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What is Complexity Theory?
▶ Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one
another

2. classify computational problems according to the amount of
resources1 needed to solve them

▶ 3 basic tasks
1. upper bounds (algorithms)
2. lower bounds (impossibility)
3. reductions (hierarchy/equivalence of problems/models)

▶ Many connections!
See Math and Computation book!

1time, memory, communication, randomness, entanglement, ...
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Uniform Model: Turing Machines
“one algorithm to handle them (the inputs) all”

Deterministic computation.



Uniform Model: Turing Machines
Definition (Deterministic Turing Machines)
A Deterministic Turing Machine (TM) M is described by a tuple
(Σ,Γ,Q, δ) such that:
▶ Σ,Γ,Q are finite sets
▶ Q is the set of states, with qstart, qhalt ∈ Q
▶ Σ is the input (and output) alphabet (▷,□ 6∈ Σ)
▶ Γ is the tape alphabet, with ▷,□ ∈ Γ,Σ ⊂ Γ

▶ □ is the blank symbol
▶ ▷ is the start symbol

▶ δ : Q× Γ → Q× Γ× {L,R} (transition function)
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Since can simulate multiple tapes with one tape, let’s assume we
have 3 tapes: input tape (read-only), work tape, output tape.

Then δ : Q× Γ3 → Q× Γ× Σ× {L,R}3.
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Definition (Non-deterministic Turing Machines)
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We can similarly assume that we have 3 tapes here.
For NTM Mn input x, and y ∈ {0, 1}∗, let M(x, y) be the
execution of M on input x where at the ith step we select

transition function δyi .



Computing a Function and Running Time
Definition
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a TM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, we have M(x) outputs

f(x)

▶ M computes f in T -time if for all x ∈ {0, 1}∗, M(x) takes at
most T (|x|) steps and outputs f(x).

1. Given function T : N → N, define DTIME(T ) as the set of
languages L ⊆ {0, 1}∗ such that
▶ there is TM M and c constant such that M(x) halts in

c · T (|x|) time
▶ M(x) = 1 ⇔ x ∈ L (M decides L)

2.
P :=

∪
c∈N

DTIME(nc)
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Definition (Non-deterministic setting)
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Time Constructible Functions
Definition
A function T : N → N is time constructible if T (n) ≥ n and there
is a TM M which computes x 7→ b(T (|x|)) in time T (|x|).

▶ Examples: n, n logn, n10, 2n

▶ restriction T (n) ≥ n is to allow algorithm to read its input
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Universal Turing Machines
“one algorithm to rule them (algorithms) all”

Theorem ([Hennie Stearns, 1966])
There is a TM U such that for every α, x ∈ {0, 1}∗

U(α, x) = Mα(x),

moreover, there is a function C := Cα (depending only on Mα’s
description), such that if Mα halts on x within T steps, then
U(α, x) halts within C · T logT steps.

▶ Note that Cα depends on the description of Mα, not
necessarily the string α
For instance α and β := α ◦ 13 (by our discussion) are such
that Mα = Mβ and thus Cα = Cβ.

1. Can also prove that the above is true for NTMs
2. For NTMs, one can actually get simulation runtime of C · T
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Deterministic Time Hierarchy
Theorem ([Hartmanis Stearns, 1965])
If f, g are time-constructible functions such that
f(n) log f(n) = o(g(n)) for all n ∈ N, then

DTIME(f(n)) ⊊ DTIME(g(n))

▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction
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Non-deterministic Time Hierarchy
Theorem ([Cook 1972])
If f, g are time-constructible functions such that
f(n+ 1) = o(g(n)) for all n ∈ N, then

NTIME(f(n)) ⊊ NTIME(g(n))

We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)
5. LD ∈ NTIME(n) then get similar contradiction to previous

proof.
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