
Lecture 1 - Complexity,
Turing Machines, Time Hierarchy

Rafael Oliveira
rafael.oliveira.teaching@gmail.com

University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

What is Complexity Theory

Turing Machines Refresher

Time Hierarchy

What is Complexity Theory?
▶ Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one
another

2. classify computational problems according to the amount of
resources1 needed to solve them

▶ 3 basic tasks
1. upper bounds (algorithms)
2. lower bounds (impossibility)
3. reductions (hierarchy/equivalence of problems/models)

▶ Many connections!
See Math and Computation book!

1time, memory, communication, randomness, entanglement, ...

What is Complexity Theory?
▶ Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one
another

2. classify computational problems according to the amount of
resources1 needed to solve them

▶ 3 basic tasks
1. upper bounds (algorithms)
2. lower bounds (impossibility)
3. reductions (hierarchy/equivalence of problems/models)

▶ Many connections!
See Math and Computation book!

1time, memory, communication, randomness, entanglement, ...

What is Complexity Theory?
▶ Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one
another

2. classify computational problems according to the amount of
resources1 needed to solve them

▶ 3 basic tasks
1. upper bounds (algorithms)
2. lower bounds (impossibility)
3. reductions (hierarchy/equivalence of problems/models)

▶ Many connections!
See Math and Computation book!

1time, memory, communication, randomness, entanglement, ...

Uniform Model: Turing Machines
“one algorithm to handle them (the inputs) all”

Deterministic computation.

Uniform Model: Turing Machines
Definition (Deterministic Turing Machines)
A Deterministic Turing Machine (TM) M is described by a tuple
(Σ,Γ,Q, δ) such that:
▶ Σ,Γ,Q are finite sets
▶ Q is the set of states, with qstart, qhalt ∈ Q
▶ Σ is the input (and output) alphabet (▷,□ 6∈ Σ)
▶ Γ is the tape alphabet, with ▷,□ ∈ Γ,Σ ⊂ Γ

▶ □ is the blank symbol
▶ ▷ is the start symbol

▶ δ : Q× Γ → Q× Γ× {L,R} (transition function)

Uniform Model: Turing Machines
Definition (Deterministic Turing Machines)
A Deterministic Turing Machine (TM) M is described by a tuple
(Σ,Γ,Q, δ) such that:
▶ Σ,Γ,Q are finite sets
▶ Q is the set of states, with qstart, qhalt ∈ Q
▶ Σ is the input (and output) alphabet (▷,□ 6∈ Σ)
▶ Γ is the tape alphabet, with ▷,□ ∈ Γ,Σ ⊂ Γ

▶ □ is the blank symbol
▶ ▷ is the start symbol

▶ δ : Q× Γ → Q× Γ× {L,R} (transition function)

Since can simulate multiple tapes with one tape, let’s assume we
have 3 tapes: input tape (read-only), work tape, output tape.

Then δ : Q× Γ3 → Q× Γ× Σ× {L,R}3.

Uniform Model: Turing Machines
Definition (Non-deterministic Turing Machines)
A Non-deterministic Turing Machine (NTM) M is described by a
tuple (Σ,Γ,Q, δ0, δ1) such that:
▶ Σ,Γ,Q are finite sets
▶ Q is the set of states, with qstart, qhalt ∈ Q
▶ Σ is the input (and output) alphabet (▷,□ 6∈ Σ)
▶ Γ is the tape alphabet, with ▷,□ ∈ Γ,Σ ⊂ Γ

▶ □ is the blank symbol
▶ ▷ is the start symbol

▶ δb : Q× Γ → Q× Γ× {L,R} (transition functions)

Uniform Model: Turing Machines
Definition (Non-deterministic Turing Machines)
A Non-deterministic Turing Machine (NTM) M is described by a
tuple (Σ,Γ,Q, δ0, δ1) such that:
▶ Σ,Γ,Q are finite sets
▶ Q is the set of states, with qstart, qhalt ∈ Q
▶ Σ is the input (and output) alphabet (▷,□ 6∈ Σ)
▶ Γ is the tape alphabet, with ▷,□ ∈ Γ,Σ ⊂ Γ

▶ □ is the blank symbol
▶ ▷ is the start symbol

▶ δb : Q× Γ → Q× Γ× {L,R} (transition functions)

We can similarly assume that we have 3 tapes here.
For NTM Mn input x, and y ∈ {0, 1}∗, let M(x, y) be the
execution of M on input x where at the ith step we select

transition function δyi .

Computing a Function and Running Time
Definition
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a TM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, we have M(x) outputs

f(x)

▶ M computes f in T -time if for all x ∈ {0, 1}∗, M(x) takes at
most T (|x|) steps and outputs f(x).

1. Given function T : N → N, define DTIME(T) as the set of
languages L ⊆ {0, 1}∗ such that
▶ there is TM M and c constant such that M(x) halts in

c · T (|x|) time
▶ M(x) = 1 ⇔ x ∈ L (M decides L)

2.
P :=

∪
c∈N

DTIME(nc)

Computing a Function and Running Time
Definition
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a TM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, we have M(x) outputs

f(x)

▶ M computes f in T -time if for all x ∈ {0, 1}∗, M(x) takes at
most T (|x|) steps and outputs f(x).

1. Given function T : N → N, define DTIME(T) as the set of
languages L ⊆ {0, 1}∗ such that
▶ there is TM M and c constant such that M(x) halts in

c · T (|x|) time
▶ M(x) = 1 ⇔ x ∈ L (M decides L)

2.
P :=

∪
c∈N

DTIME(nc)

Computing a Function and Running Time
Definition
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a TM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, we have M(x) outputs

f(x)

▶ M computes f in T -time if for all x ∈ {0, 1}∗, M(x) takes at
most T (|x|) steps and outputs f(x).

1. Given function T : N → N, define DTIME(T) as the set of
languages L ⊆ {0, 1}∗ such that
▶ there is TM M and c constant such that M(x) halts in

c · T (|x|) time
▶ M(x) = 1 ⇔ x ∈ L (M decides L)

2.
P :=

∪
c∈N

DTIME(nc)

Computing a Function and Running Time
Definition (Non-deterministic setting)
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a NTM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, there exists y ∈ {0, 1}∗

s.t. M(x, y) outputs f(x)

▶ M computes f in T -time if for each x ∈ {0, 1}∗, there exists
y ∈ {0, 1}∗ s.t. M(x, y) takes at most T (|x|) steps and
outputs f(x).

1. Given T : N → N, define NTIME(T) as the set of languages
L ⊆ {0, 1}∗ such that
▶ there is NTM M and c constant such that for all

x, y ∈ {0, 1}∗, M(x, y) halts in c · T (|x|) time
▶ ∃y ∈ {0, 1}∗ s.t. M(x, y) = 1 ⇔ x ∈ L (M decides L)

2.
NP :=

∪
c∈N

NTIME(nc)

Computing a Function and Running Time
Definition (Non-deterministic setting)
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a NTM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, there exists y ∈ {0, 1}∗

s.t. M(x, y) outputs f(x)

▶ M computes f in T -time if for each x ∈ {0, 1}∗, there exists
y ∈ {0, 1}∗ s.t. M(x, y) takes at most T (|x|) steps and
outputs f(x).

1. Given T : N → N, define NTIME(T) as the set of languages
L ⊆ {0, 1}∗ such that
▶ there is NTM M and c constant such that for all

x, y ∈ {0, 1}∗, M(x, y) halts in c · T (|x|) time
▶ ∃y ∈ {0, 1}∗ s.t. M(x, y) = 1 ⇔ x ∈ L (M decides L)

2.
NP :=

∪
c∈N

NTIME(nc)

Computing a Function and Running Time
Definition (Non-deterministic setting)
Given functions f : {0, 1}∗ → {0, 1}∗ and T : N → N, and a NTM
M , we say that:
▶ M computes f if for all x ∈ {0, 1}∗, there exists y ∈ {0, 1}∗

s.t. M(x, y) outputs f(x)

▶ M computes f in T -time if for each x ∈ {0, 1}∗, there exists
y ∈ {0, 1}∗ s.t. M(x, y) takes at most T (|x|) steps and
outputs f(x).

1. Given T : N → N, define NTIME(T) as the set of languages
L ⊆ {0, 1}∗ such that
▶ there is NTM M and c constant such that for all

x, y ∈ {0, 1}∗, M(x, y) halts in c · T (|x|) time
▶ ∃y ∈ {0, 1}∗ s.t. M(x, y) = 1 ⇔ x ∈ L (M decides L)

2.
NP :=

∪
c∈N

NTIME(nc)

Time Constructible Functions
Definition
A function T : N → N is time constructible if T (n) ≥ n and there
is a TM M which computes x 7→ b(T (|x|)) in time T (|x|).

▶ Examples: n, n logn, n10, 2n

▶ restriction T (n) ≥ n is to allow algorithm to read its input

Time Constructible Functions
Definition
A function T : N → N is time constructible if T (n) ≥ n and there
is a TM M which computes x 7→ b(T (|x|)) in time T (|x|).
▶ Examples: n, n logn, n10, 2n

▶ restriction T (n) ≥ n is to allow algorithm to read its input

Time Constructible Functions
Definition
A function T : N → N is time constructible if T (n) ≥ n and there
is a TM M which computes x 7→ b(T (|x|)) in time T (|x|).
▶ Examples: n, n logn, n10, 2n

▶ restriction T (n) ≥ n is to allow algorithm to read its input

Universal Turing Machines
“one algorithm to rule them (algorithms) all”

Theorem ([Hennie Stearns, 1966])
There is a TM U such that for every α, x ∈ {0, 1}∗

U(α, x) = Mα(x),

moreover, there is a function C := Cα (depending only on Mα’s
description), such that if Mα halts on x within T steps, then
U(α, x) halts within C · T logT steps.

▶ Note that Cα depends on the description of Mα, not
necessarily the string α
For instance α and β := α ◦ 13 (by our discussion) are such
that Mα = Mβ and thus Cα = Cβ.

1. Can also prove that the above is true for NTMs
2. For NTMs, one can actually get simulation runtime of C · T

Universal Turing Machines
“one algorithm to rule them (algorithms) all”

Theorem ([Hennie Stearns, 1966])
There is a TM U such that for every α, x ∈ {0, 1}∗

U(α, x) = Mα(x),

moreover, there is a function C := Cα (depending only on Mα’s
description), such that if Mα halts on x within T steps, then
U(α, x) halts within C · T logT steps.
▶ Note that Cα depends on the description of Mα, not

necessarily the string α
For instance α and β := α ◦ 13 (by our discussion) are such
that Mα = Mβ and thus Cα = Cβ.

1. Can also prove that the above is true for NTMs
2. For NTMs, one can actually get simulation runtime of C · T

What is Complexity Theory

Turing Machines Refresher

Time Hierarchy

Deterministic Time Hierarchy
Theorem ([Hartmanis Stearns, 1965])
If f, g are time-constructible functions such that
f(n) log f(n) = o(g(n)) for all n ∈ N, then

DTIME(f(n)) ⊊ DTIME(g(n))

▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps

4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.
▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough

6. Simulate M(y) with UTM U(y, y)
▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Deterministic Time Hierarchy
▶ We will prove: DTIME(n) ⊊ DTIME(n2)

1. Let U be UTM from [Hennie Stearns, 1966]
2. Consider TM D: on input x

▶ run Mx(x) := U(x, x) for |x|1.5 steps
▶ if Mx(x) halts, output 1−Mx(x)
▶ else, output 0

3. D ∈ DTIME(n2), since it always halts in ≤ |x|1.5 steps
4. If D ∈ DTIME(n), let M be TM and c ∈ N constant s.t.

▶ M(x) halts in ≤ c · |x| time
▶ M(x) = D(x) for all x ∈ {0, 1}∗

5. Let y ∈ {0, 1}∗ such that My = M and |y| large enough
6. Simulate M(y) with UTM U(y, y)

▶ D(y) obtains M(y) = D(y) in C · |y| log |y| time
▶ in this case D(y) = 1−M(y) (by definition) contradiction

Non-deterministic Time Hierarchy
Theorem ([Cook 1972])
If f, g are time-constructible functions such that
f(n+ 1) = o(g(n)) for all n ∈ N, then

NTIME(f(n)) ⊊ NTIME(g(n))

We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)
5. LD ∈ NTIME(n) then get similar contradiction to previous

proof.

Non-deterministic Time Hierarchy
We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM

2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)
2 .

Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)

5. LD ∈ NTIME(n) then get similar contradiction to previous
proof.

Non-deterministic Time Hierarchy
We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)

5. LD ∈ NTIME(n) then get similar contradiction to previous
proof.

Non-deterministic Time Hierarchy
We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time

4. LD ∈ NTIME(n3)

5. LD ∈ NTIME(n) then get similar contradiction to previous
proof.

Non-deterministic Time Hierarchy
We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)

5. LD ∈ NTIME(n) then get similar contradiction to previous
proof.

Non-deterministic Time Hierarchy
We will prove NTIME(n) ⊊ NTIME(n3).
Cannot use previous proof, since unclear “flip the output” of a
NTM. Idea: lazy diagonalization.

1. Let U be UNTM
2. Let f : N → N be such that f(1) = 2, f(i+ 1) = 2f(i)

2 .
Given 1n, not hard to find i ∈ N such that
f(i) < n ≤ f(i+ 1) in O(n3) time.

3. Consider NTM D: on input x, if x 6∈ 1∗, reject.
▶ If x = 1n, compute i ∈ N s.t. f(i) < n ≤ f(i+ 1)
▶ If f(i) < n < f(i+ 1), simulate NTM Mi(1

n+1) := U(i, 1n+1)
in n1.5 time and output its answer (if Mi hasn’t halted, then
halt and accept)

▶ If n = f(i+ 1), accept 1n iff Mi(1
f(i)+1) = 0 in (f(i) + 1)1.5

time
4. LD ∈ NTIME(n3)

5. LD ∈ NTIME(n) then get similar contradiction to previous
proof.

References I
Cook, Stephen (1972)
A hierarchy for nondeterministic time complexity
Proceedings of the fourth annual ACM symposium on Theory of
computing

Hartmanis, J. and Stearns, R.E. (1965)
On the computational complexity of algorithms
Transactions of the American Mathematical Society

Hennie, Fred C and Stearns, Richard Edwin (1966)
Two-tape simulation of multitape Turing machines
Journal of the ACM (JACM)

	What is Complexity Theory
	Turing Machines Refresher
	Time Hierarchy

