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Solving Polynomial Equations

Last lecture we saw how to generalize division algorithm and Gaussian
Elimination
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Solving Polynomial Equations

Last lecture we saw how to generalize division algorithm and Gaussian
Elimination

Groebner bases were crucial to make our generalized division
algorithm work

How can we use Groebner bases to solve polynomial equations? After
all, Gaussian Elimination helps us solve linear systems of equations

Today we will learn:
1 Elimination Theorem: how to ”eliminate” variables from our system of

polynomial equations
2 Extension Theorem: how to ”extend” partial solutions to complete

solutions
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Elimination Theorem

Example:

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1
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Elimination Theorem

Example:

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

I = (x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1). Want V (I ).

Computing Groebner basis of I with respect to lex order:

G = (x+y+z2−1, y2−y−z2+z , 2yz2+z4−z2, z6−4z4+4z3−z2)

Since G = I we know both systems have same zero set! What is
special about the Groebner basis set of equations?

Last polynomial only depends on z elimination step

Can find all possible z ’s and propagate it up to find y and then x
extension step
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Elimination Theorem

Main idea of elimination theory is to find the part of the ideal that
“depends on less variables”
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F[x�+1, . . . , xn] given by:

I� := I ∩ F[x�+1, . . . , xn]
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Elimination Theorem

Main idea of elimination theory is to find the part of the ideal that
“depends on less variables”

Given I ⊂ F[x1, . . . , xn], the �th elimination ideal I� is the ideal of
F[x�+1, . . . , xn] given by:

I� := I ∩ F[x�+1, . . . , xn]

The elimination step is to find these ideals I� for all � ∈ [n].

Elimination Theorem

For any ideal I ⊂ F[x1, . . . , xn], if G is a Groebner basis of I with
respect to the lexicographic order x1 � x2 � . . . � xn, then

G� := G ∩ F[x�+1, . . . , xn]

is a Groebner basis of I�.
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Proof of Elimination Theorem
Suffices to show that LM(I�) = LM(G�)
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Proof of Elimination Theorem
Suffices to show that LM(I�) = LM(G�)

So in our example above, the last polynomial was the best way to
eliminate variables x , y from our system.
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Extension Theorem

Now that we know how eliminate variables from our system of
polynomial equations, we need to learn how to reconstruct a full
solution based on our partial solution
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Extension Theorem

Now that we know how eliminate variables from our system of
polynomial equations, we need to learn how to reconstruct a full
solution based on our partial solution

Given solution (a�+1, . . . , an) ∈ V (I�) ⊆ Fn−� we want to find a
solution (a�, . . . , an) ∈ V (I�−1) ⊆ Fn−�+1

So we are essentially trying to solve a system of univariate polynomials

What could go wrong? Partial solutions that don’t extend to
complete solutions. Example:

xy = 1, xz = 1 partial solution y = z = 0

Groebner basis: (xy − 1, xz − 1, y − z)

Extension theorem gives us a sufficient condition to extend partial
solutions.
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Extension Theorem

Extension Theorem

Let F be an algebraically closed field, I := (f1, . . . , fs) ⊆ F[x1, . . . , xn]
and let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write

fi as

fi = ci (x2, . . . , xn) · xdi1 + lower degree terms in x1

where ci ’s are non-zero and di ≥ 0. If

(a2, . . . , an) ∈ V (I1)

that is, it is a partial solution, and if

(a2, . . . , an) �∈ V (c1, . . . , cs)

then there is a1 ∈ F such that (a1, a2, . . . , an) ∈ V (I ).

25 / 74



Extension Theorem

Extension Theorem

Let F be an algebraically closed field, I := (f1, . . . , fs) ⊆ F[x1, . . . , xn]
and let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write

fi as

fi = ci (x2, . . . , xn) · xdi1 + lower degree terms in x1

where ci ’s are non-zero and di ≥ 0. If

(a2, . . . , an) ∈ V (I1)

that is, it is a partial solution, and if

(a2, . . . , an) �∈ V (c1, . . . , cs)

then there is a1 ∈ F such that (a1, a2, . . . , an) ∈ V (I ).

Extension step fails then the leading coefficients must vanish

26 / 74



Proof of Extension Theorem

Let G = (g1, . . . , gt) be a Groebner basis of I ⊆ F[x1, . . . , xn] with
respect to the lex order. For 1 ≤ j ≤ t, let

gj = cj(x2, . . . , xn) · xdj1 + lower degree terms in x1

where dj ≥ 0 and cj ∈ F[x2, . . . , xn] is non-zero.
Let a ∈ V (I1) ⊆ Fn−1 be a partial solution such that
a �∈ V (c1, . . . , ct). Then

Ia := {f (x1, a) | f ∈ I} = (go(x1, a)) ⊆ F[x1]

where go ∈ G satisfies co(a) �= 0 and go has minimal x1 degree
among all elements gj ∈ G with cj(a) �= 0. Moreover

1 deg(go(x1, a)) > 0
2 If go(a1, a) = 0 for a1 ∈ F, then (a1, a) ∈ V (I )
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Proof of Extension Theorem

Choose an go ∈ G as in previous slide (minimal x1-degree among
elements of G with non-zero leading term cj(a) �= 0).
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Note that do > 0, otherwise we would have go = co , which would
imply go(x1, a) = co(a) �= 0, which implies a �∈ I1
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Proof of Extension Theorem

Choose an go ∈ G as in previous slide (minimal x1-degree among
elements of G with non-zero leading term cj(a) �= 0).

Note that do > 0, otherwise we would have go = co , which would
imply go(x1, a) = co(a) �= 0, which implies a �∈ I1

We now need to prove that go(x1) generates the ideal Ia

Since I ⊆ G it is enough to show that

gj(x1, a) ∈ (go(x1, a)) ∀cj ∈ G

We will prove this by induction on the x1-degree of the cj ’s

Our choice of go tells us that do = deg(go(x1, a)). By minimality of
do , if any gj is such that

deg(gj(x1, a)) < do

it must have been that cj(a) = 0. That is, gj dropped degree on
evaluation.
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Proof of Extension Theorem

If there is gj ∈ G with dj < do such that gj(x1, a) �= 0, let gb be the
one which minimizes the drop in degree when evaluated at a.

Let δ = db − deg(gb(x1, a)).
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Let

S := S(go , gb) = cox
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1 gb − cbgo
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Proof of Extension Theorem

If there is gj ∈ G with dj < do such that gj(x1, a) �= 0, let gb be the
one which minimizes the drop in degree when evaluated at a.

Let δ = db − deg(gb(x1, a)).

Let

S := S(go , gb) = cox
do−db
1 gb − cbgo

Note that
S(x1, a) = co(a)x

do−dbgb(x1, a)

so deg(S(x1, a)) = do − db + (db − δ) = do − δ
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Proof of Extension Theorem

If there is gj ∈ G with dj < do such that gj(x1, a) �= 0, let gb be the
one which minimizes the drop in degree when evaluated at a.

Let δ = db − deg(gb(x1, a)).

Let

S := S(go , gb) = cox
do−db
1 gb − cbgo

Note that
S(x1, a) = co(a)x

do−dbgb(x1, a)

so deg(S(x1, a)) = do − db + (db − δ) = do − δ

Since G is a Groebner basis, S =
�t

i=1 Bjgj standard representation,
which implies

deg1(Bj) + deg1(gj) = deg1(Bjgj) ≤ deg1(S) < do

when Bjgj �= 0.
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Proof of Extension Theorem

Since G is a Groebner basis, S =
�t

i=1 Bjgj standard representation,
which implies

deg1(Bj) + deg1(gj) = deg1(Bjgj) ≤ deg1(S) < do

when Bjgj �= 0.

So if gj appears in standard representation, then deg1(gj) < do which
implies gj must drop degree or go to zero when evaluated at a

Thus, we have:

deg(Bj(x1, a)) + deg(gj(x1, a)) ≤ deg1(Bj) + deg1(gj)− δ < do − δ
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Proof of Extension Theorem

Since G is a Groebner basis, S =
�t

i=1 Bjgj standard representation,
which implies

deg1(Bj) + deg1(gj) = deg1(Bjgj) ≤ deg1(S) < do

when Bjgj �= 0.

So if gj appears in standard representation, then deg1(gj) < do which
implies gj must drop degree or go to zero when evaluated at a

Thus, we have:

deg(Bj(x1, a)) + deg(gj(x1, a)) ≤ deg1(Bj) + deg1(gj)− δ < do − δ

Thus:

deg(S(x1, a)) ≤ max{deg(Bj(x1, a)) + deg(gj(x1, a))} < do − δ

contradiction.
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Proof of Extension Theorem

Since G is a Groebner basis, S =
�t

i=1 Bjgj standard representation,
which implies

deg1(Bj) + deg1(gj) = deg1(Bjgj) ≤ deg1(S) < do

when Bjgj �= 0.

So if gj appears in standard representation, then deg1(gj) < do which
implies gj must drop degree or go to zero when evaluated at a

Thus, we have:

deg(Bj(x1, a)) + deg(gj(x1, a)) ≤ deg1(Bj) + deg1(gj)− δ < do − δ

Thus:

deg(S(x1, a)) ≤ max{deg(Bj(x1, a)) + deg(gj(x1, a))} < do − δ

contradiction.

Thus, if gj dropped degree and it is non-zero after evaluation, it must
be dj ≥ do .
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Proof of Extension Theorem

Now we are ready to prove that Ia = (go(x1, a)) by induction.
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Proof of Extension Theorem

Now we are ready to prove that Ia = (go(x1, a)) by induction.

By the above, claim is true for any gj ∈ G with dj < do .

Let d ≥ do and assume claim is true for any gj ∈ G with dj < d .
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Proof of Extension Theorem

Now we are ready to prove that Ia = (go(x1, a)) by induction.

By the above, claim is true for any gj ∈ G with dj < do .

Let d ≥ do and assume claim is true for any gj ∈ G with dj < d .

Let gi ∈ G be such that di = d .

Taking standard representation of S(gi , go) =
�t

k=1 Bkgk , where

S := cogj − cjx
d−do
1 go

we see that deg1(S) < d
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Proof of Extension Theorem

Now we are ready to prove that Ia = (go(x1, a)) by induction.

By the above, claim is true for any gj ∈ G with dj < do .

Let d ≥ do and assume claim is true for any gj ∈ G with dj < d .

Let gi ∈ G be such that di = d .

Taking standard representation of S(gi , go) =
�t

k=1 Bkgk , where

S := cogj − cjx
d−do
1 go

we see that deg1(S) < d

Thus, if Bkck �= 0 then deg1(gk(x1, a)) < d , which by induction
implies

gk(x1, a) ∈ (go(x1, a)) ⇒ S ∈ (go(x1, a)) ⇒ gj(x1, a) ∈ (go(x1, a))

as co(a) �= 0.
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Resultants - Another Proof of Extension Theorem

Univariate question: given two polynomials f , g ∈ F[x ], when will
they have a common root?
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Resultants - Another Proof of Extension Theorem

Univariate question: given two polynomials f , g ∈ F[x ], when will
they have a common root?

As F[x ] is an Euclidean domain, we have:

gcd(f (x), g(x)) = 1 ⇔
∃ s(x), t(x) ∈ F[x ] s.t. s(x) · f (x) + t(x) · g(x) = 1
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Resultants - Another Proof of Extension Theorem

Univariate question: given two polynomials f , g ∈ F[x ], when will
they have a common root?

As F[x ] is an Euclidean domain, we have:

gcd(f (x), g(x)) = 1 ⇔
∃ s(x), t(x) ∈ F[x ] s.t. s(x) · f (x) + t(x) · g(x) = 1

We can also assume w.l.o.g. that deg(s) < deg(g) and
deg(t) < deg(f ).

Viewing the equation s(x) · f (x) + t(x) · g(x) = 1 as a linear system,
we have:

s0 · f0 + t0 · g0 = 1 constant coefficient

k�

i=0

si · fk−i + ti · gk−i = 0 coefficient of degree k
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Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f ) = 3, deg(g) = 2):




f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2




·




s0
s1
t0
t1
t2




=




1
0
0
0
0



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Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f ) = 3, deg(g) = 2):




f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2




·




s0
s1
t0
t1
t2




=




1
0
0
0
0




Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Sylx(f , g)
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Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f ) = 3, deg(g) = 2):




f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2




·




s0
s1
t0
t1
t2




=




1
0
0
0
0




Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Sylx(f , g)

Definition (Resultant)

The Resultant of f , g is the determinant of the Sylvester Matrix:

Resx(f , g) = det(Sylx(f , g))
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Sylvester Matrix - General Case
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Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry

An important property is that the resultant is a polynomial over the
coefficients of f , g
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Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry

An important property is that the resultant is a polynomial over the
coefficients of f , g

From previous slides, another property is:

Resx(f , g) �= 0 ⇔ gcd(f , g) = 1 over F[x ]

Another important property is that, in some nice cases, the resultant
behaves well under certain homomorphisms.

Let f , g ∈ F[x1, . . . , xn] be such that deg1(f ) = � and deg1(g) = m.
If a ∈ Fn−1 satisfies:

1 deg(f (x1, a)) = �
2 g(x1, a) is non-zero of degree p ≤ m

and if c(x2, . . . , xn) is the leading coefficient of f , we have:

Resx1(f , g)(a) = c(a)m−p · Resx1(f (x1, a), g(x1, a))
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Discriminant

A particular case which you have seen before is the discriminant.
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Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x ] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)
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Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x ] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
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Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x ] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0
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Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x ] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0

The discriminant of f (x) ∈ R[x ] is given by

discx(f ) := Resx(f , f
�)
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Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x ] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0

The discriminant of f (x) ∈ R[x ] is given by

discx(f ) := Resx(f , f
�)

Why is it called discriminant? If f (x) = ax2 + bx + c , we get

discx(f ) = −a · (b2 − 4ac)

Does this look familiar? :)
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Extension Theorem

Extension Theorem

Let F be an algebraically closed field, I := (f1, . . . , fs) ⊆ F[x1, . . . , xn]
and let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write

fi as

fi = ci (x2, . . . , xn) · xdi1 + lower degree terms in x1

where ci ’s are non-zero and di ≥ 0. If

(a2, . . . , an) ∈ V (I1)

that is, it is a partial solution, and if

(a2, . . . , an) �∈ V (c1, . . . , cs)

then there is a1 ∈ F such that (a1, a2, . . . , an) ∈ V (I ).
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Extension Theorem

Extension Theorem

Let F be an algebraically closed field, I := (f1, . . . , fs) ⊆ F[x1, . . . , xn]
and let I1 be the first elimination ideal of I . For each 1 ≤ i ≤ s, write

fi as

fi = ci (x2, . . . , xn) · xdi1 + lower degree terms in x1

where ci ’s are non-zero and di ≥ 0. If

(a2, . . . , an) ∈ V (I1)

that is, it is a partial solution, and if

(a2, . . . , an) �∈ V (c1, . . . , cs)

then there is a1 ∈ F such that (a1, a2, . . . , an) ∈ V (I ).

Extension step fails then the leading coefficients must vanish
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Resultants and Extension Theorem

Similarly to the previous proof we know that the ideal

Ia := {f (x1, a) | f ∈ I} ⊆ F[x1]

is generated by some polynomial g(x1, a) ∈ F[x1], where g ∈ I , as
F[x1] is PID.
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Resultants and Extension Theorem

Similarly to the previous proof we know that the ideal

Ia := {f (x1, a) | f ∈ I} ⊆ F[x1]

is generated by some polynomial g(x1, a) ∈ F[x1], where g ∈ I , as
F[x1] is PID.
a �∈ V (c1, . . . , cs) implies that for some i ∈ [s], we have ci (a) �= 0.
Thus, we know that g(x1) is non-zero.
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Resultants and Extension Theorem

Similarly to the previous proof we know that the ideal

Ia := {f (x1, a) | f ∈ I} ⊆ F[x1]

is generated by some polynomial g(x1, a) ∈ F[x1], where g ∈ I , as
F[x1] is PID.
a �∈ V (c1, . . . , cs) implies that for some i ∈ [s], we have ci (a) �= 0.
Thus, we know that g(x1) is non-zero.

Let h(x) = Resx1(f , g) ∈ I1

We know that h(a) = 0, since a ∈ V (I1)
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Resultants and Extension Theorem

Similarly to the previous proof we know that the ideal

Ia := {f (x1, a) | f ∈ I} ⊆ F[x1]

is generated by some polynomial g(x1, a) ∈ F[x1], where g ∈ I , as
F[x1] is PID.
a �∈ V (c1, . . . , cs) implies that for some i ∈ [s], we have ci (a) �= 0.
Thus, we know that g(x1) is non-zero.

Let h(x) = Resx1(f , g) ∈ I1

We know that h(a) = 0, since a ∈ V (I1)

By property of Resultant, and the fact that the degree of f did not
drop, there is a1 ∈ F such that f (a1, a) = g(a1, a) = 0
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Resultants and Extension Theorem

Similarly to the previous proof we know that the ideal

Ia := {f (x1, a) | f ∈ I} ⊆ F[x1]

is generated by some polynomial g(x1, a) ∈ F[x1], where g ∈ I , as
F[x1] is PID.
a �∈ V (c1, . . . , cs) implies that for some i ∈ [s], we have ci (a) �= 0.
Thus, we know that g(x1) is non-zero.

Let h(x) = Resx1(f , g) ∈ I1

We know that h(a) = 0, since a ∈ V (I1)

By property of Resultant, and the fact that the degree of f did not
drop, there is a1 ∈ F such that f (a1, a) = g(a1, a) = 0

Since Ia = (g(x1, a)), if a1 is a root of g(x1, a) then it is a root of any
polynomial in Ia and thus (a1, a) is a solution.
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Conclusion

Today we learned about Elimination and Extension Theorems

These results allow us to solve systems of polynomial equations

Saw how Groebner bases (w.r.t. lex order) behave nicely with respect
to elimination

Saw how Groebner bases can help us extend partial solutions

Learned about Resultant, and how it can also help us in the Extension
Theorem
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