Lecture 23: General Lax Conjecture \& its Variants

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

April 6, 2021

Overview

- General Lax Conjecture and Variants
- Conditional Lower Bounds on Spectrahedral Representation
- Conclusion
- Acknowledgements

Hyperbolic Programming

Definition (Hyperbolic Programming)

Given $h(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ hyperbolic with respect to $\mathbf{e} \in \mathbb{R}^{m}$, a hyperbolic program is the following minimization problem:

$$
\begin{aligned}
& \quad \inf \mathbf{c}^{\dagger} \mathbf{x} \\
& \text { s.t. } \mathbf{x} \in \Lambda_{+}(h, \mathbf{e})
\end{aligned}
$$

Hyperbolic Programming

Definition (Hyperbolic Programming)

Given $h(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ hyperbolic with respect to $\mathbf{e} \in \mathbb{R}^{m}$, a hyperbolic program is the following minimization problem:

$$
\begin{aligned}
& \inf \mathbf{c}^{\dagger} \mathbf{x} \\
& \text { s.t. } \mathbf{x} \in \Lambda_{+}(h, \mathbf{e})
\end{aligned}
$$

Remark

Hyperbolic programming generalizes Linear Programming (LP) and Semidefinite Programming (SDP)!

- Hyperbolic programming with $h(\mathbf{x})=\ell_{1}(\mathbf{x}) \cdots \ell_{m}(\mathbf{x})$ gives rise to LPs
- Hyperbolic programming with $h(\mathbf{x})=\operatorname{det}\left(\sum A_{i} x_{i}\right)$, with A_{i} symmetric matrices gives rise to SDPs

Spectrahedral Sets \& SDPs ${ }^{1}$

Definition (Spectrahedral Sets)

A convex set $S \subseteq \mathbb{R}^{m}$ is spectrahedral if it can be defined by linear matrix inequalities (LMIs). That is, there exists $d \in \mathbb{N}$ and $d \times d$ symmetric matrices A_{1}, \ldots, A_{m}, B such that

$$
S=\left\{\mathbf{c} \in \mathbb{R}^{m} \mid \sum_{i} c_{i} \cdot A_{i} \succeq B\right\}
$$

S has non-empty interior if there is $\mathbf{e} \in S$ such that $\sum_{i} e_{i} \cdot A_{i} \succ B$.

Spectrahedral Sets \& SDPs ${ }^{1}$

Definition (Spectrahedral Sets)

A convex set $S \subseteq \mathbb{R}^{m}$ is spectrahedral if it can be defined by linear matrix inequalities (LMIs). That is, there exists $d \in \mathbb{N}$ and $d \times d$ symmetric matrices A_{1}, \ldots, A_{m}, B such that

$$
S=\left\{\mathbf{c} \in \mathbb{R}^{m} \mid \sum_{i} c_{i} \cdot A_{i} \succeq B\right\}
$$

S has non-empty interior if there is $\mathbf{e} \in S$ such that $\sum_{i} e_{i} \cdot A_{i} \succ B$.

Open Question (General Lax Conjecture)

Is every hyperbolicity cone a spectrahedral set?
This question relates the qualitative generality of Hyperbolic Programming compared with SDPs.

[^0]
General Lax Conjecture

- First containment proper.

General Lax Conjecture

$$
L P \subset S D P \subseteq H P .
$$

- First containment proper.
- General Lax Conjecture: the last containment is in fact an equality

$$
S D P=H P \quad \text { (qualitatively) }
$$

inf $c^{+} x$

$$
\text { nit } x \in \underbrace{0}_{\sum_{i=1}^{m} A_{i} x_{i} \zeta_{i}(h, \bar{e})}
$$

$\sum A_{i} e_{i}>0$ in interior

General Lax Conjecture

$$
L P \subset S D P \subseteq H P
$$

- First containment proper.
- General Lax Conjecture: the last containment is in fact an equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]

General Lax Conjecture

$$
L P \subset S D P \subseteq H P
$$

- First containment proper.
- General Lax Conjecture: the last containment is in fact an equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Melton, Vinnikov, 2007]
- General Lax Conjecture about qualitative aspects of SDPs vs BPs. Can we get quantitative aspects between them?
small description?

$$
\Lambda_{+}(n, \bar{e}) \longleftrightarrow \sum A_{i} x_{i} \succcurlyeq 0
$$

small description

$$
\sum A_{i} e_{i}>0
$$

General Lax Conjecture

$$
L P \subset S D P \subseteq H P
$$

- First containment proper.
- General Lax Conjecture: the last containment is in fact an equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]
- General Lax Conjecture about qualitative aspects of SDPs vs HPs. Can we get quantitative aspects between them?

Open Question (Quantitative General Lax Conjecture)

Is there a hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

General Lax Conjecture

$$
L P \subset S D P \subseteq H P
$$

- First containment proper.
- General Lax Conjecture: the last containment is in fact an equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]
- General Lax Conjecture about qualitative aspects of SDPs vs HPs. Can we get quantitative aspects between them?

Open Question (Quantitative General Lax Conjecture)

Is there a hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

Open Question (Explicit "hard" hyperbolicity cone)

Is there an explicit hyperbolicity cone for which any spectrahedral representation of it requires matrices of large dimension?

Variants of General Lax Conjecture

Open Question (Quantitative Approximate General Lax Conjecture)
Is there an explicit hyperbolicity cone for which any approximate spectrahedral representation of it requires matrices of super polynomial dimension?
$\inf c^{+} x$
nt. $\underbrace{K K_{\delta}}_{K A_{i} x_{i} \leqslant 0}$

Variants of General Lax Conjecture

Open Question (Quantitative Approximate General Lax Conjecture)
Is there an explicit hyperbolicity cone for which any approximate spectrahedral representation of it requires matrices of super polynomial dimension?

Open Question (Projected Lax Conjecture)
Can all hyperbolicity cones be represented as spectrahedral shadows?
Can make this Projected Lon conjecture question quantitative:

Variants of General Lax Conjecture

Open Question (Quantitative Approximate General Lax Conjecture)

Is there an explicit hyperbolicity cone for which any approximate spectrahedral representation of it requires matrices of super polynomial dimension?

Open Question (Projected Lax Conjecture)

Can all hyperbolicity cones be represented as spectrahedral shadows?

Open Question (Extended Formulations)

Is there an explicit hyperbolicity cone for which any spectrahedral shadow representation of it requires matrices of super polynomial dimension? Question is open even for non-explicit polynomials.

Variants of General Lax Conjecture

Open Question (Quantitative Approximate General Lax Conjecture)

Is there an explicit hyperbolicity cone for which any approximate spectrahedral representation of it requires matrices of super polynomial dimension?

Open Question (Projected Lax Conjecture)

Can all hyperbolicity cones be represented as spectrahedral shadows?

Open Question (Extended Formulations)

Is there an explicit hyperbolicity cone for which any spectrahedral shadow representation of it requires matrices of super polynomial dimension? Question is open even for non-explicit polynomials.

And many more... this is just the beginning of the rabbit hole.

Previous Work

Theorem (Non-Explicit Lower Bounds [RRSW 2019])

Exponential lower bounds on the dimension of minimal spectrahedral representations of non-explicit hyperbolicity cones (which are known to be spectrahedral).

- Exponential lower bounds for some polynomial in a large set of hyperbolic polynomials
- Carefully chosen perturbations of elementary symmetric polynomial

Previous Work

Theorem (Non-Explicit Lower Bounds [RRSW 2019])

Exponential lower bounds on the dimension of minimal spectrahedral representations of non-explicit hyperbolicity cones (which are known to be spectrahedral).

- Exponential lower bounds for some polynomial in a large set of hyperbolic polynomials
- Carefully chosen perturbations of elementary symmetric polynomial

Theorem (Explicit Linear Lower Bounds [Kummer 2016])

Optimal lower bounds on the dimension of minimal spectrahedral representations of explicit hyperbolicity cones of quadratic polynomials.

- Linear lower bounds (on number of variables) for Lorentz cone
- Matches upper bounds for known constructions

Previous Work

Theorem (Non-Explicit Lower Bounds [RRSW 2019])

Exponential lower bounds on the dimension of minimal spectrahedral representations of non-explicit hyperbolicity cones (which are known to be spectrahedral).

- Exponential lower bounds for some polynomial in a large set of hyperbolic polynomials
- Carefully chosen perturbations of elementary symmetric polynomial

Theorem (Explicit Linear Lower Bounds [Kummer 2016])

Optimal lower bounds on the dimension of minimal spectrahedral representations of explicit hyperbolicity cones of quadratic polynomials.

- Linear lower bounds (on number of variables) for Lorentz cone
- Matches upper bounds for known constructions

Today: first (conditional) superpoly lower bound for explicit polynomials.

Previous Work

Definition (Smooth Hyperbolicity Cones)

A hyperbolicity cone $\Lambda_{+}(h, \mathbf{e})$ is smooth if each non-zero point in the boundary of $\Lambda_{+}(h, \mathbf{e})$ is a smooth point ${ }^{a}$ of h.
${ }^{a}$ The point is not a singular point of h.

Previous Work

Definition (Smooth Hyperbolicity Cones)

A hyperbolicity cone $\Lambda_{+}(h, \mathbf{e})$ is smooth if each non-zero point in the boundary of $\Lambda_{+}(h, \mathbf{e})$ is a smooth point ${ }^{a}$ of h.
${ }^{a}$ The point is not a singular point of h.

Theorem (Smooth Hyperbolicity Cones [Netzer, Sanyal 2015])

Smooth hyperbolicity cones are spectrahedral shadows.

- Smooth hyperbolic polynomials are dense over the set of all hyperbolic polynomials.
- Projected Lax conjecture true "for most points"

Previous Work

Definition (Smooth Hyperbolicity Cones)

A hyperbolicity cone $\Lambda_{+}(h, \mathbf{e})$ is smooth if each non-zero point in the boundary of $\Lambda_{+}(h, \mathbf{e})$ is a smooth point ${ }^{a}$ of h.
${ }^{a}$ The point is not a singular point of h.

Theorem (Smooth Hyperbolicity Cones [Netzer, Sanyal 2015])

Smooth hyperbolicity cones are spectrahedral shadows.

- Smooth hyperbolic polynomials are dense over the set of all hyperbolic polynomials.
- Projected Lax conjecture true "for most points"

Today: first (conditional) superpoly lower bound for explicit polynomials.

- General Lax Conjecture and Variants
- Conditional Lower Bounds on Spectrahedral Representation
- Conclusion
- Acknowledgements

General Lax Conjecture - Equivalent Formulation $h(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ hyperbolic w.r.t. $\mathbf{e} \in \mathbb{R}^{m}$, does there exist $d \in \mathbb{N}$ and symmetric $d \times d$ matrices A_{1}, \ldots, A_{m} such that

$$
\begin{aligned}
& \Lambda_{+}(h, \mathbf{e})= \frac{\left\{\mathbf{c} \in \mathbb{R}^{m} \mid \sum_{i} c_{i} \cdot A_{i} \succeq 0\right\}}{\text { LMI }} \\
&\left.\sum A_{i} e_{i}\right\} 0
\end{aligned}
$$

(with nonempty interior)

General Lax Conjecture - Equivalent Formulation

 $h(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ hyperbolic w.r.t. $\mathbf{e} \in \mathbb{R}^{m}$, does there exist $d \in \mathbb{N}$ and symmetric $d \times d$ matrices A_{1}, \ldots, A_{m} such that$$
\Lambda_{+}(h, \mathbf{e})=\left\{\mathbf{c} \in \mathbb{R}^{m} \mid \sum_{i} c_{i} \cdot A_{i} \succeq 0\right\}
$$

Definition (Definite Determinantal Representations)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ has a definite determinantal representation at $\mathbf{e} \in \mathbb{R}^{m}$ if there are symmetric matrices A_{1}, \ldots, A_{m} s.t.:

- $\sum_{i} e_{i} \cdot A_{i} \succ 0$
- $h(\mathbf{x})=\operatorname{det}\left(\sum_{i} x_{i} \cdot A_{i}\right)$

General Lax Conjecture - Equivalent Formulation

 $h(\mathbf{x}) \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ hyperbolic w.r.t. $\mathbf{e} \in \mathbb{R}^{m}$, does there exist $d \in \mathbb{N}$ and symmetric $d \times d$ matrices A_{1}, \ldots, A_{m} such that$$
\Lambda_{+}(h, \mathbf{e})=\left\{\mathbf{c} \in \mathbb{R}^{m} \mid \sum_{i} c_{i} \cdot A_{i} \succeq 0\right\}
$$

Definition (Definite Determinantal Representations)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ has a definite determinantal representation at $\mathbf{e} \in \mathbb{R}^{m}$ if there are symmetric matrices A_{1}, \ldots, A_{m} s.t.:

- $\sum_{i} e_{i} \cdot A_{i} \succ 0$
- $h(\mathbf{x})=\operatorname{det}\left(\sum_{i} x_{i} \cdot A_{i}\right)$

Proposition (General Lax Conjecture - Equivalent Formulation)

Each hyperbolic polynomial $h(\mathbf{x})$ at $\mathbf{e} \in \mathbb{R}^{m}$ can be multiplied by another hyperbolic polynomial $q(\mathbf{x})$ at \mathbf{e}, such that $\Lambda_{+}(h, \mathbf{e}) \subseteq \Lambda_{+}(q, \mathbf{e})$ and the polynomial $h(\mathbf{x}) \cdot q(\mathbf{x})$ has a definite determinantal representation.

Minimal Defining Polynomials

- A set $\mathcal{C} \subset \mathbb{R}^{m}$ is an algebraic interior if there is a polynomial $p(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ such that \mathcal{C} is the closure of a connected component of

$$
\left\{\mathbf{a} \in \mathbb{R}^{m} \mid p(\mathbf{a})>0\right\}
$$

p is called a defining polynomial of \mathcal{C}

Minimal Defining Polynomials

- A set $\mathcal{C} \subset \mathbb{R}^{m}$ is an algebraic interior if there is a polynomial $p(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ such that \mathcal{C} is the closure of a connected component of

$$
\left\{\mathbf{a} \in \mathbb{R}^{m} \mid p(\mathbf{a})>0\right\}
$$

p is called a defining polynomial of \mathcal{C}

- If \mathcal{C} is an algebraic interior, then a minimal degree polynomial defining \mathcal{C} is unique (up to units) minimal defining polynomial of \mathcal{C}

Minimal Defining Polynomials

- A set $\mathcal{C} \subset \mathbb{R}^{m}$ is an algebraic interior if there is a polynomial $p(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ such that \mathcal{C} is the closure of a connected component of

$$
\left\{\mathbf{a} \in \mathbb{R}^{m} \mid p(\mathbf{a})>0\right\}
$$

p is called a defining polynomial of \mathcal{C}

- If \mathcal{C} is an algebraic interior, then a minimal degree polynomial defining \mathcal{C} is unique (up to units) minimal defining polynomial of \mathcal{C}
- If p is the minimal defining polynomial of \mathcal{C}, any other defining polynomial q of \mathcal{C} must be a multiple of p in the following way:

$$
\operatorname{det}\left(\sum m_{i} A_{i}\right) \quad q(\mathbf{x})=p(\mathbf{x}) \cdot h(\mathbf{x})
$$

where h is strictly positive on a dense connected subset of \mathcal{C}

$$
\Lambda_{+}(h, \bar{e}) \supset \Lambda_{+}(p, \bar{e})
$$

Factoring and Circuit Size

Theorem (Factors are closed in VP [Kaltofen 1989])

If a polynomial is in VP (i.e. has polynomial degree in the number of variables and can be computed by poly-sized algebraic circuits), then so do all of its factors.

Factoring and Circuit Size

Theorem (Factors are closed in VP [Kaltofen 1989])

If a polynomial is in VP (i.e. has polynomial degree in the number of variables and can be computed by poly-sized algebraic circuits), then so do all of its factors.

Corollary" (Factors are closed in VP [Kaltofen 1989])
If a polynomial is not in VP, then no multiple of this polynomial is in $V P$ either.

Main Result: Conditional Lower Bounds

Definition (Matching Polynomial [Amini 2019])

Let $G(V, E)$ be an undirected graph $\mathbf{x}=\left(x_{v}\right)_{v \in V}, \mathbf{w}=\left(w_{e}\right)_{e \in E}$ be indeterminate.

- $\mathcal{M}(G)$ be the set of all matchings of $G, \mathcal{M}(G) \subseteq 2^{E}$
- for $M \in \mathcal{M}(G)$ let $V(M)$ be the vertices in this matching

$$
\mu_{G}(\mathbf{x}, \mathbf{w})=\sum_{M \in \mathcal{M}(G)}(-1)^{|M|} \cdot \prod_{v \notin V(M)} x_{v} \cdot \prod_{e \in M} w_{e}^{2} .
$$

Amini showed that this polynomial is hyperbolic and the hyperbolicity cone of μ_{G} is spectrahedral.

Amini constructed spectrahedral representation dimension x !

Main Result: Conditional Lower Bounds

Definition (Matching Polynomial [Amini 2019])

Let $G(V, E)$ be an undirected graph $\mathbf{x}=\left(x_{v}\right)_{v \in V}, \mathbf{w}=\left(w_{e}\right)_{e \in E}$ be indeterminates.

- $\mathcal{M}(G)$ be the set of all matchings of $G, \mathcal{M}(G) \subseteq 2^{E}$
- for $M \in \mathcal{M}(G)$ let $V(M)$ be the vertices in this matching

$$
\mu_{G}(\mathbf{x}, \mathbf{w})=\sum_{M \in \mathcal{M}(G)}(-1)^{|M|} \cdot \prod_{V \notin V(M)} x_{V} \cdot \prod_{e \in M} w_{e}^{2} .
$$

Amini showed that this polynomial is hyperbolic and the hyperbolicity cone of μ_{G} is spectrahedral. $\bar{e}=\left(1_{V}, D_{E}\right)$

Theorem (Lower Bounds for Spectrahedral Representations)

If $G=K_{n, n}$ is the complete bipartite graph, then the minimal spectrahedral representation of the hyperbolicity cone of μ_{G} is superpolynomial, assuming that VP $\neq V N P$.

Proof strategy: $\quad\left(\mu=\mu_{u_{n}, n}, \bar{e}\right)$

1) μ is VWP-hard
2) μ is irreducible $\binom{\mu$ is minimal defining polynomial }{ of ins hypabolicity cone w.n.t. $\bar{e}}$
3) Kaltofen's result to show that any definite determinatal representation must be large.

VNP-hardness of Matching Polynomial $\quad G=k_{n, n}$

$$
\begin{aligned}
& \mu(\bar{x}, \bar{w})= \sum_{M \in M}(-1)^{|\mu|} \prod_{\sigma d,(x) \mid} x_{v} \prod_{\bar{j} \in \mu} \omega_{\bar{i}}^{2} \\
& \mu(\overline{0}, \bar{\omega})=(-1)^{n} \sum_{\sigma \in S_{n}} \prod_{i=1}^{n} \omega_{i \sigma(i)}^{2} \\
&=(-1)^{n} \cdot \operatorname{Per}(W) \\
& W_{i j}=\omega_{i j}^{2} \\
& \mu(\overline{0}, \sqrt{1-\bar{u}})=(-1)^{n} \operatorname{Per}(J-U)
\end{aligned}
$$

 conpeper.

VNP－hardness of Matching Polynomial
4ロ・4句〉4 三•

VNP－hardness of Matching Polynomial
4ロ・4句〉4 三•

Irreducibility of Matching Polynomial

$$
\begin{aligned}
& \mu(\bar{x}, \bar{\omega})=\sum_{M \in M}(-1)^{|\mu|} \prod_{v \nless v(\mu)} x_{\dot{e} \in M} \omega_{E}^{2} \\
& \mu=p(\bar{x}, \bar{w}) \cdot q(\bar{x}, \bar{w}) \\
& \square_{n_{n o t}} x_{1} x_{2} \\
& \underbrace{\mu(\bar{\omega})}_{(-1)^{n} \cdot \operatorname{per}\left(\overline{0} \omega^{2}\right)}=\underbrace{p(\overline{0}, \bar{w})}_{0 x_{1} x_{2} m} \cdot q(\underbrace{(\overline{0}, \bar{w})}_{x_{1} n_{n}} \\
& \underbrace{\operatorname{Per}\left(\omega^{2}\right)}_{\text {irreducible }} 0_{1}^{0} x_{1} x_{2} \quad \mu\left(\overline{x_{1}}, \overline{0}\right)=\prod_{v / M}^{x_{0}} x_{0} \\
& \text { ("ionic") }
\end{aligned}
$$

Proof: Factoring Implies Multiples are Hard too

$$
\underbrace{\operatorname{det}\left(\sum A_{i} x_{i}+\sum B_{e} \omega_{e}\right)}=\mu \cdot q(\bar{x}, \dot{\omega})
$$

spectratubival repuestalion

1) $\operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{c}\right)$ supospdy done
2)

$$
\begin{aligned}
& \operatorname{dim}\left(A_{i}\right)=\operatorname{dim}\left(B_{c}\right)=n^{c} \quad \therefore \begin{array}{l}
V P \neq V N P \\
\text { contrad }
\end{array} \\
& \Rightarrow \operatorname{det}\left(\sum A_{i} x_{i}+\sum B_{e} \omega_{e}\right) \in U P \\
& \therefore \text { controd: } \\
& \text { cton }
\end{aligned}
$$

Conclusion

- Today we learned about the general Lax conjecture and their variants, including computational ones!
- All of them are open
- Connections to algebraic complexity, convex algebraic geometry, real algebraic geometry and real-stability!

Acknowledgement

- Lecture based largely on [Oliveira 2020]

References I

Helton, J William and Vinnikov, Victor (2007)
Linear matrix inequality representation of sets
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 60(5), 654-674.

國 Kaltofen, Erich (1989)
Factorization of polynomials given by straight-line programs
Randomness and Computation 5, 375-412
R- Kummer, Mario (2016)
Two results on the size of spectrahedral descriptions
SIAM Journal on Optimization, 26(1), 589-601.
Raghavendra, Prasad and Ryder, Nick and Srivastava, Nikhil and Weitz, Benjamin (2019)

Exponential lower bounds on spectrahedral representations of hyperbolicity cones
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms 2322 - 2332

References II

Netzer, Tim, and Raman Sanyal (2015)
Smooth hyperbolicity cones are spectrahedral shadows.
Mathematical Programming 153, no. 1 (2015): 213-221.
뭉
Amini, Nima (2019)
Spectrahedrality of hyperbolicity cones of multivariate matching polynomials Journal of Algebraic Combinatorics 50(2), 165 - 190Oliveira, Rafael (2020)
Conditional Lower Bounds on the Spectrahedral Representation of Explicit Hyperbolicity Cones
45th International Symposium on Symbolic and Algebraic Computation (ICALP)

[^0]: ${ }^{1}$ SDP deals with projections of spectrahedral sets (spectrahedral shadows)

