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Issues with Division Algorithm

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it
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Issues with Division Algorithm

What properties would we want from a division algorithm?
1 remainder should be uniquely determined
2 ordering shouldn’t really matter (especially since we are trying to use it

to solve ideal membership problem)
3 univariate division algorithm solves ideal membership problem - so our

division algorithm should also solve it

Our division algorithm only gives sufficient condition for ideal
membership problem: if G has zero remainder when divided by
(F1, . . . ,Fs) then we know G ∈ (F1, . . . ,Fs)

The main problem is due to the fact that for some generators of an
ideal, we are missing important leading monomials

Example: f1 = x3 − 2xy and f2 = x2y − 2y2 + x and x2 ∈ (f1, f2)

The “fix” for this division algorithm is to find a good basis for the
ideal generated by F1, . . . ,Fs - the so-called Gröbner basis

Property: a Gröbner basis is one which contains all the important
leading monomials
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Ideal of Leading Terms & Hilbert Basis Theorem

Given ideal I ⊆ F[x] and a monomial ordering >, let:
1 LT (I ) be the set of all leading terms of nonzero elements of I
2 LM(I ) be the monomial ideal generated by LT (I )
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Ideal of Leading Terms & Hilbert Basis Theorem

Given ideal I ⊆ F[x] and a monomial ordering >, let:
1 LT (I ) be the set of all leading terms of nonzero elements of I
2 LM(I ) be the monomial ideal generated by LT (I )

By Dickson’s lemma, we know that LM(I ) is finitely generated

By previous slide, we also know that given a generating set for I , it
could be the case that the leading terms of the generators are strictly
contained in LT (I )

Now we are ready to prove Hilbert’s basis theorem:
Let I ⊆ F[x] be an ideal
By Dickson’s lemma, LM(I ) is finitely generated
Let g1, . . . , gs ∈ I such that LM(I ) = (LM(g1), . . . , LM(gs))
The division algorithm from last lecture shows that I ⊆ (g1, . . . , gs)

Note that for any f ∈ I we have that
LM(f ) ∈ LM(I ) = (LM(g1), . . . , LM(gs)).

So long as f is nonzero and in I we will be able to divide, and
remainder will be zero. Since the division algorithm always terminates,
we will end up with remainder zero!
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Gröbner Basis

From the proof of Hilbert Basis Theorem, we saw the existence of a
very special generating set of our ideal.

The main property of the special generating set was that the leading
monomials of generating set generate the ideal LM(I )

1This was also independently discovered by Hironaka, who termed these bases
“standard bases” and used them for ideals in power series rings
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Gröbner Basis

From the proof of Hilbert Basis Theorem, we saw the existence of a
very special generating set of our ideal.

The main property of the special generating set was that the leading
monomials of generating set generate the ideal LM(I )
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Gröbner Basis

From the proof of Hilbert Basis Theorem, we saw the existence of a
very special generating set of our ideal.

The main property of the special generating set was that the leading
monomials of generating set generate the ideal LM(I )

Definition: A Gröbner basis of an ideal is a generating set which has
the property above.1

A first property of Groebner Bases is uniqueness of remainder in the
division algorithm. More precisely: if G = {g1, . . . , gs} is a Gorebner
basis for I , then given f ∈ F[x] there is a unique r ∈ F[x] with the
following properties:

1 no term of r is divisible by any LM(gi )
2 there is g ∈ I such that f = g + r

Division algorithm gives existence of r

Uniqueness comes from fact that if r , r � are remainders, then
r − r � ∈ I ⇒ r = r � by division algorithm

1This was also independently discovered by Hironaka, who termed these bases
“standard bases” and used them for ideals in power series rings
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Algorithmic Questions Around Groebner Bases
Now that we know how important Groebner bases are, two questions
come to mind:

1 When do we know that a basis is a Groebner Basis?
2 Given an ideal, how can we construct a Groebner basis of this ideal?

2This name is a shortening for “syzygy polynomials” since they are syzygies over the
monomial ideal.
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xγ = LCM(LM(f ), LM(g)). Then, the S-polynomial of f , g is

S(f , g) :=
xγ

LT (f )
· f − xγ

LT (g)
· g

Example: f = x3y2 − x2y3 and g = 3x4y + y2 in Q[x] with the
graded lexicographic order.

2This name is a shortening for “syzygy polynomials” since they are syzygies over the
monomial ideal.
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Algorithmic Questions Around Groebner Bases
Now that we know how important Groebner bases are, two questions
come to mind:

1 When do we know that a basis is a Groebner Basis?
2 Given an ideal, how can we construct a Groebner basis of this ideal?

To deal with the first question, we have the following definition:

S-polynomial:2 given two polynomials f , g ∈ F[x], let
xγ = LCM(LM(f ), LM(g)). Then, the S-polynomial of f , g is

S(f , g) :=
xγ

LT (f )
· f − xγ

LT (g)
· g

Example: f = x3y2 − x2y3 and g = 3x4y + y2 in Q[x] with the
graded lexicographic order.

S-polynomials are designed to produce cancellations of leading terms.

2This name is a shortening for “syzygy polynomials” since they are syzygies over the
monomial ideal.
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How Cancellation Happens: S-polynomial lemma

Next lemma shows that every cancellation of leading terms amongst
polynomials of same degree happen because of S-polynomial

Lemma: If we have a sum p1 + · · ·+ ps where multideg(pi ) = δ ∈ Nn

for all i ∈ [s] such that multideg(p1 + · · ·+ ps) < δ, then
p1 + · · ·+ ps is a linear combination, with coefficients in F, of the
S-polynomials S(pi , pj), where i , j ∈ [s]
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How Cancellation Happens: S-polynomial lemma

Next lemma shows that every cancellation of leading terms amongst
polynomials of same degree happen because of S-polynomial

Lemma: If we have a sum p1 + · · ·+ ps where multideg(pi ) = δ ∈ Nn

for all i ∈ [s] such that multideg(p1 + · · ·+ ps) < δ, then
p1 + · · ·+ ps is a linear combination, with coefficients in F, of the
S-polynomials S(pi , pj), where i , j ∈ [s]

1 Let ci = LC (pi ), so ci · xδ = LT (pi )
2 multideg(p1 + · · ·+ ps) < δ ⇒ c1 + · · ·+ cs = 0
3 Since pi , pj have same leading monomial

S(pi , pj) =
1

ci
pi −

1

cj
pj

4 Thus, by using (2)

s−1�

i=1

ci · S(pi , ps) = p1 + · · ·+ ps

5 note that multideg(S(pi , pj)) < δ
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Buchberger’s Criterion

Now that we are acquainted with S-polynomials and how
cancellations happen, we can state Buchberger’s criterion:

Let I ⊆ F[x] be an ideal. Then a basis G = {g1, . . . , gs} of I is a
Groebner basis of I if, and only if, for all pairs i �= j , the remainder on

division of S(gi , gj) by G is zero.
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Buchberger’s Criterion

Now that we are acquainted with S-polynomials and how
cancellations happen, we can state Buchberger’s criterion:

Let I ⊆ F[x] be an ideal. Then a basis G = {g1, . . . , gs} of I is a
Groebner basis of I if, and only if, for all pairs i �= j , the remainder on

division of S(gi , gj) by G is zero.

(⇒) if G is a Groebner basis, then S(gi , gj) ∈ I ⇒ remainder of
division by G is zero by previous slides.

(⇐) need to prove that for any f ∈ I , we have that

LT (f ) ∈ (LT (g1), . . . , LT (gs))

f ∈ I = (g1, . . . , gs) (as G is a generating set)

f = g1h1 + · · · gshs

where multideg(f ) ≤ maxi (multideg(gihi ))

Strategy: let’s pick most efficient representation of f
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Proof of Buchberger’s Criterion

f ∈ I = (g1, . . . , gs) (as G is a generating set)

f = g1h1 + · · · gshs

where multideg(f ) ≤ maxi (multideg(gihi ))

Take representation of lowest miltidegree, that is, one for which

δ := max
i
(multideg(gihi )) is minimum
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f ∈ I = (g1, . . . , gs) (as G is a generating set)

f = g1h1 + · · · gshs

where multideg(f ) ≤ maxi (multideg(gihi ))

Take representation of lowest miltidegree, that is, one for which

δ := max
i
(multideg(gihi )) is minimum

Such minimum δ exists by the well-ordering of monomial order

In particular, multideg(f ) ≤ δ

If multideg(f ) = δ, then there is some i ∈ [s] such that

multideg(f ) = multideg(gihi ) ⇒ LM(f ) ∈ (LM(g1), . . . , LM(gs))
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Proof of Buchberger’s Criterion

f ∈ I = (g1, . . . , gs) (as G is a generating set)

f = g1h1 + · · · gshs

where multideg(f ) ≤ maxi (multideg(gihi ))

Take representation of lowest miltidegree, that is, one for which

δ := max
i
(multideg(gihi )) is minimum

Such minimum δ exists by the well-ordering of monomial order

In particular, multideg(f ) ≤ δ

If multideg(f ) = δ, then there is some i ∈ [s] such that

multideg(f ) = multideg(gihi ) ⇒ LM(f ) ∈ (LM(g1), . . . , LM(gs))

So need to see what happens when δ > multideg(f )
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Proof of Buchberger’s Criterion

We are now in case: multideg(f ) < δ

In this case we will use the fact that S(gi , gj)
G = 03 to obtain

another expression of f ∈ I with smaller δ

3This is a short-hand notation to say that the division by G is zero
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We are now in case: multideg(f ) < δ

In this case we will use the fact that S(gi , gj)
G = 03 to obtain

another expression of f ∈ I with smaller δ

Let’s isolate part of highest multi-degree:

multideg(f ) < δ ⇒ component of multi-degree δ must vanish

Now we use our lemma over LT (h1) · g1 + · · ·+ LT (hs) · gs to
decrease its multi-degree via S-polynomials

Let pi = LT (hi ) · gi . From your homework, we know

S(pi , pj) = xδ−γij · S(gi , gj)

where γij = LCM(LM(gi ), LM(gj))

S(gi , gj)
G = 0 ⇒ S(gi , gj) = A1g1 + · · ·+ Asgs

multideg(Aigi ) ≤ multideg(S(gi , gj))

3This is a short-hand notation to say that the division by G is zero
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S(gi , gj)
G = 0 ⇒ S(gi , gj) = A1g1 + · · ·+ Asgs

multideg(Aigi ) ≤ multideg(S(gi , gj))
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Proof of Buchberger’s Criterion

S(gi , gj)
G = 0 ⇒ S(gi , gj) = A1g1 + · · ·+ Asgs

multideg(Aigi ) ≤ multideg(S(gi , gj))

Multiplying above by xδ−γij

S(pi , pj) = xδ−γij · S(gi , gj) = B1g1 + · · ·+ Bsgs
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Proof of Buchberger’s Criterion

S(gi , gj)
G = 0 ⇒ S(gi , gj) = A1g1 + · · ·+ Asgs

multideg(Aigi ) ≤ multideg(S(gi , gj))

Multiplying above by xδ−γij

S(pi , pj) = xδ−γij · S(gi , gj) = B1g1 + · · ·+ Bsgs

When Bigi �= 0 by the first bullet

multideg(Bigi ) ≤ multideg(xδ−γij · S(gi , gj)) < δ

by property of S-polynomials

50 / 74



Proof of Buchberger’s Criterion

S(gi , gj)
G = 0 ⇒ S(gi , gj) = A1g1 + · · ·+ Asgs

multideg(Aigi ) ≤ multideg(S(gi , gj))

Multiplying above by xδ−γij

S(pi , pj) = xδ−γij · S(gi , gj) = B1g1 + · · ·+ Bsgs

When Bigi �= 0 by the first bullet

multideg(Bigi ) ≤ multideg(xδ−γij · S(gi , gj)) < δ

by property of S-polynomials

By our S-polynomial lemma, we have

s�

i=1

LT (hi ) · gi =
�

i �=j

aij · S(pi , pj) = C1g1 + · · ·+ Csgs

where multideg(Cigi ) < δ
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Proof of Buchberger’s Criterion
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Example: twisted cubic

Let G = {y − x2, z − x3} with monomial order y > z > x
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Problems with Division Algorithm & Hilbert Basis Theorem

Gröbner Basis

Buchberger’s Algorithm

Conclusion

Acknowledgements
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Buchberger’s Algorithm

From Buchberger’s criterion, we can devise a natural algorithm to
compute Groebner bases:

Input: I = (f1, . . . , fs)

Output: Groebner basis G for I

4Or the ascending chain condition on the monomial ideal LT (I ), for the fancy
language ones
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Input: I = (f1, . . . , fs)

Output: Groebner basis G for I
1 Set G = {f1, . . . , fs}
2 While there is Sij := S(fi , fj) such that

SG
ij �= 0

add Sij to G
3 Once all SG

ij = 0 then return G

4Or the ascending chain condition on the monomial ideal LT (I ), for the fancy
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1 Set G = {f1, . . . , fs}
2 While there is Sij := S(fi , fj) such that

SG
ij �= 0

add Sij to G
3 Once all SG

ij = 0 then return G

Buchberger’s criterion shows that this algorithm always returns a
Groebner basis!

4Or the ascending chain condition on the monomial ideal LT (I ), for the fancy
language ones
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Buchberger’s Algorithm

From Buchberger’s criterion, we can devise a natural algorithm to
compute Groebner bases:

Input: I = (f1, . . . , fs)

Output: Groebner basis G for I
1 Set G = {f1, . . . , fs}
2 While there is Sij := S(fi , fj) such that

SG
ij �= 0

add Sij to G
3 Once all SG

ij = 0 then return G

Buchberger’s criterion shows that this algorithm always returns a
Groebner basis!

Algorithm will terminate because of Dickson’s lemma!4

4Or the ascending chain condition on the monomial ideal LT (I ), for the fancy
language ones
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Buchberger’s Algorithm

From Buchberger’s criterion, we can devise a natural algorithm to
compute Groebner bases:

Input: I = (f1, . . . , fs)

Output: Groebner basis G for I
1 Set G = {f1, . . . , fs}
2 While there is Sij := S(fi , fj) such that

SG
ij �= 0

add Sij to G
3 Once all SG

ij = 0 then return G

Buchberger’s criterion shows that this algorithm always returns a
Groebner basis!

Algorithm will terminate because of Dickson’s lemma!4

Thus, computing Groebner basis is decidable!
4Or the ascending chain condition on the monomial ideal LT (I ), for the fancy

language ones
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Reduced Groebner Basis

Of all Grobener bases for an ideal I , one is special. What makes it
special are the following:

LC (p) = 1 for all p ∈ G
For all p ∈ G , no monomial of p lies in (LT (G ) \ {p})
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Reduced Groebner Basis

Of all Grobener bases for an ideal I , one is special. What makes it
special are the following:

LC (p) = 1 for all p ∈ G
For all p ∈ G , no monomial of p lies in (LT (G ) \ {p})

These are so-called reduced Groebner bases

Practice problem: prove that a reduced Groebner basis is unique.
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Reduced Groebner Basis

Of all Grobener bases for an ideal I , one is special. What makes it
special are the following:

LC (p) = 1 for all p ∈ G
For all p ∈ G , no monomial of p lies in (LT (G ) \ {p})

These are so-called reduced Groebner bases

Practice problem: prove that a reduced Groebner basis is unique.

Why would we want uniqueness?

used to test whether two ideals are the same ideal!
nice “canonical” basis for the ideal (w.r.t. monomial ordering)
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Applications of Groebner Bases

Solution to Ideal Membership Problem:

Given f , I , simply compute Groebner basis G of I and

f ∈ I ⇔ f G = 0
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Solution to Ideal Membership Problem:

Given f , I , simply compute Groebner basis G of I and

f ∈ I ⇔ f G = 0

Solving system of polynomial equations:

Now this is just like doing Gaussian Elimination!
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Applications of Groebner Bases

Solution to Ideal Membership Problem:

Given f , I , simply compute Groebner basis G of I and

f ∈ I ⇔ f G = 0

Solving system of polynomial equations:

Now this is just like doing Gaussian Elimination!
Compute Groebner basis using lex order x1 > . . . > xn
Solve the system just like you would solve a linear system:
Example: I = (x2 + y2 + z2 − 1, x2 + z2 − y , x − z)
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Applications of Groebner Bases

Solution to Ideal Membership Problem:

Given f , I , simply compute Groebner basis G of I and

f ∈ I ⇔ f G = 0

Solving system of polynomial equations:

Now this is just like doing Gaussian Elimination!
Compute Groebner basis using lex order x1 > . . . > xn
Solve the system just like you would solve a linear system:
Example: I = (x2 + y2 + z2 − 1, x2 + z2 − y , x − z)
Groebner basis for the above ideal

G = {x − z , y − 2z2, z4 + (1/2)z2 − 1/4}
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Applications of Groebner Bases

Solution to Ideal Membership Problem:

Given f , I , simply compute Groebner basis G of I and

f ∈ I ⇔ f G = 0

Solving system of polynomial equations:

Now this is just like doing Gaussian Elimination!
Compute Groebner basis using lex order x1 > . . . > xn
Solve the system just like you would solve a linear system:
Example: I = (x2 + y2 + z2 − 1, x2 + z2 − y , x − z)
Groebner basis for the above ideal

G = {x − z , y − 2z2, z4 + (1/2)z2 − 1/4}

z is determined by last equation
propagate solution by “going up” the other equations!
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Conclusion

Today we learned about Groebner bases and their main property

This “fixes” all the problems that we had with our division algorithm

Proved Hilbert Basis Theorem

Proved Buchberger’s criterion, which allows us to test whether a basis
is a Groebner basis

Proved decidability of finding Groebner basis for any ideal

Used Groebner bases to solve ideal membership problem and system
of polynomial equations

If anyone would like to present the refinement on Buchberger’s
Algorithms from CLO 2.10, I can give bonus homework points :)
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Lecture based entirely on the book by CLO: Ideals, varieties and
algorithms (see course webpage for a copy - or get online version
through UW library)
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