Lecture 2 - Ladner’'s Theorem,
Oracle TMs, Relativization

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

@ Ladner’'s Theorem: NP-intermediate problems

@ Oracle TMs & Relativization: limits of diagonalization

NP-intermediate languages

Theorem ([Ladner 1975])

If P # NP then there exists a language L € NP\ P that is not
NP-complete.*

'L adner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages

Theorem ([Ladner 1975])
If P # NP then there exists a language L € NP\ P that is not
NP-complete.*

1. For every function h : N — N, let

h(n

SAT), := {01™""™ | ¢ € SAT and n = ¥}

'L adner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages

Theorem ([Ladner 1975])

If P # NP then there exists a language L € NP\ P that is not
NP-complete.*

1. For every function h : N — N, let

h(n

SAT), := {01™""™ | ¢ € SAT and n = ¥}

2. Take H(n) to be:

the smallest integer ¢ < loglogn such that for every
x € {0,1}* with |z| <logn,

M;(z) = SAT () within i|z|* steps.

else, H(n) = [loglogn].

'L adner actually proved more - a hierarchy of intermediate problems.

NP-intermediate languages

Theorem ([Ladner 1975])

If P # NP then there exists a language L € NP\ P that is not
NP-complete.*

1. For every function h : N — N, let

h(n

SAT), := {01™""™ | ¢ € SAT and n = ¥}

2. Take H(n) to be:

the smallest integer ¢ < loglogn such that for every
x € {0,1}* with |z| <logn,

M;(z) = SAT () within i|z|* steps.

else, H(n) = [loglogn].
3. H can be computed in O(n?) time

'L adner actually proved more - a hierarchy of intermediate problems.

Helpful Claim

SATy € P < H(n) = O(1).

Helpful Claim
SATy € P & H(n) = O(1).

1. SATy € P = there is ¢ € N constant and TM M such that
M computes SAT 7 in time ¢cn®.

Helpful Claim
SATy € P & H(n) = O(1).

. SATy € P = thereis ¢ € N constant and TM M such that
M computes SAT 7 in time ¢cn®.

. TM M represented by infinitely many strings, let ¢ > ¢ be a
constant such that M = M;.

Helpful Claim
SATy € P & H(n) = O(1).

. SATy € P = thereis ¢ € N constant and TM M such that
M computes SAT 7 in time ¢cn®.

. TM M represented by infinitely many strings, let ¢ > ¢ be a
constant such that M = M;.

. By definition of H and M = M, we have H(n) <t for all
n>22. Thus, H(n) = O(1).

Helpful Claim

SATy € P < H(n) = O(1).

Helpful Claim
SATy € P & H(n) = O(1).

1. H(n) = 0O(1) = thereis C € Ns.it. H(n) < C for all n € N.

Helpful Claim
SATy € P & H(n) = O(1).

1. H(n) = 0O(1) = thereis C € Ns.it. H(n) < C for all n € N.
2. Take 1 < ¢ < C such that H(n) = ¢ for co’'ly many n € N.

Helpful Claim

SATy € P < H(n) = O(1).

1. H(n) = 0O(1) = thereis C € Ns.t. H(n) < C for alln € N.

. Take 1 < ¢ < C such that H(n) = ¢ for co'ly many n € N.
. By definition of H, taking TM M := M., above implies M
solves SAT i in cn® time.

Suppose not. Then thereis z € {0,1}* s.t. M(z) # SAT ().

Helpful Claim

SATy € P < H(n) = O(1).

1. H(n) = 0O(1) = thereis C € Ns.t. H(n) < C for alln € N.

. Take 1 < ¢ < C such that H(n) = ¢ for co'ly many n € N.
. By definition of H, taking TM M := M., above implies M
solves SAT i in cn® time.

Suppose not. Then thereis z € {0,1}* s.t. M(z) # SAT ().
If n > 2% then H(n) # ¢, since we know that x as above is
s.t. x| <logn and M(z) # SAT g (x).

contradicts H(n) = ¢ for oo'ly many n.

Proof of Ladner's Theorem
Assume P # NP. We'll show SAT g is not in P nor NP-complete.

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT g is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATg €e P= H =0O(1) = SATy = SAT = P =NP

SAT ;; = SAT since the formulas are padded with a polynomial
number of 1's

Any algorithm to solve SAT iy can be p-converted into an

algorithm solving SAT (just pad first, then solve SAT)
Here we use that H(n) can be computed in time O(n?3)!

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT g is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

2. If SAT 7 is NP-complete, then there is a poly-time reduction
from SAT to SAT .

Let C' € N be s.t. the reduction takes n€ time.

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

2. If SAT 7 is NP-complete, then there is a poly-time reduction
from SAT to SAT .

Let C' € N be s.t. the reduction takes n}f Itir)ne.
¢ € SAT can only be mapped to 1011¥1"""" such that

[+ 1+ [T D < |g|¢

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

2. If SAT 7 is NP-complete, then there is a poly-time reduction
from SAT to SAT .

Let C' € N be s.t. the reduction takes n}f Itir)ne.
¢ € SAT can only be mapped to 1011¥1"""" such that

[l + 1+ [T < gl
Since P # NP, our claim implies H(n) = w(1) hence
9] < |g]'/?

for large enough |&|.

Proof of Ladner’'s Theorem

Assume P # NP. We'll show SAT is not in P nor NP-complete.
1. SATp e P= H =0O(1) = SATy =SAT = P =NP

2. If SAT 7 is NP-complete, then there is a poly-time reduction
from SAT to SAT .

Let C' € N be s.t. the reduction takes n}f Itir)ne.
¢ € SAT can only be mapped to 1011¥1"""" such that

[l + 1+ [T < gl
Since P # NP, our claim implies H(n) = w(1) hence
9] < |g]'/?

for large enough |&|.
Such reduction implies that SAT € P!

contradiction

Remarks

» Open question: are there “natural” problems in NP which are
neither in P nor NP-complete?
Candidates:

factoring
graph isomorphism

Remarks

Open question: are there “natural” problems in NP which are
neither in P nor NP-complete?
Candidates:
factoring
graph isomorphism
Our separations so far have all used diagonalization

Defining “diagonalization:’
only on

any proof technique which relies

1. existence of efficient representation of TMs by strings
2. efficient simulation of TMs (universal TMs)

Remarks

Open question: are there “natural” problems in NP which are
neither in P nor NP-complete?
Candidates:
factoring
graph isomorphism
Our separations so far have all used diagonalization

Defining “diagonalization:” any proof technique which relies
only on

1. existence of efficient representation of TMs by strings

2. efficient simulation of TMs (universal TMs)
any argument using the above treats TMs as black boxes

Could diagonalization alone prove P vs NP?

@ Oracle TMs & Relativization: limits of diagonalization

Oracle TMs & Relativization

» Given a language O C {0,1}*, an oracle TM is a TM
MO = (2,T,Q,6) s.t.:

1. MO has a special oracle tape (in addition to other tapes)

Oracle TMs & Relativization

» Given a language O C {0,1}*, an oracle TM isa TM
MO = (2,T,Q,6) s.t.:
1. MO has a special oracle tape (in addition to other tapes)
2. Qyes; Ino; Qquery € Q (special states)

When MO enters state Qquery, then MO moves to Qyes if
content of oracle tape is in O and ¢, otherwise

Query to O counts as 1 computational step!

Oracle TMs & Relativization

» Given a language O C {0,1}*, an oracle TM isa TM
MO = (2,T,Q,6) s.t.:
1. MO has a special oracle tape (in addition to other tapes)
2. Qyes; Ino; Qquery € Q (special states)

When MO enters state Qquery, then MO moves to Qyes if
content of oracle tape is in O and ¢, otherwise

Query to O counts as 1 computational step!
» Similar definition for NTMs

Oracle TMs & Relativization

» Given a language O C {0,1}*, an oracle TM isa TM
MO = (2,T,Q,6) s.t.:
1. MO has a special oracle tape (in addition to other tapes)
2. Qyes; Ino; Qquery € Q (special states)

When MO enters state Qquery, then MO moves to Qyes if
content of oracle tape is in O and ¢, otherwise

Query to O counts as 1 computational step!
» Similar definition for NTMs

» Complexity classes:

PO .= set of languages decided by poly-time deterministic
O-oracle TMs

NP := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AZ where A, B are complexity classes.

Oracle TMs & Relativization

» Given a language O C {0,1}*, an oracle TM isa TM
MO = (2,T,Q,6) s.t.:
1. MO has a special oracle tape (in addition to other tapes)
2. Qyes; Ino; Qquery € Q (special states)

When MO enters state Qquery, then MO moves to Qyes if
content of oracle tape is in O and ¢, otherwise

Query to O counts as 1 computational step!
» Similar definition for NTMs

» Complexity classes:

PO .= set of languages decided by poly-time deterministic
O-oracle TMs

NP := set of languages decided by poly-time
nondeterministic O-oracle TMs

Can also define AZ where A, B are complexity classes.

» Oracle TMs satisfy diagonalization properties! (relativize)

Examples

1. SAT class of unsatisfiable formulae, then SAT € pSAT,

Examples

1. SAT class of unsatisfiable formulae, then SAT € pSAT,
2. if O € P then PO =P

Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.
2. if O € P then PO =P
3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}

Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.

2. ifO€PthenP? =P

3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}
Claim

pEXPCOM _ \pEXPCOM _ pxp._ U DTIME(2™")
ceN

Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.
2. if O € P then PO =P
3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}
Claim
pEXFPCOM — NpEXPCOM — EXP .= |) DTIME(2™)
ceN

EXP C PEXPCOM ginee pEXPCOM (5 perform

exponential-time computation in one step

Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.
2. if O € P then PO =P
3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}

Claim

pEXPCOM _ \pEXPCOM _ pxp._ U DTIME(2™")
ceN

EXP C PEXPCOM ginee pEXPCOM (5 perform
exponential-time computation in one step
NPEXPCOM EXP since can simulate every
MEXPCOM ¢ NpEXPCOM 3 oy honential-time

Examples

1. SAT class of unsatisfiable formulae, then SAT € PSAT.
2. if O € P then PO =P
3. EXPCOM := {(M,z,1") | M(x) =1 within 2" steps}

Claim

pEXFPCOM — NpEXPCOM — EXP .= |) DTIME(2™)
ceN
EXP C PEXPCOM ginee pEXPCOM (5 perform
exponential-time computation in one step
NPEXPCOM EXP since can simulate every
MEXPCOM o NpEXPCOM 4 oy honential-time
EXP C PEXFPCOM NpEXPCOM C EXP.

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])
There exist oracles A, B such that

PA = NPY and PP + NPP.

Corollary
No proof for P vs NP can relativize!

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

Take A = EXPCOM.

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

1. For any language B C {0,1}*, let

Up :={1" | B contains some string of length n}

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

1. For any language B C {0,1}*, let
Up :={1" | B contains some string of length n}

2. For any B, Ug € NP8
Guess string x € {0,1}" and ask oracle

Baker-Gill-Solovay

Theorem ([Baker Gill Solovay, 1975])

There exist oracles A, B such that

PA = NPY and PP + NPP.

1. For any language B C {0,1}*, let
Up :={1" | B contains some string of length n}

2. For any B, Ug € NPP
3. We'll construct B such that Ug ¢ PP

Constructing B

» |dea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.

Constructing B

> |dea: diagonalization! :D
Property: for every i, MiB does not decide Up in time 2"/10.
Construct B in stages: B = J;cy Bi-
Each B, is a finite set.

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:
1. Start with B=10

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:
1. Start with B =1
2. suppose we have handled TMs M&,... M5B,
» Since B = By U---U B;_1 is finite, choose n; larger than
length of any string in B

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:
1. Start with B =1
2. suppose we have handled TMs M&,... M5B,
» Since B = By U---U B;_1 is finite, choose n; larger than
length of any string in B

Constructing B

P Idea: diagonalization! :D
Property: for every i, MiB does not decide Up in time 2"/10.
» Induction:
1. Start with B =1
2. suppose we have handled TMs M, ..., M5B,
» Since B = By U---U B;_1 is finite, choose n; larger than
length of any string in B
> Run MP(1™) for 2" /10 steps
MPE deterministic, so we know all queries to B from
ME (1)

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:

1. Start with B=10
2. suppose we have handled TMs M&,... M5B,

>

>
>

Since B = By U ---U B;_1 is finite, choose n; larger than
length of any string in B

Run MJP(1™%) for 2" /10 steps

whenever M7 (1) queries previously determined strings,
answer consistently. Else, answer NO.

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
> Induction:
1. Start with B =1
2. suppose we have handled TMs M&,... M5B,

>

>
>

Since B = By U ---U B;_1 is finite, choose n; larger than
length of any string in B

Run MJP(1™%) for 2" /10 steps

whenever M7 (1) queries previously determined strings,
answer consistently. Else, answer NO.

Have determined if z €” BN {0,1}" for at most 2" /10
strings! (and all of them NO answer!)

If M (1) = 1 then declare {0,1}" N B = (. Else, add a
non-queried string from {0,1}" to B.

Constructing B

> Idea: diagonalization! :D
Property: for every i, MZ-B does not decide Up in time 2" /10.
» Induction:

1. Start with B=10
2. suppose we have handled TMs M&,... M5B,

>

>
>

Since B = By U ---U B;_1 is finite, choose n; larger than
length of any string in B

Run MJP(1™%) for 2" /10 steps

whenever M7 (1) queries previously determined strings,
answer consistently. Else, answer NO.

Have determined if z €” BN {0,1}" for at most 2" /10
strings! (and all of them NO answer!)

If M (1) = 1 then declare {0,1}" N B = (. Else, add a
non-queried string from {0,1}" to B.

3. Thus, for any f(n) = o(2™), as any TM has cc’'ly many string
representations, above construction implies

Up & DTIMEZ (f(n))Vf(n) = o(2") = Up ¢ P

Conclusion

P Learned powers and limitations of diagonalization

Conclusion

P Learned powers and limitations of diagonalization

» Oracles: abstraction of “subroutines as black-boxes”

Conclusion

P Learned powers and limitations of diagonalization
» Oracles: abstraction of “subroutines as black-boxes”
» Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

l.e., non-relativize.

v

Conclusion

Learned powers and limitations of diagonalization
Oracles: abstraction of "subroutines as black-boxes”
Can diagonalization be used to solve P vs NP?

Could be, but proof has to differentiate between
oracle-machines and non-oracle machines.

l.e., non-relativize.

Connection to mathematical logic:

Independence results: certain mathematical statements
cannot be proved or disproved in a particular set of axioms.
1. Independence of Euclid’s fifth postulate (non-Euclidean
geometries)
2. Continuum Hypothesis from Zermelo-Fraenkel

References |

@ Arora, Sanjeev and Barak, Boaz (2009)
Computational Complexity, A Modern Approach
Cambridge University Press

@ Baker, Theodore and Gill, John and Solovay, Robert (1975)
Relativizations of the P =?NP question.
SIAM Journal on computing

[@ Ladner, Richard E. (1975)
On the structure of polynomial time reducibility.
Journal of the ACM (JACM)

	Ladner's Theorem: NP-intermediate problems
	Oracle TMs & Relativization: limits of diagonalization

