Lecture 1 - Complexity, Turing Machines, Time Hierarchy

Rafael Oliveira
rafael.oliveira.teaching@gmail.com
University of Waterloo

CS 860 - Graduate Complexity Theory
Fall 2022

Overview

- What is Complexity Theory
- Turing Machines Refresher
- Time Hierarchy

What is Complexity Theory?

- Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one another
2. classify computational problems according to the amount of resources ${ }^{1}$ needed to solve them
[^0]
What is Complexity Theory?

- Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one another
2. classify computational problems according to the amount of resources ${ }^{1}$ needed to solve them

- 3 basic tasks

1. upper bounds
(algorithms)
2. lower bounds
(impossibility)
3. reductions
(hierarchy/equivalence of problems/models)
[^1]
What is Complexity Theory?

- Objectives of Theoretical Computer Science:

1. understand how different models of computation relate to one another
2. classify computational problems according to the amount of resources ${ }^{1}$ needed to solve them

- 3 basic tasks

1. upper bounds
(algorithms)
2. lower bounds
(impossibility)
3. reductions
(hierarchy/equivalence of problems/models)

- Many connections!

See Math and Computation book!

[^2]
Uniform Model: Turing Machines

"one algorithm to handle them (the inputs) all"
Deterministic computation.

Uniform Model: Turing Machines

Definition (Deterministic Turing Machines)
A Deterministic Turing Machine (TM) M is described by a tuple $(\Sigma, \Gamma, \mathcal{Q}, \delta)$ such that:

- $\Sigma, \Gamma, \mathcal{Q}$ are finite sets
- \mathcal{Q} is the set of states, with $q_{\text {start }}, q_{\text {halt }} \in \mathcal{Q}$
- Σ is the input (and output) alphabet
- Γ is the tape alphabet, with $\triangleright, \square \in \Gamma, \Sigma \subset \Gamma$
$\square \square$ is the blank symbol
$\square \square$ is the start symbol
- $\delta: \mathcal{Q} \times \Gamma \rightarrow \mathcal{Q} \times \Gamma \times\{L, R\}$
(transition function)

Uniform Model: Turing Machines

Definition (Deterministic Turing Machines)
A Deterministic Turing Machine (TM) M is described by a tuple $(\Sigma, \Gamma, \mathcal{Q}, \delta)$ such that:

- $\Sigma, \Gamma, \mathcal{Q}$ are finite sets
- \mathcal{Q} is the set of states, with $q_{\text {start }}, q_{\text {halt }} \in \mathcal{Q}$
- Σ is the input (and output) alphabet
$(\triangleright, \square \notin \Sigma)$
- Γ is the tape alphabet, with $\triangleright, \square \in \Gamma, \Sigma \subset \Gamma$
$\square \square$ is the blank symbol
\square is the start symbol
- $\delta: \mathcal{Q} \times \Gamma \rightarrow \mathcal{Q} \times \Gamma \times\{L, R\}$
(transition function)
Since can simulate multiple tapes with one tape, let's assume we have 3 tapes: input tape (read-only), work tape, output tape.

Then $\delta: \mathcal{Q} \times \Gamma^{3} \rightarrow \mathcal{Q} \times \Gamma \times \Sigma \times\{L, R\}^{3}$.

Uniform Model: Turing Machines

Definition (Non-deterministic Turing Machines)
A Non-deterministic Turing Machine (NTM) M is described by a tuple $\left(\Sigma, \Gamma, \mathcal{Q}, \delta_{0}, \delta_{1}\right)$ such that:

- $\Sigma, \Gamma, \mathcal{Q}$ are finite sets
- \mathcal{Q} is the set of states, with $q_{\text {start }}, q_{\text {halt }} \in \mathcal{Q}$
- Σ is the input (and output) alphabet
- Γ is the tape alphabet, with $\triangleright, \square \in \Gamma, \Sigma \subset \Gamma$
$\square \square$ is the blank symbol
$\square \square$ is the start symbol
- $\delta_{b}: \mathcal{Q} \times \Gamma \rightarrow \mathcal{Q} \times \Gamma \times\{L, R\}$
(transition functions)

Uniform Model: Turing Machines

Definition (Non-deterministic Turing Machines)
A Non-deterministic Turing Machine (NTM) M is described by a tuple $\left(\Sigma, \Gamma, \mathcal{Q}, \delta_{0}, \delta_{1}\right)$ such that:

- $\Sigma, \Gamma, \mathcal{Q}$ are finite sets
- \mathcal{Q} is the set of states, with $q_{\text {start }}, q_{\text {halt }} \in \mathcal{Q}$
- Σ is the input (and output) alphabet
- Γ is the tape alphabet, with $\triangleright, \square \in \Gamma, \Sigma \subset \Gamma$
$\square \square$ is the blank symbol
$\square \square$ is the start symbol

$$
\delta_{b}: \mathcal{Q} \times \Gamma \rightarrow \mathcal{Q} \times \Gamma \times\{L, R\} \quad \text { (transition functions) }
$$

We can similarly assume that we have 3 tapes here.
For NTM $M \mathrm{n}$ input x, and $y \in\{0,1\}^{*}$, let $M(x, y)$ be the execution of M on input x where at the $i^{\text {th }}$ step we select transition function $\delta_{y_{i}}$.

Computing a Function and Running Time

Definition
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a TM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, we have $M(x)$ outputs $f(x)$
- M computes f in T-time if for all $x \in\{0,1\}^{*}, M(x)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

Computing a Function and Running Time

Definition
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a TM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, we have $M(x)$ outputs $f(x)$
- M computes f in T-time if for all $x \in\{0,1\}^{*}, M(x)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

1. Given function $T: \mathbb{N} \rightarrow \mathbb{N}$, define $\operatorname{DTIME}(T)$ as the set of languages $L \subseteq\{0,1\}^{*}$ such that

- there is TM M and c constant such that $M(x)$ halts in $c \cdot T(|x|)$ time
- $M(x)=1 \Leftrightarrow x \in L$
(M decides L)

Computing a Function and Running Time

Definition
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a TM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, we have $M(x)$ outputs $f(x)$
- M computes f in T-time if for all $x \in\{0,1\}^{*}, M(x)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

1. Given function $T: \mathbb{N} \rightarrow \mathbb{N}$, define $\operatorname{DTIME}(T)$ as the set of languages $L \subseteq\{0,1\}^{*}$ such that
$>$ there is TM M and c constant such that $M(x)$ halts in $c \cdot T(|x|)$ time
> $M(x)=1 \Leftrightarrow x \in L$
(M decides L)
2.

$$
\mathrm{P}:=\bigcup_{c \in \mathbb{N}} \mathrm{DTIME}\left(n^{c}\right)
$$

Computing a Function and Running Time

Definition (Non-deterministic setting)
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a NTM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ outputs $f(x)$
- M computes f in T-time if for each $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

Computing a Function and Running Time

Definition (Non-deterministic setting)
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a NTM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ outputs $f(x)$
- M computes f in T-time if for each $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

1. Given $T: \mathbb{N} \rightarrow \mathbb{N}$, define $\operatorname{NTIME}(T)$ as the set of languages $L \subseteq\{0,1\}^{*}$ such that
there is NTM M and c constant such that for all
$x, y \in\{0,1\}^{*}, M(x, y)$ halts in $c \cdot T(|x|)$ time

- $\exists y \in\{0,1\}^{*}$ s.t. $M(x, y)=1 \Leftrightarrow x \in L$
(M decides L)

Computing a Function and Running Time

Definition (Non-deterministic setting)
Given functions $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$, and a NTM M, we say that:

- M computes f if for all $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ outputs $f(x)$
- M computes f in T-time if for each $x \in\{0,1\}^{*}$, there exists $y \in\{0,1\}^{*}$ s.t. $M(x, y)$ takes at most $T(|x|)$ steps and outputs $f(x)$.

1. Given $T: \mathbb{N} \rightarrow \mathbb{N}$, define $\operatorname{NTIME}(T)$ as the set of languages $L \subseteq\{0,1\}^{*}$ such that
there is NTM M and c constant such that for all $x, y \in\{0,1\}^{*}, M(x, y)$ halts in $c \cdot T(|x|)$ time

- $\exists y \in\{0,1\}^{*}$ s.t. $M(x, y)=1 \Leftrightarrow x \in L$
(M decides L)

2.

$$
\mathrm{NP}:=\bigcup_{c \in \mathbb{N}} \operatorname{NTIME}\left(n^{c}\right)
$$

Time Constructible Functions

Definition
A function $T: \mathbb{N} \rightarrow \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM M which computes $x \mapsto b(T(|x|))$ in time $T(|x|)$.

Time Constructible Functions

Definition
A function $T: \mathbb{N} \rightarrow \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM M which computes $x \mapsto b(T(|x|))$ in time $T(|x|)$.

- Examples: $n, n \log n, n^{10}, 2^{n}$

Time Constructible Functions

Definition
A function $T: \mathbb{N} \rightarrow \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM M which computes $x \mapsto b(T(|x|))$ in time $T(|x|)$.

- Examples: $n, n \log n, n^{10}, 2^{n}$
- restriction $T(n) \geq n$ is to allow algorithm to read its input

Universal Turing Machines

"one algorithm to rule them (algorithms) all"
Theorem ([Hennie Stearns, 1966])
There is a TM \mathcal{U} such that for every $\alpha, x \in\{0,1\}^{*}$

$$
\mathcal{U}(\alpha, x)=M_{\alpha}(x)
$$

moreover, there is a function $C:=C_{\alpha}$ (depending only on M_{α} 's description), such that if M_{α} halts on x within T steps, then $\mathcal{U}(\alpha, x)$ halts within $C \cdot T \log T$ steps.

Universal Turing Machines

"one algorithm to rule them (algorithms) all"

Theorem ([Hennie Stearns, 1966])

There is a TM \mathcal{U} such that for every $\alpha, x \in\{0,1\}^{*}$

$$
\mathcal{U}(\alpha, x)=M_{\alpha}(x)
$$

moreover, there is a function $C:=C_{\alpha}$ (depending only on M_{α} 's description), such that if M_{α} halts on x within T steps, then $\mathcal{U}(\alpha, x)$ halts within $C \cdot T \log T$ steps.

- Note that C_{α} depends on the description of M_{α}, not necessarily the string α
For instance α and $\beta:=\alpha \circ 1^{3}$ (by our discussion) are such that $M_{\alpha}=M_{\beta}$ and thus $C_{\alpha}=C_{\beta}$.

1. Can also prove that the above is true for NTMs
2. For NTMs, one can actually get simulation runtime of $C \cdot T$

- What is Complexity Theory
- Turing Machines Refresher
- Time Hierarchy

Deterministic Time Hierarchy

Theorem ([Hartmanis Stearns, 1965])
If f, g are time-constructible functions such that $f(n) \log f(n)=o(g(n))$ for all $n \in \mathbb{N}$, then

$$
D \operatorname{TIME}(f(n)) \subsetneq D \operatorname{TIME}(g(n))
$$

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

1. Let \mathcal{U} be UTM from [Hennie Stearns, 1966]
2. Consider TM D : on input x
\downarrow run $M_{x}(x):=\mathcal{U}(x, x)$ for $|x|^{1.5}$ steps
\triangleright if $M_{x}(x)$ halts, output $1-M_{x}(x)$

- else, output 0

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

1. Let \mathcal{U} be UTM from [Hennie Stearns, 1966]
2. Consider TM D : on input x

- run $M_{x}(x):=\mathcal{U}(x, x)$ for $|x|^{1.5}$ steps
\triangleright if $M_{x}(x)$ halts, output $1-M_{x}(x)$
- else, output 0

3. $D \in \operatorname{DTIME}\left(n^{2}\right)$, since it always halts in $\leq|x|^{1.5}$ steps

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

1. Let \mathcal{U} be UTM from [Hennie Stearns, 1966]
2. Consider TM D : on input x

- run $M_{x}(x):=\mathcal{U}(x, x)$ for $|x|^{1.5}$ steps
\triangleright if $M_{x}(x)$ halts, output $1-M_{x}(x)$
- else, output 0

3. $D \in \operatorname{DTIME}\left(n^{2}\right)$, since it always halts in $\leq|x|^{1.5}$ steps
4. If $D \in \operatorname{DTIME}(n)$, let M be TM and $c \in \mathbb{N}$ constant s.t.

- $M(x)$ halts in $\leq c \cdot|x|$ time
- $M(x)=D(x)$ for all $x \in\{0,1\}^{*}$

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

1. Let \mathcal{U} be UTM from [Hennie Stearns, 1966]
2. Consider TM D : on input x

- run $M_{x}(x):=\mathcal{U}(x, x)$ for $|x|^{1.5}$ steps
- if $M_{x}(x)$ halts, output $1-M_{x}(x)$
- else, output 0

3. $D \in \operatorname{DTIME}\left(n^{2}\right)$, since it always halts in $\leq|x|^{1.5}$ steps
4. If $D \in \operatorname{DTIME}(n)$, let M be TM and $c \in \mathbb{N}$ constant s.t.

- $M(x)$ halts in $\leq c \cdot|x|$ time
- $M(x)=D(x)$ for all $x \in\{0,1\}^{*}$

5. Let $y \in\{0,1\}^{*}$ such that $M_{y}=M$ and $|y|$ large enough

Deterministic Time Hierarchy

- We will prove: $\operatorname{DTIME}(n) \subsetneq \operatorname{DTIME}\left(n^{2}\right)$

1. Let \mathcal{U} be UTM from [Hennie Stearns, 1966]
2. Consider TM D : on input x
run $M_{x}(x):=\mathcal{U}(x, x)$ for $|x|^{1.5}$ steps

- if $M_{x}(x)$ halts, output $1-M_{x}(x)$
- else, output 0

3. $D \in \operatorname{DTIME}\left(n^{2}\right)$, since it always halts in $\leq|x|^{1.5}$ steps
4. If $D \in \operatorname{DTIME}(n)$, let M be TM and $c \in \mathbb{N}$ constant s.t.

- $M(x)$ halts in $\leq c \cdot|x|$ time
- $M(x)=D(x)$ for all $x \in\{0,1\}^{*}$

5. Let $y \in\{0,1\}^{*}$ such that $M_{y}=M$ and $|y|$ large enough
6. Simulate $M(y)$ with UTM $\mathcal{U}(y, y)$

- $D(y)$ obtains $M(y)=D(y)$ in $C \cdot|y| \log |y|$ time
\triangleright in this case $D(y)=1-M(y)$ (by definition)

Non-deterministic Time Hierarchy

Theorem ([Cook 1972])
If f, g are time-constructible functions such that $f(n+1)=o(g(n))$ for all $n \in \mathbb{N}$, then

$$
\operatorname{NTIME}(f(n)) \subsetneq \operatorname{NTIME}(g(n))
$$

Non-deterministic Time Hierarchy

We will prove $\operatorname{NTIME}(n) \subsetneq \operatorname{NTIME}\left(n^{3}\right)$.
Cannot use previous proof, since unclear "flip the output" of a NTM. Idea: lazy diagonalization.

1. Let \mathcal{U} be UNTM

Non-deterministic Time Hierarchy

We will prove $\operatorname{NTIME}(n) \subsetneq \operatorname{NTIME}\left(n^{3}\right)$.
Cannot use previous proof, since unclear "flip the output" of a NTM. Idea: lazy diagonalization.

1. Let \mathcal{U} be UNTM
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be such that $f(1)=2, f(i+1)=2^{f(i)^{2}}$. Given 1^{n}, not hard to find $i \in \mathbb{N}$ such that $f(i)<n \leq f(i+1)$ in $O\left(n^{3}\right)$ time.

Non-deterministic Time Hierarchy

We will prove $\operatorname{NTIME}(n) \subsetneq \operatorname{NTIME}\left(n^{3}\right)$.
Cannot use previous proof, since unclear "flip the output" of a NTM. Idea: lazy diagonalization.

1. Let \mathcal{U} be UNTM
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be such that $f(1)=2, f(i+1)=2^{f(i)^{2}}$.

Given 1^{n}, not hard to find $i \in \mathbb{N}$ such that $f(i)<n \leq f(i+1)$ in $O\left(n^{3}\right)$ time.
3. Consider NTM D : on input x, if $x \notin 1^{*}$, reject.

- If $x=1^{n}$, compute $i \in \mathbb{N}$ s.t. $f(i)<n \leq f(i+1)$
- If $f(i)<n<f(i+1)$, simulate NTM $M_{i}\left(1^{n+1}\right):=\mathcal{U}\left(i, 1^{n+1}\right)$ in $n^{1.5}$ time and output its answer (if M_{i} hasn't halted, then halt and accept)
- If $n=f(i+1)$, accept 1^{n} iff $M_{i}\left(1^{f(i)+1}\right)=0$ in $(f(i)+1)^{1.5}$ time

Non-deterministic Time Hierarchy

We will prove $\operatorname{NTIME}(n) \subsetneq \operatorname{NTIME}\left(n^{3}\right)$.
Cannot use previous proof, since unclear "flip the output" of a NTM. Idea: lazy diagonalization.

1. Let \mathcal{U} be UNTM
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be such that $f(1)=2, f(i+1)=2^{f(i)^{2}}$.

Given 1^{n}, not hard to find $i \in \mathbb{N}$ such that $f(i)<n \leq f(i+1)$ in $O\left(n^{3}\right)$ time.
3. Consider NTM D : on input x, if $x \notin 1^{*}$, reject.

- If $x=1^{n}$, compute $i \in \mathbb{N}$ s.t. $f(i)<n \leq f(i+1)$
- If $f(i)<n<f(i+1)$, simulate NTM $M_{i}\left(1^{n+1}\right):=\mathcal{U}\left(i, 1^{n+1}\right)$ in $n^{1.5}$ time and output its answer (if M_{i} hasn't halted, then halt and accept)
- If $n=f(i+1)$, accept 1^{n} iff $M_{i}\left(1^{f(i)+1}\right)=0$ in $(f(i)+1)^{1.5}$ time

4. $L_{D} \in \operatorname{NTIME}\left(n^{3}\right)$

Non-deterministic Time Hierarchy

We will prove $\operatorname{NTIME}(n) \subsetneq \operatorname{NTIME}\left(n^{3}\right)$.
Cannot use previous proof, since unclear "flip the output" of a NTM. Idea: lazy diagonalization.

1. Let \mathcal{U} be UNTM
2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be such that $f(1)=2, f(i+1)=2^{f(i)^{2}}$.

Given 1^{n}, not hard to find $i \in \mathbb{N}$ such that $f(i)<n \leq f(i+1)$ in $O\left(n^{3}\right)$ time.
3. Consider NTM D : on input x, if $x \notin 1^{*}$, reject.

- If $x=1^{n}$, compute $i \in \mathbb{N}$ s.t. $f(i)<n \leq f(i+1)$
- If $f(i)<n<f(i+1)$, simulate NTM $M_{i}\left(1^{n+1}\right):=\mathcal{U}\left(i, 1^{n+1}\right)$ in $n^{1.5}$ time and output its answer (if M_{i} hasn't halted, then halt and accept)
- If $n=f(i+1)$, accept 1^{n} iff $M_{i}\left(1^{f(i)+1}\right)=0$ in $(f(i)+1)^{1.5}$ time

4. $L_{D} \in \operatorname{NTIME}\left(n^{3}\right)$
5. $L_{D} \in \operatorname{NTIME}(n)$ then get similar contradiction to previous proof.

References I

Cook, Stephen (1972)
A hierarchy for nondeterministic time complexity
Proceedings of the fourth annual ACM symposium on Theory of
computing
國 Hartmanis, J. and Stearns, R.E. (1965)
On the computational complexity of algorithms
Transactions of the American Mathematical Society
R Hennie, Fred C and Stearns, Richard Edwin (1966)
Two-tape simulation of multitape Turing machines
Journal of the ACM (JACM)

[^0]: ${ }^{1}$ time, memory, communication, randomness, entanglement, ...

[^1]: ${ }^{1}$ time, memory, communication, randomness, entanglement, ...

[^2]: ${ }^{1}$ time, memory, communication, randomness, entanglement, ...

