
Lecture 2 - Ladner’s Theorem,
Oracle TMs, Relativization

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

Ladner’s Theorem: NP-intermediate problems

Oracle TMs & Relativization: limits of diagonalization

NP-intermediate languages
Theorem ([Ladner 1975])
If P ̸= NP then there exists a language L ∈ NP \ P that is not
NP-complete.1

1. For every function h : N → N, let

SATh := {ψ01nh(n) | ψ ∈ SAT and n = |ψ|}

2. Take H(n) to be:
▶ the smallest integer i < log logn such that for every

x ∈ {0, 1}∗ with |x| ≤ logn,

Mi(x) = SATH(x) within i|x|i steps.

▶ else, H(n) = ⌈log logn⌉.
3. H can be computed in O(n3) time

1Ladner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages
Theorem ([Ladner 1975])
If P ̸= NP then there exists a language L ∈ NP \ P that is not
NP-complete.1

1. For every function h : N → N, let

SATh := {ψ01nh(n) | ψ ∈ SAT and n = |ψ|}

2. Take H(n) to be:
▶ the smallest integer i < log logn such that for every

x ∈ {0, 1}∗ with |x| ≤ logn,

Mi(x) = SATH(x) within i|x|i steps.

▶ else, H(n) = ⌈log logn⌉.
3. H can be computed in O(n3) time

1Ladner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages
Theorem ([Ladner 1975])
If P ̸= NP then there exists a language L ∈ NP \ P that is not
NP-complete.1

1. For every function h : N → N, let

SATh := {ψ01nh(n) | ψ ∈ SAT and n = |ψ|}

2. Take H(n) to be:
▶ the smallest integer i < log logn such that for every

x ∈ {0, 1}∗ with |x| ≤ logn,

Mi(x) = SATH(x) within i|x|i steps.

▶ else, H(n) = ⌈log logn⌉.

3. H can be computed in O(n3) time

1Ladner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages
Theorem ([Ladner 1975])
If P ̸= NP then there exists a language L ∈ NP \ P that is not
NP-complete.1

1. For every function h : N → N, let

SATh := {ψ01nh(n) | ψ ∈ SAT and n = |ψ|}

2. Take H(n) to be:
▶ the smallest integer i < log logn such that for every

x ∈ {0, 1}∗ with |x| ≤ logn,

Mi(x) = SATH(x) within i|x|i steps.

▶ else, H(n) = ⌈log logn⌉.
3. H can be computed in O(n3) time

1Ladner actually proved more - a hierarchy of intermediate problems.

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. SATH ∈ P ⇒ there is c ∈ N constant and TM M such that
M computes SATH in time cnc.

2. TM M represented by infinitely many strings, let t > c be a
constant such that M =Mt.

3. By definition of H and M =Mt, we have H(n) ≤ t for all
n > 22

t . Thus, H(n) = O(1).

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. SATH ∈ P ⇒ there is c ∈ N constant and TM M such that
M computes SATH in time cnc.

2. TM M represented by infinitely many strings, let t > c be a
constant such that M =Mt.

3. By definition of H and M =Mt, we have H(n) ≤ t for all
n > 22

t . Thus, H(n) = O(1).

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. SATH ∈ P ⇒ there is c ∈ N constant and TM M such that
M computes SATH in time cnc.

2. TM M represented by infinitely many strings, let t > c be a
constant such that M =Mt.

3. By definition of H and M =Mt, we have H(n) ≤ t for all
n > 22

t . Thus, H(n) = O(1).

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. SATH ∈ P ⇒ there is c ∈ N constant and TM M such that
M computes SATH in time cnc.

2. TM M represented by infinitely many strings, let t > c be a
constant such that M =Mt.

3. By definition of H and M =Mt, we have H(n) ≤ t for all
n > 22

t . Thus, H(n) = O(1).

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. H(n) = O(1) ⇒ there is C ∈ N s.t. H(n) ≤ C for all n ∈ N.
2. Take 1 ≤ c ≤ C such that H(n) = c for ∞’ly many n ∈ N.
3. By definition of H, taking TM M :=Mc, above implies M

solves SATH in cnc time.
▶ Suppose not. Then there is x ∈ {0, 1}∗ s.t. M(x) ̸= SATH(x).

▶ If n > 2|x|, then H(n) ̸= c, since we know that x as above is
s.t. |x| ≤ logn and M(x) ̸= SATH(x).

▶ contradicts H(n) = c for ∞’ly many n.

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. H(n) = O(1) ⇒ there is C ∈ N s.t. H(n) ≤ C for all n ∈ N.

2. Take 1 ≤ c ≤ C such that H(n) = c for ∞’ly many n ∈ N.
3. By definition of H, taking TM M :=Mc, above implies M

solves SATH in cnc time.
▶ Suppose not. Then there is x ∈ {0, 1}∗ s.t. M(x) ̸= SATH(x).

▶ If n > 2|x|, then H(n) ̸= c, since we know that x as above is
s.t. |x| ≤ logn and M(x) ̸= SATH(x).

▶ contradicts H(n) = c for ∞’ly many n.

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. H(n) = O(1) ⇒ there is C ∈ N s.t. H(n) ≤ C for all n ∈ N.
2. Take 1 ≤ c ≤ C such that H(n) = c for ∞’ly many n ∈ N.

3. By definition of H, taking TM M :=Mc, above implies M
solves SATH in cnc time.
▶ Suppose not. Then there is x ∈ {0, 1}∗ s.t. M(x) ̸= SATH(x).

▶ If n > 2|x|, then H(n) ̸= c, since we know that x as above is
s.t. |x| ≤ logn and M(x) ̸= SATH(x).

▶ contradicts H(n) = c for ∞’ly many n.

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. H(n) = O(1) ⇒ there is C ∈ N s.t. H(n) ≤ C for all n ∈ N.
2. Take 1 ≤ c ≤ C such that H(n) = c for ∞’ly many n ∈ N.
3. By definition of H, taking TM M :=Mc, above implies M

solves SATH in cnc time.
▶ Suppose not. Then there is x ∈ {0, 1}∗ s.t. M(x) ̸= SATH(x).

▶ If n > 2|x|, then H(n) ̸= c, since we know that x as above is
s.t. |x| ≤ logn and M(x) ̸= SATH(x).

▶ contradicts H(n) = c for ∞’ly many n.

Helpful Claim
SATH ∈ P ⇔ H(n) = O(1).

1. H(n) = O(1) ⇒ there is C ∈ N s.t. H(n) ≤ C for all n ∈ N.
2. Take 1 ≤ c ≤ C such that H(n) = c for ∞’ly many n ∈ N.
3. By definition of H, taking TM M :=Mc, above implies M

solves SATH in cnc time.
▶ Suppose not. Then there is x ∈ {0, 1}∗ s.t. M(x) ̸= SATH(x).
▶ If n > 2|x|, then H(n) ̸= c, since we know that x as above is

s.t. |x| ≤ logn and M(x) ̸= SATH(x).
▶ contradicts H(n) = c for ∞’ly many n.

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
2. If SATH is NP-complete, then there is a poly-time reduction

from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.

▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP

2. If SATH is NP-complete, then there is a poly-time reduction
from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.

▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
▶ SATH = SAT since the formulas are padded with a polynomial

number of 1’s
▶ Any algorithm to solve SATH can be p-converted into an

algorithm solving SAT (just pad first, then solve SATH)
Here we use that H(n) can be computed in time O(n3)!

2. If SATH is NP-complete, then there is a poly-time reduction
from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.

▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that
|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence
|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
2. If SATH is NP-complete, then there is a poly-time reduction

from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.

▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
2. If SATH is NP-complete, then there is a poly-time reduction

from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.
▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
2. If SATH is NP-complete, then there is a poly-time reduction

from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.
▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.

▶ Such reduction implies that SAT ∈ P!
contradiction

Proof of Ladner’s Theorem
Assume P ̸= NP. We’ll show SATH is not in P nor NP-complete.

1. SATH ∈ P ⇒ H = O(1) ⇒ SATH = SAT ⇒ P = NP
2. If SATH is NP-complete, then there is a poly-time reduction

from SAT to SATH .
▶ Let C ∈ N be s.t. the reduction takes nC time.
▶ ϕ ∈ SAT can only be mapped to ψ01|ψ|H(|ψ|) such that

|ψ|+ 1 + |ψ|H(|ψ|) ≤ |ϕ|C

▶ Since P ̸= NP, our claim implies H(n) = ω(1) hence

|ψ| ≤ |ϕ|1/2

for large enough |ϕ|.
▶ Such reduction implies that SAT ∈ P!

contradiction

Remarks
▶ Open question: are there “natural” problems in NP which are

neither in P nor NP-complete?
Candidates:
▶ factoring
▶ graph isomorphism

▶ Our separations so far have all used diagonalization
▶ Defining “diagonalization:” any proof technique which relies

only on
1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

▶ any argument using the above treats TMs as black boxes
Could diagonalization alone prove P vs NP?

Remarks
▶ Open question: are there “natural” problems in NP which are

neither in P nor NP-complete?
Candidates:
▶ factoring
▶ graph isomorphism

▶ Our separations so far have all used diagonalization
▶ Defining “diagonalization:” any proof technique which relies

only on
1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

▶ any argument using the above treats TMs as black boxes
Could diagonalization alone prove P vs NP?

Remarks
▶ Open question: are there “natural” problems in NP which are

neither in P nor NP-complete?
Candidates:
▶ factoring
▶ graph isomorphism

▶ Our separations so far have all used diagonalization
▶ Defining “diagonalization:” any proof technique which relies

only on
1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

▶ any argument using the above treats TMs as black boxes
Could diagonalization alone prove P vs NP?

Ladner’s Theorem: NP-intermediate problems

Oracle TMs & Relativization: limits of diagonalization

Oracle TMs & Relativization
▶ Given a language O ⊂ {0, 1}∗, an oracle TM is a TM
MO := (Σ,Γ,Q, δ) s.t.:

1. MO has a special oracle tape (in addition to other tapes)

2. qyes, qno, qquery ∈ Q (special states)

When MO enters state qquery, then MO moves to qyes if
content of oracle tape is in O and qno otherwise

Query to O counts as 1 computational step!
▶ Similar definition for NTMs
▶ Complexity classes:

▶ PO := set of languages decided by poly-time deterministic
O-oracle TMs

▶ NPO := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AB where A,B are complexity classes.
▶ Oracle TMs satisfy diagonalization properties! (relativize)

Oracle TMs & Relativization
▶ Given a language O ⊂ {0, 1}∗, an oracle TM is a TM
MO := (Σ,Γ,Q, δ) s.t.:

1. MO has a special oracle tape (in addition to other tapes)
2. qyes, qno, qquery ∈ Q (special states)

When MO enters state qquery, then MO moves to qyes if
content of oracle tape is in O and qno otherwise

Query to O counts as 1 computational step!

▶ Similar definition for NTMs
▶ Complexity classes:

▶ PO := set of languages decided by poly-time deterministic
O-oracle TMs

▶ NPO := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AB where A,B are complexity classes.
▶ Oracle TMs satisfy diagonalization properties! (relativize)

Oracle TMs & Relativization
▶ Given a language O ⊂ {0, 1}∗, an oracle TM is a TM
MO := (Σ,Γ,Q, δ) s.t.:

1. MO has a special oracle tape (in addition to other tapes)
2. qyes, qno, qquery ∈ Q (special states)

When MO enters state qquery, then MO moves to qyes if
content of oracle tape is in O and qno otherwise

Query to O counts as 1 computational step!
▶ Similar definition for NTMs

▶ Complexity classes:
▶ PO := set of languages decided by poly-time deterministic

O-oracle TMs
▶ NPO := set of languages decided by poly-time

nondeterministic O-oracle TMs
Can also define AB where A,B are complexity classes.

▶ Oracle TMs satisfy diagonalization properties! (relativize)

Oracle TMs & Relativization
▶ Given a language O ⊂ {0, 1}∗, an oracle TM is a TM
MO := (Σ,Γ,Q, δ) s.t.:

1. MO has a special oracle tape (in addition to other tapes)
2. qyes, qno, qquery ∈ Q (special states)

When MO enters state qquery, then MO moves to qyes if
content of oracle tape is in O and qno otherwise

Query to O counts as 1 computational step!
▶ Similar definition for NTMs
▶ Complexity classes:

▶ PO := set of languages decided by poly-time deterministic
O-oracle TMs

▶ NPO := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AB where A,B are complexity classes.

▶ Oracle TMs satisfy diagonalization properties! (relativize)

Oracle TMs & Relativization
▶ Given a language O ⊂ {0, 1}∗, an oracle TM is a TM
MO := (Σ,Γ,Q, δ) s.t.:

1. MO has a special oracle tape (in addition to other tapes)
2. qyes, qno, qquery ∈ Q (special states)

When MO enters state qquery, then MO moves to qyes if
content of oracle tape is in O and qno otherwise

Query to O counts as 1 computational step!
▶ Similar definition for NTMs
▶ Complexity classes:

▶ PO := set of languages decided by poly-time deterministic
O-oracle TMs

▶ NPO := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AB where A,B are complexity classes.
▶ Oracle TMs satisfy diagonalization properties! (relativize)

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.

2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P

3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Examples
1. SAT class of unsatisfiable formulae, then SAT ∈ PSAT.
2. if O ∈ P then PO = P
3. EXPCOM := {⟨M,x, 1n⟩ | M(x) = 1 within 2n steps}

Claim

PEXPCOM = NPEXPCOM = EXP :=
∪
c∈N

DTIME(2nc
)

▶ EXP ⊆ PEXPCOM since PEXPCOM can perform
exponential-time computation in one step

▶ NPEXPCOM ⊆ EXP since can simulate every
MEXPCOM ∈ NPEXPCOM in exponential-time

▶ EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

3. We’ll construct B such that UB ̸∈ PB

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

Corollary
No proof for P vs NP can relativize!

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

3. We’ll construct B such that UB ̸∈ PB

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

Take A = EXPCOM .

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

3. We’ll construct B such that UB ̸∈ PB

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

3. We’ll construct B such that UB ̸∈ PB

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

Guess string x ∈ {0, 1}n and ask oracle

3. We’ll construct B such that UB ̸∈ PB

Baker-Gill-Solovay
Theorem ([Baker Gill Solovay, 1975])
There exist oracles A,B such that

PA = NPA and PB ̸= NPB.

1. For any language B ⊂ {0, 1}∗, let

UB := {1n | B contains some string of length n}

2. For any B, UB ∈ NPB

3. We’ll construct B such that UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅

2. suppose we have handled TMs MB
0 , . . . ,M

B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.

3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string
representations, above construction implies

UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

Construct B in stages: B =
∪

i∈NBi.
Each Bi is a finite set.

▶ Induction:
1. Start with B = ∅

2. suppose we have handled TMs MB
0 , . . . ,M

B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.

3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string
representations, above construction implies

UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅

2. suppose we have handled TMs MB
0 , . . . ,M

B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.

3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string
representations, above construction implies

UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.
3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string

representations, above construction implies
UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.
3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string

representations, above construction implies
UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

MB
i deterministic, so we know all queries to B from

MB
i (1ni)!

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.
3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string

representations, above construction implies
UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.

▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10
strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.
3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string

representations, above construction implies
UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.

3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string
representations, above construction implies

UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Constructing B
▶ Idea: diagonalization! :D

Property: for every i, MB
i does not decide UB in time 2n/10.

▶ Induction:
1. Start with B = ∅
2. suppose we have handled TMs MB

0 , . . . ,M
B
i−1

▶ Since B = B0 ∪ · · · ∪Bi−1 is finite, choose ni larger than
length of any string in B

▶ Run MB
i (1ni) for 2ni/10 steps

▶ whenever MB
i (1ni) queries previously determined strings,

answer consistently. Else, answer NO.
▶ Have determined if x ∈? B ∩ {0, 1}ni for at most 2ni/10

strings! (and all of them NO answer!)

If MB
i (1ni) = 1 then declare {0, 1}ni ∩B = ∅. Else, add a

non-queried string from {0, 1}ni to B.
3. Thus, for any f(n) = o(2n), as any TM has ∞’ly many string

representations, above construction implies
UB ̸∈ DTIMEB(f(n))∀f(n) = o(2n) ⇒ UB ̸∈ PB

Conclusion
▶ Learned powers and limitations of diagonalization

▶ Oracles: abstraction of “subroutines as black-boxes”
▶ Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

I.e., non-relativize.
▶ Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.

1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)

2. Continuum Hypothesis from Zermelo-Fraenkel

Conclusion
▶ Learned powers and limitations of diagonalization
▶ Oracles: abstraction of “subroutines as black-boxes”

▶ Can diagonalization be used to solve P vs NP?
Could be, but proof has to differentiate between

oracle-machines and non-oracle machines.
I.e., non-relativize.

▶ Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.

1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)

2. Continuum Hypothesis from Zermelo-Fraenkel

Conclusion
▶ Learned powers and limitations of diagonalization
▶ Oracles: abstraction of “subroutines as black-boxes”
▶ Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

I.e., non-relativize.

▶ Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.

1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)

2. Continuum Hypothesis from Zermelo-Fraenkel

Conclusion
▶ Learned powers and limitations of diagonalization
▶ Oracles: abstraction of “subroutines as black-boxes”
▶ Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

I.e., non-relativize.
▶ Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.

1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)

2. Continuum Hypothesis from Zermelo-Fraenkel

References I
Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Cambridge University Press

Baker, Theodore and Gill, John and Solovay, Robert (1975)
Relativizations of the P =?NP question.
SIAM Journal on computing

Ladner, Richard E. (1975)
On the structure of polynomial time reducibility.
Journal of the ACM (JACM)

	Ladner's Theorem: NP-intermediate problems
	Oracle TMs & Relativization: limits of diagonalization

