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Overview

@ Ladner’'s Theorem: NP-intermediate problems

@ Oracle TMs & Relativization: limits of diagonalization
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NP-complete.*

1. For every function h : N — N, let

h(n

SAT), := {01™""™ | ¢ € SAT and n = ¥}

2. Take H(n) to be:

the smallest integer ¢ < loglogn such that for every
x € {0,1}* with |z| <logn,

M;(z) = SAT () within i|z|* steps.

else, H(n) = [loglogn].
3. H can be computed in O(n?) time

'L adner actually proved more - a hierarchy of intermediate problems.
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. SATy € P = thereis ¢ € N constant and TM M such that
M computes SAT 7 in time ¢cn®.

. TM M represented by infinitely many strings, let ¢ > ¢ be a
constant such that M = M;.

. By definition of H and M = M, we have H(n) <t for all
n>22. Thus, H(n) = O(1).
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Helpful Claim

SATy € P < H(n) = O(1).

1. H(n) = 0O(1) = thereis C € Ns.t. H(n) < C for alln € N.

. Take 1 < ¢ < C such that H(n) = ¢ for co'ly many n € N.
. By definition of H, taking TM M := M., above implies M
solves SAT i in cn® time.

Suppose not. Then thereis z € {0,1}* s.t. M(z) # SAT ().
If n > 2% then H(n) # ¢, since we know that x as above is
s.t. x| <logn and M(z) # SAT g (x).

contradicts H(n) = ¢ for oo'ly many n.
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Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATg €e P= H =0O(1) = SATy = SAT = P =NP

SAT ;; = SAT since the formulas are padded with a polynomial
number of 1's

Any algorithm to solve SAT iy can be p-converted into an

algorithm solving SAT (just pad first, then solve SAT )
Here we use that H(n) can be computed in time O(n?3)!
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Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

2. If SAT 7 is NP-complete, then there is a poly-time reduction
from SAT to SAT .

Let C' € N be s.t. the reduction takes n}f Itir)ne.
¢ € SAT can only be mapped to 1011¥1"""" such that

[l + 1+ [T < gl
Since P # NP, our claim implies H(n) = w(1) hence
9] < |g]'/?

for large enough |&|.
Such reduction implies that SAT € P!

contradiction
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Remarks

Open question: are there “natural” problems in NP which are
neither in P nor NP-complete?
Candidates:
factoring
graph isomorphism
Our separations so far have all used diagonalization

Defining “diagonalization:” any proof technique which relies
only on

1. existence of efficient representation of TMs by strings

2. efficient simulation of TMs (universal TMs)
any argument using the above treats TMs as black boxes

Could diagonalization alone prove P vs NP?
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» Given a language O C {0,1}*, an oracle TM isa TM
MO = (2,T,Q,6) s.t.:
1. MO has a special oracle tape (in addition to other tapes)
2. Qyes; Ino; Qquery € Q (special states)

When MO enters state Qquery, then MO moves to Qyes if
content of oracle tape is in O and ¢, otherwise

Query to O counts as 1 computational step!
» Similar definition for NTMs

» Complexity classes:

PO .= set of languages decided by poly-time deterministic
O-oracle TMs

NP := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AZ where A, B are complexity classes.

» Oracle TMs satisfy diagonalization properties! (relativize)
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Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.
2. if O € P then PO =P
3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}

Claim

pEXFPCOM — NpEXPCOM — EXP .= | ) DTIME(2™)
ceN
EXP C PEXPCOM ginee pEXPCOM (5 perform
exponential-time computation in one step
NPEXPCOM  EXP since can simulate every
MEXPCOM o NpEXPCOM 4 oy honential-time
EXP C PEXFPCOM  NpEXPCOM C EXP.
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PA = NPY and PP + NPP.

Take A = EXPCOM.
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Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

1. For any language B C {0,1}*, let
Up :={1" | B contains some string of length n}

2. For any B, Ug € NPP
3. We'll construct B such that Ug ¢ PP
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Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:

1. Start with B=10
2. suppose we have handled TMs M&,... M5B,

>

>
>

Since B = By U ---U B;_1 is finite, choose n; larger than
length of any string in B

Run MJP(1™%) for 2" /10 steps

whenever M7 (1) queries previously determined strings,
answer consistently. Else, answer NO.

Have determined if z €” BN {0,1}" for at most 2" /10
strings! (and all of them NO answer!)

If M (1) = 1 then declare {0,1}" N B = (. Else, add a
non-queried string from {0,1}" to B.

3. Thus, for any f(n) = o(2™), as any TM has cc’'ly many string
representations, above construction implies

Up & DTIMEZ (f(n))Vf(n) = o(2") = Up ¢ P
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Conclusion

Learned powers and limitations of diagonalization
Oracles: abstraction of "subroutines as black-boxes”
Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

l.e., non-relativize.

Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.
1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)
2. Continuum Hypothesis from Zermelo-Fraenkel
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