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Word Problems

1 Setting: a group is given succinctly via generators and relations

2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?
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2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

3 For general finitely presented groups, this is undecidable

4 For hyperbolic groups, it is in P given Gromov’s geometric techniques

5 what other word problems appear in TCS?
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Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits
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Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

2 Given two algebraic circuits, do they compute same polynomial?

3 Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

4 Two ways in which input can be given:
1 White-box model: circuit is given as an input, with bound on the

degree of the polynomial being computed
2 Black-box model: one is given a bound on the degree of the

polynomial, and one has only “oracle access” via evaluation

5 Central question in TCS

best parallel algorithms for finding perfect matchings
Primes is in P
used in IP = PSPACE
proof of PCP theorem
structure of algebraic proof systems
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Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |
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Proof idea: in a domain R[x ], any polynomial f (x) of degree ≤ d has
at most d roots in R .
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Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |

Proof idea: in a domain R[x ], any polynomial f (x) of degree ≤ d has
at most d roots in R .

Induction on number of variables: write

p(x1, . . . , xn) =
k�

e=1

pe(x1, . . . , xn−1)x
e
n pk �= 0

By induction hypothesis Prai∈S [pk(a1, . . . , an−1) = 0] ≤ d − k

|S |
If pk(a1, . . . , an−1) �= 0 then ≤ k values of xn will make
p(a1, . . . , an−1, xn) zero, as it has degree k .
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Black-Box Setting: Hitting Sets & Generators

In black-box setting, given a circuit class C, all we can do is to come
up with a set H ⊂ Fn (hitting set) such that

Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0
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Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0

A polynomial map G = (g1, . . . , gn) : Ft → Fn is a hitting set
generator for a circuit class C if

Φ(x1, . . . , xn) ∈ C, Φ �≡ 0 ⇒ [Φ ◦ (g1, . . . , gn)](y1, . . . , yt) �≡ 0

Hitting set generator decreases number of variables, and we can use
brute-force to find non-zero

In algebraic complexity, hitting set generators are also pseudorandom
generators (decreased the number of “random seeds” needed)
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Why do we want to derandomize PIT?

PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)
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Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)
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Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

3 Let q1, . . . , qn ∈ Flog(n)
p be polynomials of degree < log(n).

4 Si = {(a, qi (a)) | a ∈ Fp}
5 (a, y) ∈ Si ∩ Sj ⇔ qi (a) = qj(a) = y
6 |Si ∩ Sj | ≤ deg(qi ) < log(n)
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Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn
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6 By Kaltofen, VP is closed under taking factors
7 Implies y − gk+1 has poly size circuit!
8 Contradicts fact that Perlog2 n cannot be computed by 2c log2 n = nc log n

size
41 / 57



Lower Bounds imply Derandomization

42 / 57



Lower Bounds imply Derandomization

43 / 57



Fast Parallel Algorithms for Matching

44 / 57



Fast Parallel Algorithms for Matching

45 / 57



Word Problems and Polynomial Identity Testing

Why is PIT so fundamental?

PIT for restricted circuit classes

Conclusion

Acknowledgements

46 / 57



Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?
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Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

First idea: Kronecker substitution

Problem is that the degree is really high. How to fix it?

Let p ∈ Z be a prime. Make substitution:

xi → y (d+1)i mod p

Now degrees are under control. But how to preserve non-zeroness?

Chinese Remaindering Theorem!
1 If two monomials (a1, . . . , an) and (b1, . . . , bn) are distinct and degree

≤ d , then

a1 + a2(d + 1) + · · ·+ an(d + 1)n �= b1 + b2(d + 1) + · · ·+ bn(d + 1)n

2 Thus if we take p1, . . . , pnd primes, one of the differences mod pi will
be non-zero
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Conclusion

Today we learned about word problems and their importance

Polynomial Identity Testing (PIT)

Hardness versus randomness

Application of PIT in TCS (parallel algorithms for matching)

deterministic PIT algorithm for sparse polynomials
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