Lecture 4: Polynomial Identity Testing

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

January 20, 2021

Overview

- Word Problems and Polynomial Identity Testing
- Why is PIT so fundamental?
- PIT for restricted circuit classes
- Conclusion
- Acknowledgements

Word Problems
(1) G : multiplication table size $|G|^{2}$

$$
g_{i_{1}} \cdots g_{i_{2}}\left(g_{a_{1}} \cdots g_{a_{x}}\right)^{-1}=i d_{0}
$$

(1) Setting: a group is given succinctly via generators and relations
(2) Input: given a sequence of generators and operations among them forming a word, is this word the identity element in the group?
(2) $G:$ generators g_{1}, \ldots, g_{n}

$$
\begin{array}{r}
\text { relations of } G \quad g_{i} g_{j}=8 j g_{i} \\
(\text { abelian) }
\end{array}
$$

representation 2
is more succinct than 1

$$
\begin{gathered}
g_{i_{1}} g_{i_{2}} \cdot \cdot g_{i t} \\
={ }^{2} d_{G}
\end{gathered}
$$

Word Problems
(1) Setting: a group is given succinctly via generators and relations
(2) Input: given a sequence of generators and operations among them forming a word, is this word the identity element in the group?
(3) For general finitely presented groups, this is undecidable finitely many generators finitely generated relations

Word Problems

(1) Setting: a group is given succinctly via generators and relations
(2) Input: given a sequence of generators and operations among them forming a word, is this word the identity element in the group?
(3) For general finitely presented groups, this is undecidable
(9) For hyperbolic groups, it is in P given Gromov's geometric techniques

Word Problems

(1) Setting: a group is given succinctly via generators and relations
(2) Input: given a sequence of generators and operations among them forming a word, is this word the identity element in the group?
(3) For general finitely presented groups, this is undecidable
(9) For hyperbolic groups, it is in P given Gromov's geometric techniques
(3) what other word problems appear in TCS?

Polynomial Identity Testing (PIT) wrod problem in

(1) Polynomials are given succinctly via algebraic circuits

Polynomial Identity Testing (PIT)
(1) Polynomials are given succinctly via algebraic circuits
(2) Given two algebraic circuits, do they compute same polynomial?

Polynomial Identity Testing (PIT)

(1) Polynomials are given succinctly via algebraic circuits
(2) Given two algebraic circuits, do they compute same polynomial?
(3) Can be reduced to the question: given an algebraic circuit, does it compute the zero polynomial?

Polynomial Identity Testing

Polynomial Identity Testing (PIT)

(1) Polynomials are given succinctly via algebraic circuits
(2) Given two algebraic circuits, do they compute same polynomial?
(3) Can be reduced to the question: given an algebraic circuit, does it compute the zero polynomial?

Polynomial Identity Testing

(9) Two ways in which input can be given:
(1) White-box model: circuit is given as an input, with bound on the degree of the polynomial being computed
(2) Black-box model: one is given a bound on the degree of the polynomial, and one has only "oracle access" via evaluation

Polynomial Identity Testing (PIT)

(1) Polynomials are given succinctly via algebraic circuits
(2) Given two algebraic circuits, do they compute same polynomial?
(3) Can be reduced to the question: given an algebraic circuit, does it compute the zero polynomial?

Polynomial Identity Testing

(9) Two ways in which input can be given:
(1) White-box model: circuit is given as an input, with bound on the degree of the polynomial being computed
(2) Black-box model: one is given a bound on the degree of the polynomial, and one has only "oracle access" via evaluation
(5) Central question in TCS

- best parallel algorithms for finding perfect matchings
- Primes is in P
- used in IP = PSPACE
- proof of PCP theorem
- structure of algebraic proof systems

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma
Lemma
If $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a non-zero polynomial of degree $\leq d$ and $S \subset \mathbb{F}$ is a finite set, then

$$
\operatorname{Pr}_{a_{i} \in S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

random paint $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S^{n}$
evaluate $P\left(x_{1}, \ldots, x_{n}\right)$
P can be computed by small algebraic chis
Gives us randomized algorithm for PIT! coRP $\subset B P P=$

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a non-zero polynomial of degree $\leq d$ and $S \subset \mathbb{F}$ is a finite set, then

$$
\operatorname{Pr}_{a_{i} \in S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- Proof idea: in a domain $R[x]$, any polynomial $f(x)$ of degree $\leq d$ has at most d roots in R.

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a non-zero polynomial of degree $\leq d$ and $S \subset \mathbb{F}$ is a finite set, then

$$
\operatorname{Pr}_{a_{i} \in S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- Proof idea: in a domain $R[x]$, any polynomial $f(x)$ of degree $\leq d$ has at most d roots in R. base cose
- Induction on number of variables: write

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{e=1}^{k} p_{e}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{e} \quad p_{k} \neq 0
$$

$\operatorname{deg}_{n}(p)=k$

Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

Lemma

If $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a non-zero polynomial of degree $\leq d$ and $S \subset \mathbb{F}$ is a finite set, then

$$
\operatorname{Pr}_{a_{i} \in S}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- Proof idea: in a domain $R[x]$, any polynomial $f(x)$ of degree $\leq d$ has at most d roots in R.
- Induction on number of variables: write

$$
\begin{array}{r}
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{e=1}^{k} p_{e}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{e} \quad p_{k} \neq 0 \\
\operatorname{deg}\left(p_{u}\right) \leq d-u \\
d-k
\end{array}
$$

$\left\{\right.$ - By induction hypothesis $\operatorname{Pr}_{a_{i} \in S}\left[p_{k}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \leq \frac{d-k}{|S|}$

- If $p_{k}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$ then $\leq k$ values of x_{n} will make $p\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$ zero, as it has degree k.

Black-Box Setting: Hitting Sets \& Generators

$$
P\left(x_{1}, \ldots, x_{n}\right) \in \mp\left[x_{1}, \ldots, x_{n}\right]
$$

- In black-box setting, given a circuit class \mathcal{C}, all we can do is to come up with a set $\mathcal{H} \subset \mathbb{F}^{n}$ (hitting set) such that

$$
\Phi \in \mathcal{C}, \quad \Phi \not \equiv 0 \Rightarrow \exists \alpha \in \mathcal{H} \text { s.t. } \Phi(\alpha) \neq 0
$$

\mathcal{H} hitting set cut class el

$$
\in\left\{\begin{array}{l}
\alpha_{1} \rightarrow \Phi_{11}\left(\alpha_{1}\right) \\
0 \\
\Phi\left(\alpha_{2}\right)=0 \\
\Phi\left(\alpha_{3}\right)=0 \\
\text { assn- } \\
\text { adoptive } \\
\text { retting" }
\end{array}\right.
$$

(witnesses non-zromes)

Black-Box Setting: Hitting Sets \& Generators

- In black-box setting, given a circuit class \mathcal{C}, all we can do is to come up with a set $\mathcal{H} \subset \mathbb{F}^{n}$ (hitting set) such that

$$
\Phi \in \mathcal{C}, \quad \Phi \not \equiv 0 \quad \underset{\text { polyngmials }}{\Rightarrow} \underset{\underbrace{\prime}}{\Rightarrow} \in \mathcal{H} \text { s.t. } \Phi(\alpha) \neq 0
$$

- A polynomial map $\mathcal{G}=(\overbrace{g_{1}, \ldots, g_{n}}): \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a hitting set generator for a circuit class \mathcal{C} if

$$
\Phi\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}, \quad \Phi \not \equiv 0 \Rightarrow \frac{\left[\Phi \circ\left(g_{1}, \ldots, g_{n}\right)\right]\left(y_{1}, \ldots, y_{t}\right)}{\text { polynomial }} \not \equiv 0
$$

non zers

Black-Box Setting: Hitting Sets \& Generators

- In black-box setting, given a circuit class \mathcal{C}, all we can do is to come up with a set $\mathcal{H} \subset \mathbb{F}^{n}$ (hitting set) such that

$$
\Phi \in \mathcal{C}, \quad \Phi \not \equiv 0 \quad \Rightarrow \quad \exists \alpha \in \mathcal{H} \text { s.t. } \Phi(\alpha) \neq 0
$$

- A polynomial map $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a hitting set generator for a circuit class \mathcal{C} if $\quad t \ll n$

$$
\Phi\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}, \quad \Phi \neq 0 \Rightarrow \frac{\left[\Phi \circ\left(g_{1}, \ldots, g_{n}\right)\right]\left(y_{1}, \ldots, y_{t}\right) \neq 0}{D_{1}}
$$

- Hitting set generator decreases number of variables, and we can use brute-force to find non-zero
$|S|=D+1$ evaluate on S^{t}

$$
t=\log n
$$

$$
(D+1)^{t} \sim(D+1)^{\log n} \sim n^{\log n}
$$

Black-Box Setting: Hitting Sets \& Generators

- In black-box setting, given a circuit class \mathcal{C}, all we can do is to come up with a set $\mathcal{H} \subset \mathbb{F}^{n}$ (hitting set) such that

$$
\Phi \in \mathcal{C}, \quad \Phi \not \equiv 0 \quad \Rightarrow \quad \exists \alpha \in \mathcal{H} \text { s.t. } \quad \Phi(\alpha) \neq 0
$$

- A polynomial map $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a hitting set generator for a circuit class \mathcal{C} if

$$
\Phi\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}, \quad \Phi \not \equiv 0 \Rightarrow\left[\Phi \circ\left(g_{1}, \ldots, g_{n}\right)\right]\left(y_{1}, \ldots, y_{t}\right) \not \equiv 0
$$

- Hitting set generator decreases number of variables, and we can use brute-force to find non-zero
- In algebraic complexity, hitting set generators are also pseudorandom generators (decreased the number of "random seeds" needed)

$t \ll n$
 means reducing viandomness

 needed in Schwertz -tipple- Word Problems and Polynomial Identity Testing
- Why is PIT so fundamental?
- PIT for restricted circuit classes
- Conclusion
- Acknowledgements

Why do we want to derandomize PIT?

- PIT is an outstanding open question in derandomization (understand whether randomness is needed in design of efficient algorithms)

Why do we want to derandomize PIT?

- PIT is an outstanding open question in derandomization (understand whether randomness is needed in design of efficient algorithms)
- Hardness-Randomness tradeoff:

Theorem ([Kabanets \& Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:
(1) $N E X P \subseteq P_{/ \text {poly }}$
(2) Permanent is computable by polynomial size arithmetic circuits over \mathbb{Z}
(3) PIT $\in S U B E X P$
if
here efficient
OFT
algorithm

is way beyond
current
reach!

Why do we want to derandomize PIT?

- PIT is an outstanding open question in derandomization (understand whether randomness is needed in design of efficient algorithms)
- Hardness-Randomness tradeoff:

Theorem ([Kabanets \& Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:
(1) $N E X P \subseteq P_{/ \text {poly }}$
(2) Permanent is computable by polynomial size arithmetic circuits over \mathbb{Z}
(3) PIT \in SUBEXP

- Today we will show that (a strong version of) $\neg 2 \Rightarrow 3$ Exponential lower bound on Permanent $\Rightarrow P I T \in$ quasi-P
hordnen \rightarrow olerandomizatign "replace randomness by hared function" sac

Why do we want to derandomize PIT?

- PIT is an outstanding open question in derandomization (understand whether randomness is needed in design of efficient algorithms)
- Hardness-Randomness tradeoff:

Theorem ([Kabanets \& Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:
(1) NEXP $\subseteq P_{/ \text {poly }}$
(2) Permanent is computable by polynomial size arithmetic circuits over \mathbb{Z}
(3) PIT $\in S U B E X P$

- Today we will show that (a strong version of) $\neg 2 \Rightarrow 3$ Exponential lower bound on Permanent $\Rightarrow P I T \in$ quasi-P

Lower Bounds imply Derandomization

NW'97 hardier vs randomness

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs

Si large enough but have small pairwise in tersection
$(q, k, t)-$ design
[的 $] S_{1}, \ldots, S_{n}$

$$
\begin{aligned}
& \quad\left|s_{i}\right|=q \\
& i \neq j \quad\left|S_{i} \cap S_{j}\right|=k(\leq h) \\
& \operatorname{drop} \quad\left\{\begin{array}{c}
e \in[m] \text { appears in } \\
t \text { subsets }
\end{array}\right\}
\end{aligned}
$$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:
(1) Assume that $m=p$ is a prime

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:
(1) Assume that $m=p$ is a prime
(2) Then, $\mathbb{F}_{p}^{2} \sim\left[m^{2}\right]$

$$
(a, b) \in \mathbb{F}_{p}^{2}
$$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:

$$
p^{\log n}>n
$$

(1) Assume that $m=p$ is a prime
(2) Then, $\mathbb{F}_{p}^{2} \sim\left[m^{2}\right]$
(3) Let $q_{1}, \ldots, q_{n} \in \mathbb{F}_{p}^{\log (n)}$ be polynomials of degree $<\log (n)$.

$$
\begin{aligned}
q_{i}(x)= & q_{i 0}+g_{i 1} x+\cdots+q_{i(\lg n-1)} x^{\log n-1} \\
& \left(q_{i 0}, q_{i 1}, \cdots, q_{i(\log n-1)}\right)
\end{aligned}
$$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k \checkmark$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:
(1) Assume that $m=p$ is a prime
(2) Then, $\mathbb{F}_{p}^{2} \sim\left[m^{2}\right]$
(3) Let $q_{1}, \ldots, q_{n} \in \mathbb{F}_{p}^{\log (n)}$ be polynomials of degree $<\log (n)$.
(9) $S_{i}=\left\{\left(a, q_{i}(a)\right) \mid a \in \mathbb{F}_{p}\right\}$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:
(1) Assume that $m=p$ is a prime
(2) Then, $\mathbb{F}_{p}^{2} \sim\left[m^{2}\right]$
(3) Let $q_{1}, \ldots, q_{n} \in \mathbb{F}_{p}^{\log (n)}$ be polynomials of degree $<\log (n)$.
(9) $S_{i}=\left\{\left(a, q_{i}(a)\right) \mid a \in \mathbb{F}_{p}\right\}$
(5) $(a, y) \in S_{i} \cap S_{j} \Leftrightarrow q_{i}(a)=q_{j}(a)=y$
$(a, y)=\left(a, q_{i}(a)\right)=\left(a, q_{j}(a)\right)$

Lower Bounds imply Derandomization

- Use Nisan-Wigderson designs:
- $n \leq 2^{m}$ integers
- There exist $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ such that
- $\left|S_{i}\right|=m$, for all $1 \leq i \leq k \checkmark$
- $i \neq j \Rightarrow\left|S_{i} \cap S_{j}\right| \leq \log (n)$
- relaxed notion of combinatorial designs
- Construction:
(1) Assume that $m=p$ is a prime
(2) Then, $\mathbb{F}_{p}^{2} \sim\left[m^{2}\right]$
(3) Let $q_{1}, \ldots, q_{n} \in \mathbb{F}_{p}^{\log (n)}$ be polynomials of degree $<\log (n)$.
(9) $S_{i}=\left\{\left(a, q_{i}(a)\right) \mid a \in \mathbb{F}_{p}\right\}$
(5) $(a, y) \in S_{i} \cap S_{j} \Leftrightarrow q_{i}(a)=q_{j}(a)=y$
(- $\left|S_{i} \cap S_{j}\right| \leq \operatorname{deg}\left(q_{i}\right)<\log (n)$
$\operatorname{deg}\left(q_{i}-q_{j}\right)<\log n$
$\left(g_{i}-g_{j}\right)(a)=0$
at most
$\log n$ rests

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n \quad\left(n<2^{m}\right)$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$

Lower Bounds imply Derandomization

- Assume Per $_{n}$ cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$ poly boy (n) quasi
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$ alg. PIT
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
\log _{g}^{2} n=\sqrt{m}
$$

$$
g^{g}\left(y s_{i}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

depends only on the
variables in S;
$g_{i}\left(y_{s_{i}}\right)$ poly in $\operatorname{lgg}^{4} n$ variables $l g^{2} n$ deg.
con have oquesi- p many monomials (write it in sparse representation)

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y_{s_{i}}\right)=\operatorname{Per}_{\log ^{2} n}\left(y_{s_{i}}\right) \quad S(\Phi)=n^{c}
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
$(\Leftarrow \quad 1$
Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$
Hybrid argument
There is index $k \in\left[\overline{n] \text { such that }} \Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0\right.$ but $\Phi\left(g_{1}, \ldots, g_{k}, \frac{\left.g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0}{x_{k+1}} \leftarrow g_{k+1}\right.$
$x_{k+1}-g_{k+1}$
root of $\Phi(g$

$$
\Phi\left(g_{1}, \ldots, s_{n}, k_{n=1}, \ldots x_{n}\right)
$$

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y_{s_{i}}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
(1) Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$
(2) There is index $k \in[n]$ such that $\Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0$ but $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0$
$x_{k+1}-g_{k+1}$ divides $\Phi\left(g_{1}, \ldots, g_{k}, g x_{1}, x_{k+2}, \ldots, x_{n}\right)$
because Z_{n+1} root.
$x_{n+1}, y_{s_{n+1}}$ important variable

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y_{s_{i}}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
(1) Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$
(2) There is index $k \in[n]$ such that $\Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0$ but $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0$
(3) $x_{k+1}-g_{k+1}$ divides $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right)$
(4) Set variables $\underbrace{x_{k+2}, \ldots, x_{n}}$, and $y_{j} \in\left[m^{2}\right] \backslash S_{k+1}$ to random values other x vars other y variables $x_{n+1}-\rho_{n+1}$ unchanged Φ remain nonzers (still divisible by) ace

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{\text {ch }}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y s_{i}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
(1) Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$
(2) There is index $k \in[n]$ such that $\Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0$ but $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0$
(3) $x_{k+1}-g_{k+1}$ divides $\Phi\left(g_{1}, \ldots, g_{k}\right.$, $\left.{ }^{\prime \prime n}{ }^{\prime \prime} x_{k+2}, \ldots, x_{n}\right)$
(9) Set variables $x_{k+2}, \ldots, \bar{x}_{n}$, and $y_{j} \in\left[m^{2}\right] \backslash S_{k+1}$ to random values
(3) $\left(y s_{i} \cap s_{k+1}\right)$ depends only on $\log n$ variables, so poly-size circuit!

$$
\widetilde{\left|s_{i} \cap s_{n+1}\right|} \quad S(\psi)=n
$$

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y s_{i}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
(1) Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$ any foetor of ψ has \tilde{c} che size n^{c}
(2) There is index $k \in[n]$ such that $\Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0$ but $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0$
(3) $x_{k+1}-g_{k+1}$ divides $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right)$
(9) Set variables x_{k+2}, \ldots, x_{n}, and $y_{j} \in\left[m^{2}\right] \backslash S_{k+1}$ to random values
(5) $g_{i}\left(y_{s_{i} \cap s_{k+1}}\right)$ depends only on $\log n$ variables, so poly-size circuit!
(0) By Kaltofen, VP is closed under taking factors
(1) Implies $X_{\text {Las }}-g_{k+1}$ has poly size circuit!
(1) poly deg
poly sits chis \Rightarrow any foetor of Φ obs, has poly-situpsc

Lower Bounds imply Derandomization

- Assume Per_{n} cannot be computed by circuits of size $\leq 2^{c n}$
- Take NW-design with $m=\log ^{4} n$
- $S_{1}, \ldots, S_{n} \subset\left[m^{2}\right]$
- $\left|S_{i}\right|=m$ and $\left|S_{i} \cap S_{j}\right| \leq \log n$
- Hitting set generator: $\mathcal{G}=\left(g_{1}, \ldots, g_{n}\right): \mathbb{F}^{m^{2}} \rightarrow \mathbb{F}^{n}$

$$
g_{i}\left(y s_{i}\right)=\operatorname{Per}_{\log ^{2} n}\left(y s_{i}\right)
$$

- For any $\Phi \in \mathrm{VP}$ we have $\Phi \equiv 0 \Leftrightarrow \Phi \circ \mathcal{G} \equiv 0$
(1) Suppose $\Phi \not \equiv 0$ but $\Phi \circ \mathcal{G} \equiv 0$
(2) There is index $k \in[n]$ such that $\Phi\left(g_{1}, \ldots, g_{k}, x_{k+1}, \ldots, x_{n}\right) \not \equiv 0$ but $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right) \equiv 0$
(3) $x_{k+1}-g_{k+1}$ divides $\Phi\left(g_{1}, \ldots, g_{k}, g_{k+1}, x_{k+2}, \ldots, x_{n}\right)$
(9) Set variables x_{k+2}, \ldots, x_{n}, and $y_{j} \in\left[m^{2}\right] \backslash S_{k+1}$ to random values
(5) $g_{i}\left(y s_{i} \cap s_{k+1}\right)$ depends only on $\log n$ variables, so poly-size circuit!
(0) By Kaltofen, VP is closed under taking factors
(1) Implies $y-g_{k+1}$ has poly size circuit! $S\left(g_{n+1}\right) \leq n^{c}=2^{c \log h}$
(8) Contradicts fact that Per $\log ^{2} n$ cannot be computed by $2^{c \log ^{4} n}=n^{c \log ^{3} n}$ size

Lower Bounds imply Derandomization

$$
\begin{aligned}
& x_{n+1}-g_{n+1} \mid \Phi\left(g_{1}, ; g_{n}, x_{n+1},-, x_{n}\right) \\
& \text { set } \left.\begin{array}{l}
x_{n+2}, \ldots, x_{n} \\
y_{i} \in\left[m^{2}\right] \backslash S_{n+1}
\end{array}\right\} \begin{array}{l}
\text { random field }
\end{array} \\
& g_{i}\left(y_{s_{i}}\right) \xrightarrow[\text { sestniction }]{\stackrel{\text { after }}{e}} g_{i}(\underbrace{y_{s_{i} \cap s_{u r 1}}}_{\text {alive vars }}) \\
& \text { gi poly in log vars }\} \text { only monomials } \\
& \text { have } \leq 2^{\text {coon }}=n^{c} \text { monominials } \prod_{l o T} y_{2} I \subset\left[\frac{S i}{} \cap S_{m A}\right]
\end{aligned}
$$

Lower Bounds imply Derandomization

Fast Parallel Algorithms for Matching

Fast Parallel Algorithms for Matching

- Word Problems and Polynomial Identity Testing
- Why is PIT so fundamental?
- PIT for restricted circuit classes
- Conclusion
- Acknowledgements

Sparse Polynomials - Klivans-Spielman

- Input: oracle (black-box) access to a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ with $\leq s$ monomials and degree d
- Output: is $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$?

$$
\begin{aligned}
& (n, s, d \text { given to you) } \\
& p \operatorname{ly}(n, s, d)
\end{aligned}
$$

Sparse Polynomials - Klivans-Spielman

- Input: oracle (black-box) access to a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ with $\leq s$ monomials and degree d
(n, s, d given to you)
- Output: is $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$? monomials

$$
P\left(y^{d+1}, y^{(d+1)^{2}}, \cdots, y^{(d-1)^{n}}\right) \neq 0
$$

"base di"

$$
\begin{aligned}
& e_{i} \leq d \\
& x_{1}^{e_{1}} . . r_{n}^{e_{n}} \\
& P\left(x_{1}, \ldots, x_{n}\right) \neq 0 \\
& p(\bar{x})=\sum p_{\bar{e}} \cdot \bar{x}^{\bar{e}} \\
& x_{i} \mapsto y^{(d+1)^{i}} \\
& \left(e_{1}, \ldots, e_{n}\right) \longrightarrow \sum_{i=1}^{\text {base }_{n} d+1} e_{i}(d+1)^{i} \\
& \left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Sparse Polynomials - Klivans-Spielman

- Input: oracle (black-box) access to a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ with $\leq s$ monomials and degree d

$$
\text { (} n, s, d \text { given to you) }
$$

- Output: is $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$?
- First idea: Kronecker substitution
- Problem is that the degree is really high. How to fix it?

Sparse Polynomials - Klivans-Spielman

- Input: oracle (black-box) access to a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ with $\leq s$ monomials and degree d (n, s, d given to you)
- Output: is $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$?
- First idea: Kronecker substitution
- Problem is that the degree is really high. How to fix it?
- Let $p \in \mathbb{Z}$ be a prime. Make substitution:

$$
x_{i} \rightarrow y \frac{(d+1)^{i} \bmod p}{\text { deg }} \leq p
$$

- Now degrees are under control. But how to preserve non-zeroness?
\bar{x} monomials can be mapped to the same unineriate monomial y

Sparse Polynomials - Klivans-Spielman

- Input: oracle (black-box) access to a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ with 5 (5)nonomials and degree d (n, s, d given to you)
- Output: is $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$?
- First idea: Kronecker substitution
- Problem is that the degree is really high. How to fix it?
- Let $p \in \mathbb{Z}$ be a prime. Make substitution:

$$
x_{i} \rightarrow y^{(d+1)^{i}} \bmod p
$$

- Now degrees are under control. But how to preserve non-zeroness?
- Chinese Remaindering Theorem!
(1) If two monomials $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are distinct and degree $\leq d$, then

$$
a_{1}+a_{2}(d+1)+\cdots+a_{n}(d+1)^{n} \neq b_{1}+b_{2}(d+1)+\cdots+b_{n}(d+1)^{n}
$$

(2) Thus if we take $p_{1}, \ldots, p_{\text {nd }}$ primes, one of the differences $\bmod p_{i}$ will be non-zero
pick enough prime and dg unitonabgund it sac

Sparse Polynomials - Klivans-Spielman

$$
P_{1}, \ldots, p_{m} \quad m=p \operatorname{ly}(n, s, 01)
$$

there is one which preserves all s monomials

$$
P\left(y^{d+1 \operatorname{mad} p_{i}}, \cdots, y^{(d+1)^{n} \bmod p_{i}}\right) \nexists 0
$$

and has s Fid rotors
test univariate poly over $\left\{0, \ldots, p_{i} d\right\}$

Sparse Polynomials - Klivans-Spielman

- Word Problems and Polynomial Identity Testing
- Why is PIT so fundamental?
- PIT for restricted circuit classes
- Conclusion
- Acknowledgements

Conclusion

- Today we learned about word problems and their importance
- Polynomial Identity Testing (PIT)
- Hardness versus randomness
- Application of PIT in TCS (parallel algorithms for matching)
- deterministic PIT algorithm for sparse polynomials

Acknowledgement

- Lecture based largely on:
- Survey [Shpilka \& Yehudayoff 2010, Chapter 4]

References I

Shpilka, Amir and Yehudayoff, Amir 2010.
Arithmetic circuits: a survey of recent results and open questions Foundations and Trends in Theoretical Computer Science

Kabanets, Valentine and Impagliazzo, Russel 2004.
Derandomizing polynomial identity tests means proving circuit lower bounds Computational Complexity

