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1 Define class of simple polynomials S
2 Normal form: every circuit from circuit class C can be expressed as

small sum of simple polynomials in S
3 Complexity Measure: find sub-additive complexity measure

µ : F[x1, . . . , xn] → N which captures the simplicity of S
µ(f ) small for all polynomials in S
µ is sub-additive

µ(f + g) ≤ µ(f ) + µ(g)

µ is “easy” to compute or estimate

4 Hard polynomial: find polynomial p such that µ(p) is large

If µ(f ) ≤ U for all f ∈ S
By sub-additivity µ(q) ≤ s · U for any q ∈ C which can be written as

q = f1 + f2 + · · ·+ fs , fi ∈ S

µ(p) ≥ L and p can be computed by size s in C ⇒ s · U ≥ L
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Common aspects of complexity measures - rank methods

1 Most used complexity measures are partial derivatives based
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Common aspects of complexity measures - rank methods

1 Most used complexity measures are partial derivatives based

2 Dimension of span of: partial derivatives, shifted partial derivatives

3 Can be cast as ranks of special matrices:

L : F[x1, . . . , xn] → Fm×m linear map

µ : F[x1, . . . , xn] → N µ(f ) = rank(L(f ))

4 Sub-additivity comes from sub-additivity of rank
5 Examples:

dimension of partial derivatives → rank of partial derivative matrix
dimension of shifted paritals → same as above
Flattenings used in tensor rank lower bounds → flattening is such a
matrix map!
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Partial derivatives method as rank method
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of polynomial p - that is, the min s such that

p = f1 + . . . , fs , fi ∈ S

Assume that S is complete – that is, any polynomial in F[x1, . . . , xn]
can be computed by the span of polynomials in S
Let ΔS be set of all sub-additive measures over S
cS ∈ ΔS , but it is hard to understand

Let Δ ⊂ ΔS subset of measures (simpler to understand, reason
about) (set of techniques)

A barrier for the subset Δ is a statement of the following kind:

If µ ∈ Δ and µ(f ) is small for every f ∈ S, then it is small for every
p ∈ F[x1, . . . , xn]

The above would rule out even non-explicit lower bounds!
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Barriers to rank methods
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Let S be the class of powers of linear forms (Waring Rank)

A simple dimension count over F[x1, . . . , xn]d shows us that we must
have polynomials requiring nd−1

Easy to find explicit polynomial with nd/2 Waring Rank

Theorem ([Efremenko et al. 2018])

Rank methods cannot prove lower bounds better than nd/2 for Waring
Rank.

Note that this implies a barrier for depth-3 circuits as well!
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Barrier for Waring Rank - Symbolic Rank

Going from generic rank to symbolic rank
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Symbolic Rank to Small Decomposition

Small symbolic rank ⇒ small decomposition in field of fractions
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From field of fractions to polynomials

From field of fractions decomposition, obtain small polynomial matrix
decomposition
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Grouping elements based on degree

Each rank-1 polynomial matrix can be broken down into pieces of
degree ≤ d/2
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Upper bound on generic rank

Note that we can break up any matrix in the form L× Fm + Fm × L�
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Barrier

Linearity now bounds the rank of any matrix in image of map!
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Barrier
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Natural Proofs [Razborov & Rudich 1997]
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Natural Proofs [Razborov & Rudich 1997]

To prove (boolean) lower bounds, want to find property P such that
1 P is useful: any “easy” boolean function has such property
2 Largeness: random functions do not have property P, with high

probability
3 Constructive: given truth table of boolean function f of size N = 2n,

decide in poly(N)-time if f has property P

Most boolean function lower bounds (that we can prove) have these
three properties

In [Razborov & Rudich 1997] they show that (under cryptographic
assumptions) natural proofs cannot yield super-polynomial boolean
circuit lower bounds!

would contradict existence of cryptographic pseudorandom functions.
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Algebraic Natural Proofs [Forbes & Shpilka & Volk 2018,
Grochow et al. 2017]

What would be an algebraic “natural” proof?

Property P given by an algebraic variety that is easy to compute: that
is matrix M : F[x1, . . . , xn] → Fm×m such that

p has property P ⇔ det(M(coeff (p))) = 0
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Grochow et al. 2017]

What would be an algebraic “natural” proof?

Property P given by an algebraic variety that is easy to compute: that
is matrix M : F[x1, . . . , xn] → Fm×m such that

p has property P ⇔ det(M(coeff (p))) = 0

Properties of an algebraic natural proof:
1 Useful: for easy polynomials, M(coeff (p)) is singular
2 Constructive: one can decide in time poly(N)-time whether p has

property P.

This amounts to being able to compute det(M((coeff (p))), which is
poly(N)-size if dim(M) = poly(N).

3 Largeness: Most polynomials are hard.
This is intrinsic in the case of polynomials, since we know that the zero
set of an algebraic variety has measure zero.
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Algebraic Natural Proofs - Definition

Let C ⊂ F[x1, . . . , xn] be a circuit class
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Let C ⊂ F[x1, . . . , xn] be a circuit class

Let D ⊂ F[coeff (C)] be another circuit class

A polynomial D ∈ D (distinguisher) is a algebraic natural proof
against C if

1 D �≡ 0
2 D(coeff (f )) = 0 for all f ∈ C

Open Question (Existence of natural proofs)

Is VP a natural proof for VP?

Question above is open even under any assumptions.

In [KRST’20] the authors proved that if Per requires circuits of
exponential size, then VP is not an algebraic natural proof against
VNP.
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When will a natural proof fail? Succinct Hitting sets
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Succinct Hitting Sets
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Conclusion

Today we learned about barriers to lower bound techniques

Saw barriers to proving non-trivial Waring Rank

Lots of open questions left
1 Can we improve our barriers to better bounds and rule out method of

shifted partial derivatives?
2 What are the connections between this line of work and cactus rank of

varieties?
3 More generally, can other notions of rank help us in proving lower

bounds?

Algebraic Natural Proofs

Existence of algebraic natural proofs implies it may be harder to find
succinct hitting sets (so PIT may have to be solved using more
complex methods)

Relationship between algebraic natural proofs and problems in
algebraic geometry?
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