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Word Problems
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@ Setting: a group is given succinctly via generators and relations
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@ Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?
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Word Problems

@ Setting: a group is given succinctly via generators and relations

@ Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

© For general finitely presented groups, this is undecidable
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© For general finitely presented groups, this is undecidable

@ For hyperbolic groups, it is in P given Gromov's geometric techniques



Word Problems

@ Setting: a group is given succinctly via generators and relations

@ Input: given a sequence of generators and operations among them
forming a word, is this word the identity element in the group?

© For general finitely presented groups, this is undecidable
@ For hyperbolic groups, it is in P given Gromov's geometric techniques
© what other word problems appear in TCS?
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@ Polynomials are given succinctly via algebraic circuits
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Polynomial Identity Testing (PIT)

@ Polynomials are given succinctly via algebraic circuits

@ Given two algebraic circuits, do they compute same polynomial?

© Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

@ Two ways in which input can be given:
@® White-box model: circuit is given as an input, with bound on the
degree of the polynomial being computed
@ Black-box model: one is given a bound on the degree of the
polynomial, and one has only “oracle access” via evaluation
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Polynomial Identity Testing (PIT)

@ Polynomials are given succinctly via algebraic circuits
@ Given two algebraic circuits, do they compute same polynomial?

© Can be reduced to the question: given an algebraic circuit, does it
compute the zero polynomial?

Polynomial Identity Testing

@ Two ways in which input can be given:
@® White-box model: circuit is given as an input, with bound on the
degree of the polynomial being computed
@ Black-box model: one is given a bound on the degree of the
polynomial, and one has only “oracle access” via evaluation
@ Central question in TCS
o best parallel algorithms for finding perfect matchings
e Primesisin P
e used in IP = PSPACE
e proof of PCP theorem
e structure of algebraic proof systems



Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

If p(x1,...,xn) € F[x1,...,xn] is a non-zero polynomial of degree < d and
S C F is a finite set, then
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Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

If p(x1,...,xn) € F[x1,...,xn] is a non-zero polynomial of degree < d and
S C F is a finite set, then
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@ Proof idea: in a domain R[x], any polynomial f(x) of degree < d has
at most d roots in R.
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Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

If p(x1,...,xn) € F[x1,...,xn] is a non-zero polynomial of degree < d and
S C F is a finite set, then

d
S|

@ Proof idea: in a domain R[x], any polynomial f(x) of degree < d has
at most d roots in R. bone cCone
@ Induction on number of variables: write

a,)=0] <
af’ers[p(al, yan) = 0] <
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Ore-Schwartz-Zippel-deMillo-Lipton Folklore Lemma

If p(x1,...,xn) € F[x1,...,xn] is a non-zero polynomial of degree < d and
S C F is a finite set, then

d
S|

@ Proof idea: in a domain R[x], any polynomial f(x) of degree < d has

at most d roots in R. deg(P) <d

@ Induction on number of variables: write “
deg(fu-2a) < ¢

K
p(xt, ..., Xn) = ZP&(XL coXno1)Xy Pk # 0O

...,ap) = <
a?ers[p(al’ yd ) 0] =

d—k
)Lo By induction hypothesis Pr,.cs[pk(a1,...,an—1) =0] < W
o If py(a1,...,an—1) # 0 then < k values of x, will make
p(ai,-..,an—1,Xn) zero, as it has degree k.
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Black-Box Setting: Hitting Sets & Generators
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@ In black-box setting, given a circuit class C, all we can do is to come
up with a set H C F" (hitting set) such that
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Black-Box Setting: Hitting Sets & Generators

@ In black-box setting, given a circuit class C, all we can do is to come
up with a set H C F" (hitting set) such that

del, o#£0 = HdacH st. P(a)#0
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@ A polynomial map G = (g1,...,8n) : F* — F" is a hitting set
generator for a circuit class C if -

O(x1,...,x5) €C, ®#*0 = [Po(g1,.---,&)]01,---,yt) Z0
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Black-Box Setting: Hitting Sets & Generators

@ In black-box setting, given a circuit class C, all we can do is to come
up with a set H C F" (hitting set) such that

delC, o#0 = HdaeH st P(a)#0

@ A polynomial map G = (g1,...,8n) : F* — F" is a hitting set
generator for a circuit class C if t<<

O(x1,...,x5) €C, ®#*0 = [Po(g1,.---,&)]01,---,yt) Z0

" D e pHY
@ Hitting set generator decreases number of variables, and we can use
brute-force to find non-zero
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Black-Box Setting: Hitting Sets & Generators

@ In black-box setting, given a circuit class C, all we can do is to come
up with a set H C F" (hitting set) such that

delC, o#0 = HdaeH st P(a)#0

@ A polynomial map G = (g1,...,8n) : F* — F" is a hitting set
generator for a circuit class C if

O(x1,...,x5) €C, ®#*0 = [Po(g1,.---,&)]01,---,yt) Z0

@ Hitting set generator decreases number of variables, and we can use
brute-force to find non-zero

@ In algebraic complexity, hitting set generators are also pseudorandom
generators (decreased the number of “random seeds” needed)
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@ Why is PIT so fundamental?
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e PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)
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The following three assumptions cannot be simultaneously true:
Q@ NEXPC Pjpy
@ Permanent is computable by polynomial size arithmetic circuits over Z
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Why do we want to derandomize PIT?

e PIT is an outstanding open question in derandomization (understand
whether randomness is needed in design of efficient algorithms)

@ Hardness-Randomness tradeoff:

Theorem ([Kabanets & Impagliazzo 2004])

The following three assumptions cannot be simultaneously true:
Q@ NEXPC Pjpy
@ Permanent is computable by polynomial size arithmetic circuits over Z

© PIT € SUBEXP

e Today we will show that (a strong version of) =2 = 3

Exponential lower bound on Permanent = PIT € quasi-P



Lower Bounds imply Derandomization
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@ Use Nisan-Wigderson designs:
e n < 2™ integers

There exist Sy, ..., S, C [m?] such that

|Si|=m, forall 1 <i<k

i #j=15NSj| <log(n)



Lower Bounds imply Derandomization

o Use lean—ngderson designs: S; _,QM}C
o n < 2™ integers
o There exist Si,...,S, C [m?] such that ~@wnsw§ n

o |Sil=m,forall1<i<k have
o i#j=|5N5] < log(n) ot

@ relaxed notion of combinatorial designs
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Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
|Si|=m, forall 1 <i<k

i #j= |5, ﬂ5j| < Iog(n)

@ relaxed notion of combinatorial designs

@ Construction:
@ Assume that m = p is a prime



Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
|Si|=m, forall 1 <i<k

i #j= |5, ﬂ5j| < Iog(n)

@ relaxed notion of combinatorial designs

e Construction: E\-; ,Q\'Ai\‘ Qidd
@ Assume that m = p is a prime P
@ Then, F2 ~ [m?] P eJammin

(b)) € “:.(:



Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
|Si|=m, forall 1 <i<k

i #J = 15N 5| < log(n)

@ relaxed notion of combinatorial designs .1.03 nS YL
o Construction: ‘?

@ Assume that m = p is a prime
@ Then, IFf, ~ [m?]
Q Letgy,...,q,€ ]Fl,?g(n) be polynomials of degree < log(n).

Qi (%) = Qo #Qiu X £-- qi(lgn'l)h
(q;- K (I R ‘f.‘(&qn-t))
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Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
1S =m, forall 1< i< kS

i #j= |5, ﬂ5j| < Iog(n)

@ relaxed notion of combinatorial designs

@ Construction:
@ Assume that m = p is a prime
@ Then, IF‘f, ~ [m?]
Q Letqgy,...,qn € ]Flsg(n) be polynomials of degree < log(n).
Q Si={(a,qi(a)) | acFp} = [9(\: ([ﬂFp] = P



Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
|Si|=m, forall 1 <i<k

i #j= |5, ﬂ5j| < Iog(n)

@ relaxed notion of combinatorial designs

@ Construction:
@ Assume that m = p is a prime
@ Then, IF‘f, ~ [m?]
Q Letqgi,....qn € ]F',fg(") be polynomials of degree < log(n).
Q Si={(a,qi(a)) | ac Fp}
Q (a,y)esSins < qi(a)=qi(a) =y
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Lower Bounds imply Derandomization

@ Use Nisan-Wigderson designs:

n < 2™ integers

There exist Sy, ..., S, C [m?] such that
|Si|=m, forall1<i<ky

i £ =150 < log(n) V

@ relaxed notion of combinatorial designs

@ Construction:
@ Assume that m = p is a prime
@ Then, IF‘f, ~ [m?]
Q Letqy,...,qn € ]F',fg(") be polynomials of degree < log(n).
Q Si={(a,qi(a)) | ac Fp}
Q@ (a,y) €5 NS < qia)=qa) =y dﬁscqi_w< Qayn

Q [SinSj| < deg(qi) < log(n)
a_(' mN '\'
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Lower Bounds imply Derandomization

@ Assume Per,, cannot be computed by circuits of size < 2"



Lower Bounds imply Derandomization

@ Assume Per,, cannot be computed by circuits of size < 2"
o Take NW-design with m = log* n C n< Z“" )

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn



Lower Bounds imply Derandomization

@ Assume Per,, cannot be computed by circuits of size < 2"

o Take NW-design with m = log* n . -9
o Si,...,5, C [ pe(ﬁj,ﬁ( ) quesi

o |Sil=mand |SiN5j| <logn
e Hitting set generator: G = (g1,...,8n) :F™ — Fn
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Lower Bounds imply Derandomization

@ Assume Per,, cannot be computed by circuits of size < 2"
o Take NW-design with m = log* n

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn
e Hitting set generator: G = (g1,...,8n) : F™ — Fn

C
gi(yS,-) :____!:erlog2 n(YS,-) 5 C@) =Y

@ Forany ® c VPwe have =0 P0G =0
(=) © Suppose ®£0but 90G=0 Hybniel ongawnt
@ There is index k € [n] such that ®(gi, ..., gk, Xk+1,---,Xn) Z 0 but
P81y - -+ 8k Bk+1, Xkt2, -, Xn) =0 -
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Lower Bounds imply Derandomization

Assume Per,, cannot be computed by circuits of size < 2¢"
Take NW-design with m = log* n

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn
Hitting set generator: G = (g1,...,8n) : F™ — Fn

gl'(ysi) = I:)erlogQ n(ysi)

Forany ® e VP we have =0 P0G =0
© Suppose P Z0 but PoG =0
@ There is index k € [n] such that ®(gi, ..., &k, Xk+1,---,Xn) Z 0 but

¢(gla"'7gk7gk+17xk+27" ) 0
Q xii1 — 8k+1 divides d(gy, ... ,gk,% Xk42y e oy X
xk-r\



Lower Bounds imply Derandomization

X4y - Suri

Assume Per,, cannot be computed by circuits of size < 2"
Take NW-design with m = log* n

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn
Hitting set generator: G = (g1,...,8n) : F™ — Fn

gi(ysi) = Perlog2 n(ySi)

For any ® e VP we have =0 ®0G =0
© Suppose P Z0 but PoG =0
@ There is index k € [n] such that ®(gi, ..., &k, Xk+1,---,Xn) Z 0 but
D(g1,- -, 8k, Bkt1, Xkt25 -+, Xn) =0
©Q Xki1 — g+ divides O(gi, ..., 8k, Bkt1) Xk+2, - - - 5 Xn)
@ Set variables Xi12,...,Xp, and y; € [m?]\ Sky1 to random values
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Lower Bounds imply Derandomization

Assume Per,, cannot be computed by circuits of size < 2"
Take NW-design with m = log* n

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn
Hitting set generator: G = (g1,...,8n) : F™ — Fn

gi(ysi) = PerIog2 n(ysi)

Forany ® e VP we have =0 P0G =0
© Suppose P Z0 but PoG =0
@ There is index k € [n] such that ®(gi, ..., &k, Xk+1,---,Xn) Z 0 but

(D(gla"'7gk7gk+17xk+27"' ) 0
© xki1— gk divides <I>(g1, 8k M xk+2, cees Xn)
@ Set variables xx12,. .., X, and | yj € [m?]\ 5k+1 to random values

¥5inS...) depends onIy on log n variables, so poly-size circuit! c
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Lower Bounds imply Derandomization

Forany ® e VP we have =0 P0G =0

Assume Per,, cannot be computed by circuits of size < 2¢"
Take NW-design with m = log* n

o 51,...,5,,C[m2]
o |Sil=mand |SiN5j| <logn

Hitting set generator: G = (g1,...,8n) : F™ — Fn

gi(ysi) = I:)erlogQ n(ysi) ovy @"‘hﬂ

¥ n
@ Suppose ® Z0 but oG =0 Cht A

@ There is index k € [n] such that ®(gi, ..., &k, Xk+1,---,Xn) Z 0 but
(g1 8k Bki1y Xki2s -+, Xn) =0

© xii1 — gk+1 divides D(g1, ..., 8ks Bkt1s Xkt2y - - 5 Xn)

@ Set variables Xi12,...,Xp, and y; € [m?]\ Sky1 to random values

© zi(ysns,.,) depends only on log n variables, so poly-size circuit!

@ By Kaltofen, VP is closed under taking factors

@ Implies X — gk+1 has poly size circuit!
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Lower Bounds imply Derandomization

Assume Per,, cannot be computed by circuits of size < 2¢"
Take NW-design with m = log* n

o Si,...,S, C[m?]

o |Sil=mand |SiN5j| <logn
Hitting set generator: G = (gl, -y &n) :F™ 5 F"

For any ® € VP we haveE:O(:dDo :ﬂ

© Suppose P Z0 but oG =0

@ There is index k € [n] such that ®(gi, ..., &k, Xk+1,---,Xn) Z 0 but
(g1 8k Bki1y Xki2s -+, Xn) =0

© xii1 — gk+1 divides D(g1, ..., 8ks Bkt1s Xkt2y - - 5 Xn)

@ Set variables Xi12,...,Xp, and y; € [m?]\ Sky1 to random values

© zi(ysns,.,) depends only on log n variables, so poly-size circuit!

@ By Kaltofen, VP is closed under taking factors nC - 7‘}"5“

@ Implies y — gi11 has poly size circuit! 5(‘3"‘) < .

O Contradicts fact that Pery,,2,, cannot be computed by 2clogmn — pclogn
size




Lower Bounds imply Derandomization
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Lower Bounds imply Derandomization
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Fast Parallel Algorithms for Matching



Fast Parallel Algorithms for Matching



@ PIT for restricted circuit classes



Sparse Polynomials - Klivans-Spielman

@ Input: oracle (black-box) access to a polynomial p(xi,...,x,) with
< s monomials and degree d (n,s, d given to you)

Pe({)b"l"'d)

e Output: is p(xi,...,x,) =07
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Sparse Polynomials - Klivans-Spielman

@ Input: oracle (black-box) access to a polynomial p(xi,...,x,) with
< s monomials and degree d (n,s, d given to you)
@ Output: is p(xq,...,x,) =07 vy o M
p p( n) " e e

o First idea: Kronecker substitution
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Sparse Polynomials - Klivans-Spielman

@ Input: oracle (black-box) access to a polynomial p(xi, ..., x,) with
< s monomials and degree d (n,s, d given to you)

@ Output: is p(x1,...,xp) =07
o First idea: Kronecker substitution
@ Problem is that the degree is really high. How to fix it?



Sparse Polynomials - Klivans-Spielman

@ Input: oracle (black-box) access to a polynomial p(x,...,x,) with
< s monomials and degree d (n,s, d given to you)

@ Output: is p(x1,...,xp) =07
o First idea: Kronecker substitution
@ Problem is that the degree is really high. How to fix it?
o Let p € Z be a prime. Make substitution:
. (d+1)" mod p d<§ <
ooyl S5 <P

@ Now degrees are under control. But how to preserve non-zeroness?
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Sparse Polynomials - Klivans-Spielman

@ Input: oracle (black-box) access to a polynomial p(xi, ..., x,) with
@onomials and degree d (n,s, d given to you)
@ Output: is p(x1,...,xp) =07
o First idea: Kronecker substitution
@ Problem is that the degree is really high. How to fix it?
o Let p € Z be a prime. Make substitution:
Xi — y(d—i—l)" mod p
@ Now degrees are under control. But how to preserve non-zeroness?
@ Chinese Remaindering Theorem!
@ If two monomials (ay,...,a,) and (by, ..., b,) are distinct and degree
< d, then

w%-i:\ a1+ ap(d+ 1)+ +a(d+1)" % by + by(d + 1)+ -+ by(d +1)"

@ Thus if we take p1, ..., png primes, one of the differences mod p; will

be non-zero
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Sparse Polynomials - Klivans-Spielman
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Sparse Polynomials - Klivans-Spielman



@ Conclusion



Conclusion

Today we learned about word problems and their importance
Polynomial Identity Testing (PIT)
Hardness versus randomness

Application of PIT in TCS (parallel algorithms for matching)

deterministic PIT algorithm for sparse polynomials
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