Lecture 8: Gröbner Bases and Buchberger's Algorithm

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

February 3, 2021

イロン (語) (注) (注) (注) まつの(で

Overview

- Problems with Division Algorithm & Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering shouldn't really matter (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it

A D > A B > A B > A B > B 900

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering <u>shouldn't really matter</u> (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it

イロン 不通 とく ほとく ほとう ほう めんで

Our division algorithm only gives *sufficient* condition for ideal membership problem: if G has zero remainder when divided by (F₁,..., F_s) then we know G ∈ (F₁,..., F_s)

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering <u>shouldn't really matter</u> (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it
- Our division algorithm only gives *sufficient* condition for ideal membership problem: if G has zero remainder when divided by (F₁,..., F_s) then we know G ∈ (F₁,..., F_s)
- The main problem is due to the fact that for some generators of an ideal, we are *missing important leading monomials*

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering <u>shouldn't really matter</u> (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it
- Our division algorithm only gives *sufficient* condition for ideal membership problem: if G has zero remainder when divided by (F₁,..., F_s) then we know G ∈ (F₁,..., F_s)
- The main problem is due to the fact that for some generators of an ideal, we are *missing important leading monomials*

• Example: $f_1 = x^3 - 2xy$ and $f_2 = x^2y - 2y^2 + x$ and $x^2 \in (f_1, f_2)$ or ∂e^{x} $y \cdot f_1 - \chi \cdot f_2 = \chi^3 \cdot y - 2x \cdot y^2$ $= -x^3 \cdot y - 2x \cdot y^2 - x^2$ $= -x^2$

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering <u>shouldn't really matter</u> (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it
- Our division algorithm only gives *sufficient* condition for ideal membership problem: if G has zero remainder when divided by (F₁,..., F_s) then we know G ∈ (F₁,..., F_s)
- The main problem is due to the fact that for some generators of an ideal, we are *missing important leading monomials*
- Example: $f_1 = x^3 2xy$ and $f_2 = x^2y 2y^2 + x$ and $x^2 \in (f_1, f_2)$
- The "fix" for this division algorithm is to find a *good basis* for the ideal generated by F_1, \ldots, F_s the so-called Gröbner basis

- What properties would we want from a division algorithm?
 - remainder should be uniquely determined
 - ordering <u>shouldn't really matter</u> (especially since we are trying to use it to solve ideal membership problem)
 - univariate division algorithm solves ideal membership problem so our division algorithm should also solve it
- Our division algorithm only gives *sufficient* condition for ideal membership problem: if G has zero remainder when divided by (F₁,..., F_s) then we know G ∈ (F₁,..., F_s)
- The main problem is due to the fact that for some generators of an ideal, we are *missing important leading monomials*

• Example:
$$f_1 = x^3 - 2xy$$
 and $f_2 = x^2y - 2y^2 + x$ and $x^2 \in (f_1, f_2)$

- The "fix" for this division algorithm is to find a *good basis* for the ideal generated by F_1, \ldots, F_s the so-called Gröbner basis
- **Property:** a Gröbner basis is one which contains all the *important leading monomials*

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **()** LT(I) be the set of all leading terms of nonzero elements of I

LM(I) = (LT(I))

set monomials

2 LM(I) be the monomial ideal generated by LT(I)

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **()** LT(I) be the set of all leading terms of nonzero elements of I

A D > A B > A B > A B > B 900

- 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is *finitely generated*

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **(**) LT(I) be the set of all leading terms of nonzero elements of I
 - 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is finitely generated
- By previous slide, we also know that given a generating set for *I*, it could be the case that the leading terms of the generators are *strictly contained* in *LT*(*I*)

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **1** LT(I) be the set of all leading terms of nonzero elements of I
 - 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is finitely generated
- By previous slide, we also know that given a generating set for I, it could be the case that the leading terms of the generators are *strictly* contained in LT(1)
- Now we are ready to prove Hilbert's basis theorem:

• Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal $\overline{\mathbf{X}} = (\mathbf{x}_{1}, \cdots, \mathbf{x}_{n})$

A D > A B > A B > A B > B 900

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **(**) LT(I) be the set of all leading terms of nonzero elements of I
 - 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is *finitely generated*
- By previous slide, we also know that given a generating set for *I*, it could be the case that the leading terms of the generators are *strictly contained* in *LT*(*I*)

- Now we are ready to prove Hilbert's basis theorem:
 - Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal
 - By Dickson's lemma, LM(I) is finitely generated

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **(**) LT(I) be the set of all leading terms of nonzero elements of I
 - 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is finitely generated
- By previous slide, we also know that given a generating set for *I*, it could be the case that the leading terms of the generators are *strictly contained* in *LT*(*I*)
- Now we are ready to prove Hilbert's basis theorem:
 - Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal

 $(g_1, \ldots, g_n) \subseteq I$

- By Dickson's lemma, LM(I) is finitely generated
- Let $g_1, \ldots, g_s \in I$ such that $LM(I) = (LM(g_1), \ldots, LM(g_s))$

イロン 不通 とくまとくまとう おうのなみ

- Given ideal $I \subseteq \mathbb{F}[\mathbf{x}]$ and a monomial ordering >, let:
 - **(**) LT(I) be the set of all leading terms of nonzero elements of I
 - 2 LM(I) be the monomial ideal generated by LT(I)
- By Dickson's lemma, we know that LM(I) is finitely generated
- By previous slide, we also know that given a generating set for *I*, it could be the case that the leading terms of the generators are *strictly contained* in *LT*(*I*)
- Now we are ready to prove Hilbert's basis theorem:
 - Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal
 - By Dickson's lemma, LM(I) is finitely generated
 - Let $g_1, \ldots, g_s \in I$ such that $LM(I) = (LM(g_1), \ldots, LM(g_s))$
 - The division algorithm from last lecture shows that $I\subseteq (g_1,\ldots,g_s)$

Note that for any $f \in I$ we have that $LM(f) \in LM(I) = (LM(g_1), \dots, LM(g_s)).$

• So long as f is nonzero and in I we will be able to divide, and remainder will be zero. Since the division algorithm always terminates, we will end up with remainder zero!

 $f \in I \implies f \mod (\mathfrak{I}, \dots, \mathfrak{I})^{\mathfrak{o}} \stackrel{*}{=} \mathfrak{O}^{\mathfrak{o}}$

$$(g_{11}, \dots, g_{n})$$

$$(LM(g_{1}), \dots, LM(g_{n})) = LM(I)$$

$$f \in I \implies LT(I) \in LM(I)$$

$$\Longrightarrow \exists i \in [n] \ n.i \cdot LT(I) = c\overline{\chi}^{\delta} \cdot LM(g_{1})$$

$$\overline{\chi}^{\alpha} = \overline{L} \overline{\chi}^{\beta_{1}} \cdot \overline{\chi}^{\delta_{1}} \cdot C_{i}$$

$$p_{i} + \delta_{1} \neq \alpha \implies c_{i}^{i} \wedge w_{i}^{M}$$

$$concel$$

• Problems with Division Algorithm & Hilbert Basis Theorem

- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

- From the proof of Hilbert Basis Theorem, we saw the *existence* of a very special generating set of our ideal.
- The main property of the special generating set was that the *leading* monomials of generating set generate the ideal LM(I)

No leading term left behind.

- From the proof of Hilbert Basis Theorem, we saw the *existence* of a very special generating set of our ideal.
- The main property of the special generating set was that the *leading* monomials of generating set generate the ideal LM(I)
- **Definition:** A Gröbner basis of an ideal is a generating set which has the property above.¹

- From the proof of Hilbert Basis Theorem, we saw the *existence* of a very special generating set of our ideal.
- The main property of the special generating set was that the *leading* monomials of generating set generate the ideal LM(I)
- **Definition:** A Gröbner basis of an ideal is a generating set which has the property above.¹
- A first property of Groebner Bases is *uniqueness of remainder* in the division algorithm. More precisely: if $G = \{g_1, \ldots, g_s\}$ is a Gorebner basis for *I*, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties:
- \rightarrow **1** no term of r is divisible by any $LM(g_i)$

2) there is
$$g \in I$$
 such that $f = g + r$

- From the proof of Hilbert Basis Theorem, we saw the *existence* of a very special generating set of our ideal.
- The main property of the special generating set was that the *leading* monomials of generating set generate the ideal LM(I)
- **Definition:** A Gröbner basis of an ideal is a generating set which has the property above.¹
- A first property of Groebner Bases is *uniqueness of remainder* in the division algorithm. More precisely: if $G = \{g_1, \ldots, g_s\}$ is a Gorebner basis for *I*, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties:
 - **1** no term of r is divisible by any $LM(g_i)$
 - 2 there is $g \in I$ such that f = g + r
- Division algorithm gives existence of r

- From the proof of Hilbert Basis Theorem, we saw the *existence* of a very special generating set of our ideal.
- The main property of the special generating set was that the *leading* monomials of generating set generate the ideal LM(I)
- Definition: A Gröbner basis of an ideal is a generating set which has the property above.¹
- A first property of Groebner Bases is *uniqueness of remainder* in the division algorithm. More precisely: if $G = \{g_1, \ldots, g_s\}$ is a Gorebner basis for I, then given $f \in \mathbb{F}[\mathbf{x}]$ there is a unique $r \in \mathbb{F}[\mathbf{x}]$ with the following properties: $f = g + \pi$ $= g' + \pi'$

1 no term of r is divisible by any $LM(g_i)$ 2 there is $g \in I$ such that f = g + r

- Division algorithm gives existence of r $\pi \pi' = \gamma' \gamma \in I$
- Uniqueness comes from fact that if r, r' are remainders, then $r - r' \in I \Rightarrow r = r'$ by division algorithm $(\pi - \pi')^{G} =$

¹This was also independently discovered by Hironaka, who termed these bases "standard bases" and used them for ideals in power series rings 💦 😑 🛪 🕂 🧎 200

- Now that we know how important Groebner bases are, two questions come to mind:
 - When do we know that a basis is a Groebner Basis?
 - 2 Given an ideal, how can we construct a Groebner basis of this ideal?

²This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

- Now that we know how important Groebner bases are, two questions come to mind:
 - When do we know that a basis is a Groebner Basis?
 - 2 Given an ideal, how can we construct a Groebner basis of this ideal?
- To deal with the first question, we have the following definition:

S-polynomial:² given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let $\mathbf{x}^{\gamma} = LCM(LM(f), LM(g))$. Then, the S-polynomial of f, g is

$$S(f,g) := rac{\mathbf{x}^{\gamma}}{LT(f)} \cdot f - rac{\mathbf{x}^{\gamma}}{LT(g)} \cdot g$$

²This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

- Now that we know how important Groebner bases are, two questions come to mind:
 - When do we know that a basis is a Groebner Basis?
 - ② Given an ideal, how can we construct a Groebner basis of this ideal?
- To deal with the first question, we have the following definition:

S-polynomial:² given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let $\mathbf{x}^{\gamma} = LCM(LM(f), LM(g))$. Then, the S-polynomial of f, g is

- Now that we know how important Groebner bases are, two questions come to mind:
 - When do we know that a basis is a Groebner Basis?
 - 2 Given an ideal, how can we construct a Groebner basis of this ideal?
- To deal with the first question, we have the following definition:

S-polynomial:² given two polynomials $f, g \in \mathbb{F}[\mathbf{x}]$, let $\mathbf{x}^{\gamma} = LCM(LM(f), LM(g))$. Then, the S-polynomial of f, g is

$$S(f,g) := \frac{\mathbf{x}^{\gamma}}{LT(f)} \cdot f - \frac{\mathbf{x}^{\gamma}}{LT(g)} \cdot g$$

- Example: $f = x^3y^2 x^2y^3$ and $g = 3x^4y + y^2$ in $\mathbb{Q}[\mathbf{x}]$ with the graded lexicographic order.
- S-polynomials are designed to produce cancellations of leading terms.

²This name is a shortening for "syzygy polynomials" since they are syzygies over the monomial ideal.

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- **Lemma:** If we have a sum $p_1 + \cdots + p_s$ where multideg $(p_i) = \delta \in \mathbb{N}^n$ for all $i \in [s]$ such that multideg $(p_1 + \cdots + p_s) < \delta$, then $p_1 + \cdots + p_s$ is a linear combination, with coefficients in \mathbb{F} , of the S-polynomials $S(p_i, p_j)$, where $i, j \in [s]$

A D > A B > A B > A B > B 900

any concellction hoppined (ob leading term) of leading monomials con be derived by 5- polynomials

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- Lemma: If we have a sum $p_1 + \cdots + p_s$ where multideg $(p_i) = \delta \in \mathbb{N}^n$ for all $i \in [s]$ such that multideg $(p_1 + \cdots + p_s) < \delta$, then $p_1 + \cdots + p_s$ is a linear combination, with coefficients in \mathbb{F} , of the S-polynomials $S(p_i, p_j)$, where $i, j \in [s]$

• Let
$$c_i = LC(p_i)$$
, so $c_i \cdot \mathbf{x}^{\delta} = LT(p_i)$ \mathcal{C} ; $\neq \mathbf{O}$

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- Lemma: If we have a sum p₁ + ··· + p_s where multideg(p_i) = δ ∈ Nⁿ for all i ∈ [s] such that multideg(p₁ + ··· + p_s) < δ, then p₁ + ··· + p_s is a linear combination, with coefficients in 𝔽, of the S-polynomials S(p_i, p_j), where i, j ∈ [s]
 Let c_i = LC(p_i), so c_i ⋅ x^δ = LT(p_i)
 multideg(p₁ + ··· + p_s) < δ ⇒ c₁ + ··· + c_s = 0

$$(P_1 + \cdots + P_p)_{g} = \sum_{i=1}^{p} c_i$$

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- Lemma: If we have a sum p₁ + · · · + p_s where multideg(p_i) = δ ∈ Nⁿ for all i ∈ [s] such that multideg(p₁ + · · · + p_s) < δ, then p₁ + · · · + p_s is a linear combination, with coefficients in 𝔽, of the S-polynomials S(p_i, p_j), where i, j ∈ [s]
 Let c_i = LC(p_i), so c_i · x^δ = LT(p_i)
 multideg(p₁ + · · · + p_s) < δ ⇒ c₁ + · · · + c_s = 0

- $(a) \quad \text{multideg}(p_1 + \dots + p_s) < 0 \Rightarrow c_1 + \dots + c_s =$
- **③** Since p_i, p_j have same leading monomial

$$S(p_i, p_j) = \frac{1}{c_i} p_i - \frac{1}{c_j} p_j$$

$$\overline{\chi}^{\delta} = \overline{\chi}^{\delta} = LCM(\overline{\chi}^{\delta}, \overline{\chi}^{\delta})$$

$$S(f_i, f_j) = \frac{\overline{\chi}^{\delta}}{c_i \overline{\chi}^{\delta}} p_i - \frac{\overline{\chi}^{\delta}}{c_j \overline{\chi}^{\delta}} p_j$$

 \bigcirc Thus by using (2)

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- Lemma: If we have a sum p₁ + ··· + p_s where multideg(p_i) = δ ∈ Nⁿ for all i ∈ [s] such that multideg(p₁ + ··· + p_s) < δ, then p₁ + ··· + p_s is a linear combination, with coefficients in F, of the S-polynomials S(p_i, p_j), where i, j ∈ [s]
 Let c_i = LC(p_i), so c_i · x^δ = LT(p_i)
 2 multideg(p₁ + ··· + p_s) < δ ⇒ c₁ + ··· + c_s = 0
 3 Since p_i, p_j have same leading monomial

$$S(p_i, p_j) = \frac{1}{c_i}p_i - \frac{1}{c_j}p_j$$

$$\sum_{i=1}^{s-1} c_i \cdot \underbrace{S(p_i, p_s)}_{i=1} = p_1 + \dots + p_s - c_s$$

$$\sum_{i=1}^{s-1} c_i \cdot \underbrace{S(p_i, p_s)}_{i=1} = p_1 + \dots + p_{s-1} - \underbrace{C_1 + \dots + C_{s-1}}_{i=1} p_s$$

- Next lemma shows that every cancellation of leading terms amongst polynomials of same degree happen *because of S-polynomial*
- Lemma: If we have a sum p₁ + · · · + p_s where multideg(p_i) = δ ∈ Nⁿ for all i ∈ [s] such that multideg(p₁ + · · · + p_s) < δ, then p₁ + · · · + p_s is a linear combination, with coefficients in 𝔽, of the S-polynomials S(p_i, p_j), where i, j ∈ [s]
 Let c_i = LC(p_i), so c_i · x^δ = LT(p_i)
 multideg(p₁ + · · · + p_s) < δ ⇒ c₁ + · · · + c_s = 0
 - Since p_i, p_j have same leading monomial

$$S(p_i,p_j)=\frac{1}{c_i}p_i-\frac{1}{c_j}p_j$$

A D > A B > A B > A B > B 900

Thus, by using (2) more efficient using polyof linear multiplegree $\sum_{i=1}^{s-1} c_i \cdot S(p_i, p_s) = p_1 + \dots + p_s$ of note that multipleg $(S(p_i, p_i)) < \delta$

• Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G = \{g_1, \ldots, g_s\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S(g_i, g_i)$ by G is zero.

• Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G = \{g_1, \ldots, g_s\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S(g_i, g_j)$ by G is zero.

(⇒) if G is a Groebner basis, then S(g_i, g_j) ∈ I ⇒ remainder of division by G is zero by previous slides.

 $LM(S(g_{1},g_{1})) \in LM(I) = (LM(g_{1}),...,LN(g_{n}))$

A D > A B > A B > A B > B 900

• Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G = \{g_1, \ldots, g_s\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S(g_i, g_i)$ by G is zero.

- (⇒) if G is a Groebner basis, then S(g_i, g_j) ∈ I ⇒ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $f \in I$, we have that

 $LT(f) \in (LT(g_1), \ldots, LT(g_s))$

 $if \quad 5(g_{i},g_{i})^{G} = 0 \quad \forall \quad i \neq j$ $fhm \quad G \quad G_{\pi i} \quad b_{mn} \quad b_{asis}$ $(LM(I) \subset (LM(g_{i}) \cdots , LM(g_{s})))$

• Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G = \{g_1, \ldots, g_s\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S(g_i, g_j)$ by G is zero.

- (⇒) if G is a Groebner basis, then S(g_i, g_j) ∈ I ⇒ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $f \in I$, we have that

 $LT(f) \in (LT(g_1), \ldots, LT(g_s))$

• $f \in I = (g_1, \dots, g_s)$ (as G is a generating set)

 $f=g_1h_1+\cdot\cdot +g_sh_s$

where $multideg(f) \le max_i(multideg(g_ih_i))$
Buchberger's Criterion

• Now that we are acquainted with S-polynomials and how cancellations happen, we can state Buchberger's criterion:

Let $I \subseteq \mathbb{F}[\mathbf{x}]$ be an ideal. Then a basis $G = \{g_1, \ldots, g_s\}$ of I is a Groebner basis of I if, and only if, for all pairs $i \neq j$, the remainder on division of $S(g_i, g_i)$ by G is zero.

- (⇒) if G is a Groebner basis, then S(g_i, g_j) ∈ I ⇒ remainder of division by G is zero by previous slides.
- (\Leftarrow) need to prove that for any $f \in I$, we have that

 $LT(f) \in (LT(g_1), \ldots, LT(g_s))$

• $f \in I = (g_1, \dots, g_s)$ (as G is a generating set)

 $f = g_1 h_1 + \cdots g_s h_s$

where multideg $(f) \leq \max_i (\operatorname{multideg}(g_i h_i))$

• Strategy: let's pick most efficient representation of f

•
$$f \in I = (g_1, \dots, g_s)$$
 (as G is a generating set)
 $f = g_1 h_1 + \cdots + g_s h_s$

where $multideg(f) \le max_i(multideg(g_ih_i))$

• Take representation of *lowest diltidegree*, that is, one for which

 $\delta := \max_{i} (\operatorname{multideg}(g_i h_i))$ is minimum

イロン 不通 とくまとくまとう おうのなみ

•
$$f \in I = (g_1, \dots, g_s)$$
 (as G is a generating set)
 $f = g_1 h_1 + \cdots g_s h_s$

where $multideg(f) \leq max_i(multideg(g_ih_i))$

• Take representation of *lowest miltidegree*, that is, one for which

$$\delta := \max_{i} (\mathsf{multideg}(g_i h_i))$$
 is minimum

• Such minimum δ exists by the well-ordering of monomial order

•
$$f \in I = (g_1, \dots, g_s)$$
 (as G is a generating set)
 $f = g_1 h_1 + \cdots g_s h_s$

where $\operatorname{multideg}(f) \leq \max_i(\operatorname{multideg}(g_i h_i))$

• Take representation of *lowest miltidegree*, that is, one for which

$$\delta := \max_{i} (\mathsf{multideg}(g_i h_i))$$
 is minimum

- Such minimum δ exists by the well-ordering of monomial order
- In particular, multideg $(f) \leq \delta$

•
$$f \in I = (g_1, \dots, g_s)$$
 (as G is a generating set)
 $f = g_1 h_1 + \cdots g_s h_s$

where $multideg(f) \leq max_i(multideg(g_ih_i))$

• Take representation of *lowest miltidegree*, that is, one for which

$$\delta := \max_i (\mathsf{multideg}(g_i h_i)) \quad \mathsf{is minimum}$$

- Such minimum δ exists by the well-ordering of monomial order
- In particular, multideg $(f) \leq \delta$
- If multideg $(f) = \delta$, then there is some $i \in [s]$ such that

 $\frac{\text{multideg}(f) = \text{multideg}(g_i h_i) \Rightarrow LM(f) \in (LM(g_1), \dots, LM(g_s))}{\sum LM(g)}$

where $multideg(f) \leq max_i(multideg(g_ih_i))$

• Take representation of *lowest miltidegree*, that is, one for which

$$\delta := \max_i (\mathsf{multideg}(g_i h_i)) \quad \mathsf{is minimum}$$

- Such minimum δ exists by the well-ordering of monomial order
- In particular, multideg $(f) \leq \delta$
- If multideg $(f) = \delta$, then there is some $i \in [s]$ such that

 $\mathsf{multideg}(f) = \mathsf{multideg}(g_i h_i) \Rightarrow LM(f) \in (LM(g_1), \dots, LM(g_s))$

• So need to see what happens when $\delta > \text{multideg}(f)$

- We are now in case: $multideg(f) < \delta$
- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ

³This is a short-hand notation to say that the division by G is zero $a \to a \to a \to a \to a$

- We are now in case: $\operatorname{multideg}(f) < \delta$
- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:

³This is a short-hand notation to say that the division by G is zero $a \to a \to a$

- We are now in case: $multideg(f) < \delta$
- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $multideg(f) < \delta \Rightarrow$ component of multi-degree δ must vanish

³This is a short-hand notation to say that the division by G is zero $z \to z \to z$

- We are now in case: $multideg(f) < \delta$
- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- multideg $(f) < \delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over LT(h₁) · g₁ + · · · + LT(h_s) · g_s to decrease its multi-degree via S-polynomials

³This is a short-hand notation to say that the division by G is zero $a \to a \to a \to a \to a$

• We are now in case: $multideg(f) < \delta$

- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $multideg(f) < \delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over LT(h₁) · g₁ + · · · + LT(h_s) · g_s to decrease its multi-degree via S-polynomials
- Let $p_i = LT(h_i) \cdot g_i$. From your homework, we know

$$S(p_i, p_j) = \mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j)$$

where $\gamma_{ij} = LCM(LM(g_i), LM(g_j))$

³This is a short-hand notation to say that the division by G is zero $a \to a \to a$

• We are now in case: $multideg(f) < \delta$

- In this case we will use the fact that $S(g_i, g_j)^G = 0^3$ to obtain another expression of $f \in I$ with smaller δ
- Let's isolate part of highest multi-degree:
- $multideg(f) < \delta \Rightarrow$ component of multi-degree δ must vanish
- Now we use our lemma over LT(h₁) · g₁ + · · · + LT(h_s) · g_s to decrease its multi-degree via S-polynomials
- Let $p_i = LT(h_i) \cdot g_i$. From your homework, we know

$$S(p_i, p_j) = \mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j)$$

where $\gamma_{ij} = LCM(LM(g_i), LM(g_j))$ • $S(g_i, g_j)^G = 0 \Rightarrow S(g_i, g_j) = A_1g_1 + \dots + A_sg_s$ multideg $(A_ig_i) \leq multideg(S(g_i, g_j))$

³This is a short-hand notation to say that the division by G is zero $a \to a \to a \to a \to a$

•
$$S(g_i,g_j)^G = 0 \Rightarrow S(g_i,g_j) = A_1g_1 + \cdots + A_sg_s$$

 $multideg(A_ig_i) \leq multideg(S(g_i, g_j))$

イロン 不通 とく ほとく ほとう ほう めんで

•
$$S(g_i,g_j)^G = 0 \Rightarrow S(g_i,g_j) = A_1g_1 + \cdots + A_sg_s$$

 $\mathsf{multideg}(A_ig_i) \le \mathsf{multideg}(S(g_i,g_j))$

• Multiplying above by $\mathbf{x}^{\delta-\gamma_{ij}}$

$$S(p_i, p_j) = \mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j) = B_1 g_1 + \dots + B_s g_s$$

イロン 不通 とく ほとく ほとう ほう めんで

•
$$S(g_i,g_j)^G = 0 \Rightarrow S(g_i,g_j) = A_1g_1 + \cdots + A_sg_s$$

$$\mathsf{multideg}(A_i g_i) \le \mathsf{multideg}(S(g_i, g_j))$$

• Multiplying above by $\mathbf{x}^{\delta-\gamma_{ij}}$

$$S(p_i, p_j) = \mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j) = B_1 g_1 + \dots + B_s g_s$$

When $B_i g_i \neq 0$ by the first bullet $S - \rho$ supervises in the set of the set o

by property of S-polynomials

multideg (PI + - + PA) < 5 => multideg (S(PI Pj)) < 5

•
$$S(g_i,g_j)^G = 0 \Rightarrow S(g_i,g_j) = A_1g_1 + \cdots + A_sg_s$$

 $\mathsf{multideg}(A_i g_i) \le \mathsf{multideg}(S(g_i, g_j))$

• Multiplying above by $\mathbf{x}^{\delta-\gamma_{ij}}$

$$S(p_i, p_j) = \mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j) = B_1 g_1 + \cdots + B_s g_s$$

• When $B_i g_i \neq 0$ by the first bullet

$$\mathsf{multideg}(B_i g_i) \leq \mathsf{multideg}(\mathbf{x}^{\delta - \gamma_{ij}} \cdot S(g_i, g_j)) < \delta$$

by property of S-polynomials

• By our S-polynomial lemma, we have

$$\sum_{i=1}^{s} p_{i} = \sum_{\substack{i=1\\ \leqslant s}}^{s} LT(h_{i}) \cdot g_{i} = \sum_{i \neq j} a_{ij} \cdot \underbrace{S(p_{i}, p_{j})}_{i \neq j} = \underbrace{C_{1}g_{1} + \dots + C_{s}g_{s}}_{i \neq j}$$
where multideg($C_{i}g_{i}$) $< \delta$

$$C_{i}g_{i} = \underbrace{\sum \alpha_{ij} B_{i}g_{i}}_{i \neq j}$$

stuff of > LT(h;)g; + multidez < 5 Bigi Figi proved multiding H; g; contradiction. 1 = 1 multideg < 8

Example: twisted cubic

• Let $G = \{y - x^2, z - x^3\}$ with monomial order y > z > x

$$S(y - x^{2}, z - x^{3}) = \frac{y^{2}}{y} (y - x^{2}) - \frac{y^{2}(z - x^{7})}{z}$$

$$= y^{2} - z x^{2} - y^{2} + yx^{3} = yx^{3} - zx^{2}$$

$$q_{1} x^{3}$$

$$q_{2} - x^{2}$$

$$\Rightarrow y - x^{2} | yx^{3} - zx^{2}$$

$$Gx^{3}bnn$$

$$basis$$

$$\pi = 0$$

$$-\frac{2}{x^{2}} + x^{5} = 0$$

$$Gx^{3}bx^{3} - zx^{2} + x^{5} = 0$$

• Problems with Division Algorithm & Hilbert Basis Theorem

化白豆 化氯丁 化氯丁 化氯丁二氯丁

200

- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I = (f_1, ..., f_s)$
- Output: Groebner basis G for I

⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I = (f_1, ..., f_s)$
- Output: Groebner basis G for I

1 Set
$$G = \{f_1, ..., f_s\}$$

⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I = (f_1, ..., f_s)$
- Output: Groebner basis G for I

1 Set
$$G = \{f_1, ..., f_s\}$$

2 While there is $S_{ij} := S(f_i, f_j)$ such that

$$S^G_{ij}
eq 0$$

add
$$S_{ij}^{G}$$
 to G
Once all $S_{ij}^{G} = 0$ then return G

⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I = (f_1, ..., f_s)$
- Output: Groebner basis G for I
 - **1** Set $G = \{f_1, ..., f_s\}$
 - **2** While there is $S_{ij} := S(f_i, f_j)$ such that

$$S^G_{ij}
eq 0$$

add
$$S_{ij}^{G}$$
 to G
3 Once all $S_{ij}^{G} = 0$ then return G

 Buchberger's criterion shows that this algorithm always returns a Groebner basis!

⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases: $(2n(k_{1})_{r}..., Ln(k_{0})) = J_{t}$
- Input: $I = (f_1, ..., f_c)$
- Output: Groebner basis G for $I \ LM(S_{i,i}^{c}) \in J_{L}$

 - While there is $S_{ij} := S(f_i, f_j)$ such that $J_{\pm i} = J_{\pm} \leftarrow (LN(S_{ij}))$

$$\mathcal{I}^{\mathsf{f}} \subset \mathcal{I}^{\mathsf{f}} \subset \mathcal{I}^{\mathsf{f}}$$

add S_{ii}^{G} to G **③** Once all $S_{ii}^G = 0$ then return G

has to stahilize

 Buchberger's criterion shows that this algorithm always returns a Groebner basis!

 $S^G_{ii} \neq 0$

 Algorithm will terminate because of Dickson's lemma!⁴ every time we add 5°. We are adding a new ⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

- From Buchberger's criterion, we can devise a natural algorithm to compute Groebner bases:
- Input: $I = (f_1, ..., f_s)$
- Output: Groebner basis G for I
 - **1** Set $G = \{f_1, ..., f_s\}$
 - 2 While there is $S_{ij} := S(f_i, f_j)$ such that

$$S^G_{ij}
eq 0$$

add
$$S_{ij}$$
 to G
Once all $S_{ij}^G = 0$ then return G

- Buchberger's criterion shows that this algorithm always returns a Groebner basis!
- Algorithm will terminate because of Dickson's lemma!⁴
- Thus, computing Groebner basis is *decidable*!

⁴Or the ascending chain condition on the monomial ideal LT(I), for the fancy language ones

• Of all Grobener bases for an ideal *I*, one is special. What makes it special are the following:

- LC(p) = 1 for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(LT(G) \setminus \{p\})$

$$\{g_{1},\ldots,g_{n}\}\longrightarrow \{g_{i}^{GVigit}\}$$

• Of all Grobener bases for an ideal *I*, one is special. What makes it special are the following:

- LC(p) = 1 for all $p \in G$
- For all $p \in G$, no monomial of p lies in $(LT(G) \setminus \{p\})$
- These are so-called reduced Groebner bases

- Of all Grobener bases for an ideal *I*, one is special. What makes it special are the following:
 - LC(p) = 1 for all $p \in G$
 - For all $p \in G$, no monomial of p lies in $(LT(G) \setminus \{p\})$
- These are so-called reduced Groebner bases
- Practice problem: prove that a reduced Groebner basis is unique.

- Of all Grobener bases for an ideal *I*, one is special. What makes it special are the following:
 - LC(p) = 1 for all $p \in G$
 - For all $p \in G$, no monomial of p lies in $(LT(G) \setminus \{p\})$
- These are so-called reduced Groebner bases
- Practice problem: prove that a reduced Groebner basis is unique.
- Why would we want uniqueness?
 - used to test whether two ideals are the same ideal!
 - nice "canonical" basis for the ideal (w.r.t. monomial ordering)

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$f \in I \Leftrightarrow f^G = 0$$

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$f \in I \Leftrightarrow f^G = 0$$

A D > A B > A B > A B > B 900

• Solving system of polynomial equations:

• Now this is just like doing Gaussian Elimination!

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

$$f \in I \Leftrightarrow f^G = 0$$

100 E (E) (E) (E) (E) (D)

• Solving system of polynomial equations:

- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_1 > \ldots > x_n$

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

 $f \in I \Leftrightarrow f^G = 0$

100 E (E) (E) (E) (E) (D)

- Solving system of polynomial equations:
 - Now this is just like doing Gaussian Elimination!
 - Compute Groebner basis using lex order $x_1 > \ldots > x_n$
 - Solve the system just like you would solve a linear system:

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

 $f \in I \Leftrightarrow f^G = 0$

Solving system of polynomial equations:

- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_1 > \ldots > x_n$
- Solve the system just like you would solve a linear system:

• Example:
$$I = (x^2 + y^2 + z^2 - 1, x^2 + z^2 - y, x - z)$$

$$\chi^{2} + \chi^{2} + z^{2} = 1$$

 $\chi^{2} + z^{2} - y = 0$
 $\chi = z$

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

 $f \in I \Leftrightarrow f^G = 0$

• Solving system of polynomial equations:

- Now this is just like doing Gaussian Elimination!
- Compute Groebner basis using lex order $x_1 > \ldots > x_n$
- Solve the system just like you would solve a linear system:
- Example: $I = (x^2 + y^2 + z^2 1, x^2 + z^2 y, x z)$

• Groebner basis for the above ideal $(\times \succ \lor \lor)$

$$G = \{x - z, y - 2z^2, z^4 + (1/2)z^2 - 1/4\}$$

• Solution to Ideal Membership Problem:

Given f, I, simply compute Groebner basis G of I and

 $f \in I \Leftrightarrow f^G = 0$

- Solving system of polynomial equations:
 - Now this is just like doing Gaussian Elimination!
 - Compute Groebner basis using lex order $x_1 > \ldots > x_n$
 - Solve the system just like you would solve a linear system:
 - Example: $I = (x^2 + y^2 + z^2 1, x^2 + z^2 y, x z)$
 - Groebner basis for the above ideal

$$V(L) = 4 e^{43}$$
 $G = \{x - z, y - 2z^2, z^4 + (1/2)z^2 - 1/4\}$

- z is determined by last equation
- propagate solution by "going up" the other equations!
- Problems with Division Algorithm & Hilbert Basis Theorem
- Gröbner Basis
- Buchberger's Algorithm
- Conclusion
- Acknowledgements

Conclusion

- Today we learned about Groebner bases and their main property
- This "fixes" all the problems that we had with our division algorithm
- Proved Hilbert Basis Theorem
- Proved Buchberger's criterion, which allows us to test whether a basis is a Groebner basis
- Proved decidability of finding Groebner basis for any ideal
- Used Groebner bases to solve *ideal membership problem* and *system* of *polynomial equations*
- If anyone would like to present the refinement on Buchberger's Algorithms from CLO 2.10, I can give bonus homework points :)

Acknowledgement

• Lecture based entirely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

(D) (B) (E) (E) (E) (E) (O)