
Lecture 4: Polynomial Identity Testing

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 20, 2021

1 / 57

Overview

Word Problems and Polynomial Identity Testing

Why is PIT so fundamental?

PIT for restricted circuit classes

Conclusion

Acknowledgements

2 / 57

Word Problems

1 Setting: a group is given succinctly via generators and relations

2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

3 / 57

Word Problems

1 Setting: a group is given succinctly via generators and relations

2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

3 For general finitely presented groups, this is undecidable

4 / 57

Word Problems

1 Setting: a group is given succinctly via generators and relations

2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

3 For general finitely presented groups, this is undecidable

4 For hyperbolic groups, it is in P given Gromov’s geometric techniques

5 / 57

Word Problems

1 Setting: a group is given succinctly via generators and relations

2 Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

3 For general finitely presented groups, this is undecidable

4 For hyperbolic groups, it is in P given Gromov’s geometric techniques

5 what other word problems appear in TCS?

6 / 57

Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

7 / 57

Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

2 Given two algebraic circuits, do they compute same polynomial?

8 / 57

Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

2 Given two algebraic circuits, do they compute same polynomial?

3 Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

9 / 57

Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

2 Given two algebraic circuits, do they compute same polynomial?

3 Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

4 Two ways in which input can be given:
1 White-box model: circuit is given as an input, with bound on the

degree of the polynomial being computed
2 Black-box model: one is given a bound on the degree of the

polynomial, and one has only “oracle access” via evaluation

10 / 57

Polynomial Identity Testing (PIT)

1 Polynomials are given succinctly via algebraic circuits

2 Given two algebraic circuits, do they compute same polynomial?

3 Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

4 Two ways in which input can be given:
1 White-box model: circuit is given as an input, with bound on the

degree of the polynomial being computed
2 Black-box model: one is given a bound on the degree of the

polynomial, and one has only “oracle access” via evaluation

5 Central question in TCS

best parallel algorithms for finding perfect matchings
Primes is in P
used in IP = PSPACE
proof of PCP theorem
structure of algebraic proof systems

11 / 57

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |

12 / 57

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |

Proof idea: in a domain R[x], any polynomial f (x) of degree ≤ d has
at most d roots in R .

13 / 57

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |

Proof idea: in a domain R[x], any polynomial f (x) of degree ≤ d has
at most d roots in R .

Induction on number of variables: write

p(x1, . . . , xn) =
k�

e=1

pe(x1, . . . , xn−1)x
e
n pk �= 0

14 / 57

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is a non-zero polynomial of degree ≤ d and
S ⊂ F is a finite set, then

Pr
ai∈S

[p(a1, . . . , an) = 0] ≤ d

|S |

Proof idea: in a domain R[x], any polynomial f (x) of degree ≤ d has
at most d roots in R .

Induction on number of variables: write

p(x1, . . . , xn) =
k�

e=1

pe(x1, . . . , xn−1)x
e
n pk �= 0

By induction hypothesis Prai∈S [pk(a1, . . . , an−1) = 0] ≤ d − k

|S |
If pk(a1, . . . , an−1) �= 0 then ≤ k values of xn will make
p(a1, . . . , an−1, xn) zero, as it has degree k .

15 / 57

Black-Box Setting: Hitting Sets & Generators

In black-box setting, given a circuit class C, all we can do is to come
up with a set H ⊂ Fn (hitting set) such that

Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0

16 / 57

Black-Box Setting: Hitting Sets & Generators

In black-box setting, given a circuit class C, all we can do is to come
up with a set H ⊂ Fn (hitting set) such that

Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0

A polynomial map G = (g1, . . . , gn) : Ft → Fn is a hitting set
generator for a circuit class C if

Φ(x1, . . . , xn) ∈ C, Φ �≡ 0 ⇒ [Φ ◦ (g1, . . . , gn)](y1, . . . , yt) �≡ 0

17 / 57

Black-Box Setting: Hitting Sets & Generators

In black-box setting, given a circuit class C, all we can do is to come
up with a set H ⊂ Fn (hitting set) such that

Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0

A polynomial map G = (g1, . . . , gn) : Ft → Fn is a hitting set
generator for a circuit class C if

Φ(x1, . . . , xn) ∈ C, Φ �≡ 0 ⇒ [Φ ◦ (g1, . . . , gn)](y1, . . . , yt) �≡ 0

Hitting set generator decreases number of variables, and we can use
brute-force to find non-zero

18 / 57

Black-Box Setting: Hitting Sets & Generators

In black-box setting, given a circuit class C, all we can do is to come
up with a set H ⊂ Fn (hitting set) such that

Φ ∈ C, Φ �≡ 0 ⇒ ∃α ∈ H s.t. Φ(α) �= 0

A polynomial map G = (g1, . . . , gn) : Ft → Fn is a hitting set
generator for a circuit class C if

Φ(x1, . . . , xn) ∈ C, Φ �≡ 0 ⇒ [Φ ◦ (g1, . . . , gn)](y1, . . . , yt) �≡ 0

Hitting set generator decreases number of variables, and we can use
brute-force to find non-zero

In algebraic complexity, hitting set generators are also pseudorandom
generators (decreased the number of “random seeds” needed)

19 / 57

Word Problems and Polynomial Identity Testing

Why is PIT so fundamental?

PIT for restricted circuit classes

Conclusion

Acknowledgements

20 / 57

Why do we want to derandomize PIT?

PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)

21 / 57

Why do we want to derandomize PIT?

PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)

Hardness-Randomness tradeoff:

Theorem ([Kabanets & Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:

1 NEXP ⊆ P/poly

2 Permanent is computable by polynomial size arithmetic circuits over Z
3 PIT ∈ SUBEXP

22 / 57

Why do we want to derandomize PIT?

PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)

Hardness-Randomness tradeoff:

Theorem ([Kabanets & Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:

1 NEXP ⊆ P/poly

2 Permanent is computable by polynomial size arithmetic circuits over Z
3 PIT ∈ SUBEXP

Today we will show that (a strong version of) ¬2 ⇒ 3

Exponential lower bound on Permanent ⇒ PIT ∈ quasi-P

23 / 57

Why do we want to derandomize PIT?

PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)

Hardness-Randomness tradeoff:

Theorem ([Kabanets & Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:

1 NEXP ⊆ P/poly

2 Permanent is computable by polynomial size arithmetic circuits over Z
3 PIT ∈ SUBEXP

Today we will show that (a strong version of) ¬2 ⇒ 3

Exponential lower bound on Permanent ⇒ PIT ∈ quasi-P

24 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

25 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

26 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime

27 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

28 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

3 Let q1, . . . , qn ∈ Flog(n)
p be polynomials of degree < log(n).

29 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

3 Let q1, . . . , qn ∈ Flog(n)
p be polynomials of degree < log(n).

4 Si = {(a, qi (a)) | a ∈ Fp}

30 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

3 Let q1, . . . , qn ∈ Flog(n)
p be polynomials of degree < log(n).

4 Si = {(a, qi (a)) | a ∈ Fp}
5 (a, y) ∈ Si ∩ Sj ⇔ qi (a) = qj(a) = y

31 / 57

Lower Bounds imply Derandomization

Use Nisan-Wigderson designs:

n ≤ 2m integers
There exist S1, . . . , Sn ⊂ [m2] such that
|Si | = m, for all 1 ≤ i ≤ k
i �= j ⇒ |Si ∩ Sj | ≤ log(n)

relaxed notion of combinatorial designs

Construction:
1 Assume that m = p is a prime
2 Then, F2

p ∼ [m2]

3 Let q1, . . . , qn ∈ Flog(n)
p be polynomials of degree < log(n).

4 Si = {(a, qi (a)) | a ∈ Fp}
5 (a, y) ∈ Si ∩ Sj ⇔ qi (a) = qj(a) = y
6 |Si ∩ Sj | ≤ deg(qi) < log(n)

32 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

33 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

34 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

35 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0

36 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0
3 xk+1 − gk+1 divides Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn)

37 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0
3 xk+1 − gk+1 divides Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn)
4 Set variables xk+2, . . . , xn, and yj ∈ [m2] \ Sk+1 to random values

38 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0
3 xk+1 − gk+1 divides Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn)
4 Set variables xk+2, . . . , xn, and yj ∈ [m2] \ Sk+1 to random values
5 gi (ySi∩Sk+1

) depends only on log n variables, so poly-size circuit!

39 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0
3 xk+1 − gk+1 divides Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn)
4 Set variables xk+2, . . . , xn, and yj ∈ [m2] \ Sk+1 to random values
5 gi (ySi∩Sk+1

) depends only on log n variables, so poly-size circuit!
6 By Kaltofen, VP is closed under taking factors
7 Implies y − gk+1 has poly size circuit!

40 / 57

Lower Bounds imply Derandomization

Assume Pern cannot be computed by circuits of size ≤ 2cn

Take NW-design with m = log4 n
S1, . . . , Sn ⊂ [m2]
|Si | = m and |Si ∩ Sj | ≤ log n

Hitting set generator: G = (g1, . . . , gn) : Fm2 → Fn

gi (ySi) = Perlog2 n(ySi)

For any Φ ∈ VP we have Φ ≡ 0 ⇔ Φ ◦ G ≡ 0
1 Suppose Φ �≡ 0 but Φ ◦ G ≡ 0
2 There is index k ∈ [n] such that Φ(g1, . . . , gk , xk+1, . . . , xn) �≡ 0 but

Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn) ≡ 0
3 xk+1 − gk+1 divides Φ(g1, . . . , gk , gk+1, xk+2, . . . , xn)
4 Set variables xk+2, . . . , xn, and yj ∈ [m2] \ Sk+1 to random values
5 gi (ySi∩Sk+1

) depends only on log n variables, so poly-size circuit!
6 By Kaltofen, VP is closed under taking factors
7 Implies y − gk+1 has poly size circuit!
8 Contradicts fact that Perlog2 n cannot be computed by 2c log2 n = nc log n

size
41 / 57

Lower Bounds imply Derandomization

42 / 57

Lower Bounds imply Derandomization

43 / 57

Fast Parallel Algorithms for Matching

44 / 57

Fast Parallel Algorithms for Matching

45 / 57

Word Problems and Polynomial Identity Testing

Why is PIT so fundamental?

PIT for restricted circuit classes

Conclusion

Acknowledgements

46 / 57

Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

47 / 57

Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

First idea: Kronecker substitution

48 / 57

Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

First idea: Kronecker substitution

Problem is that the degree is really high. How to fix it?

49 / 57

Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

First idea: Kronecker substitution

Problem is that the degree is really high. How to fix it?

Let p ∈ Z be a prime. Make substitution:

xi → y (d+1)i mod p

Now degrees are under control. But how to preserve non-zeroness?

50 / 57

Sparse Polynomials - Klivans-Spielman

Input: oracle (black-box) access to a polynomial p(x1, . . . , xn) with
≤ s monomials and degree d (n, s, d given to you)

Output: is p(x1, . . . , xn) ≡ 0?

First idea: Kronecker substitution

Problem is that the degree is really high. How to fix it?

Let p ∈ Z be a prime. Make substitution:

xi → y (d+1)i mod p

Now degrees are under control. But how to preserve non-zeroness?

Chinese Remaindering Theorem!
1 If two monomials (a1, . . . , an) and (b1, . . . , bn) are distinct and degree

≤ d , then

a1 + a2(d + 1) + · · ·+ an(d + 1)n �= b1 + b2(d + 1) + · · ·+ bn(d + 1)n

2 Thus if we take p1, . . . , pnd primes, one of the differences mod pi will
be non-zero

51 / 57

Sparse Polynomials - Klivans-Spielman

52 / 57

Sparse Polynomials - Klivans-Spielman

53 / 57

Word Problems and Polynomial Identity Testing

Why is PIT so fundamental?

PIT for restricted circuit classes

Conclusion

Acknowledgements

54 / 57

Conclusion

Today we learned about word problems and their importance

Polynomial Identity Testing (PIT)

Hardness versus randomness

Application of PIT in TCS (parallel algorithms for matching)

deterministic PIT algorithm for sparse polynomials

55 / 57

Acknowledgement

Lecture based largely on:

Survey [Shpilka & Yehudayoff 2010, Chapter 4]

56 / 57

References I

Shpilka, Amir and Yehudayoff, Amir 2010.

Arithmetic circuits: a survey of recent results and open questions

Foundations and Trends in Theoretical Computer Science

Kabanets, Valentine and Impagliazzo, Russel 2004.

Derandomizing polynomial identity tests means proving circuit lower bounds

Computational Complexity

57 / 57

