}} \cap B=\emptyset$. Else, add a non-queried string from $\{0,1\}^{n_{i}}$ to B.

Constructing B

- Idea: diagonalization! :D

Property: for every i, M_{i}^{B} does not decide U_{B} in time $2^{n} / 10$.

- Induction:

1. Start with $B=\emptyset$
2. suppose we have handled TMs $M_{0}^{B}, \ldots, M_{i-1}^{B}$

- Since $B=B_{0} \cup \cdots \cup B_{i-1}$ is finite, choose n_{i} larger than length of any string in B
- Run $M_{i}^{B}\left(1^{n_{i}}\right)$ for $2^{n_{i}} / 10$ steps
- whenever $M_{i}^{B}\left(1^{n_{i}}\right)$ queries previously determined strings, answer consistently. Else, answer NO.
- Have determined if $x \in^{?} B \cap\{0,1\}^{n_{i}}$ for at most $2^{n_{i}} / 10$ strings! (and all of them NO answer!) If $M_{i}^{B}\left(1^{n_{i}}\right)=1$ then declare $\{0,1\}^{n_{i}} \cap B=\emptyset$. Else, add a non-queried string from $\{0,1\}^{n_{i}}$ to B.

3. Thus, for any $f(n)=o\left(2^{n}\right)$, as any TM has ∞^{\prime} ly many string representations, above construction implies

$$
U_{B} \notin \mathrm{DTIME}^{B}(f(n)) \forall f(n)=o\left(2^{n}\right) \Rightarrow U_{B} \notin \mathrm{P}^{B}
$$

Conclusion

- Learned powers and limitations of diagonalization

Conclusion

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"

Conclusion

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"
- Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between oracle-machines and non-oracle machines.
l.e., non-relativize.

Conclusion

- Learned powers and limitations of diagonalization
- Oracles: abstraction of "subroutines as black-boxes"
- Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between oracle-machines and non-oracle machines.
l.e., non-relativize.

- Connection to mathematical logic:

Independence results: certain mathematical statements cannot be proved or disproved in a particular set of axioms.

1. Independence of Euclid's fifth postulate (non-Euclidean geometries)
2. Continuum Hypothesis from Zermelo-Fraenkel

References I

R Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Cambridge University PressBaker, Theodore and Gill, John and Solovay, Robert (1975)
Relativizations of the $\mathrm{P}=$? NP question.
SIAM Journal on computing
E
Ladner, Richard E. (1975)
On the structure of polynomial time reducibility.
Journal of the ACM (JACM)

[^0]: ${ }^{1}$ Ladner actually proved more - a hierarchy of intermediate problems.

