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Affine Subspaces, Hulls & Linear Functionals

Let V be a R-vector space and L ⊂ V be a subspace

Any translation A = L + u is called affine subspace of V

The dimension of A is the dimension of L

A linear functional is a map f : V → R such that

f (αu + βv) = αf (u) + βf (v)

for all α, β ∈ R, u, v ∈ V .

An affine hyperplane

H := {u | f (u) = α}

for (non-zero) linear functional f and α ∈ R
A linear combination

α1v1 + · · ·+ αnvn, where α1 + · · ·+ αn = 1

is an affine combination. The affine hull of a set X ⊂ V , denoted
aff (X ), is the set of all affine combinations of points of X .
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Quotients, Projections and Codimension

Let V be a R-vector space and L ⊂ V be a subspace

The quotient space V /L is the set of affine subspaces parallel to L, i.e.

V /L := {A ⊂ V | A = L + u, for u ∈ V }/ ∼

where
L + u1 ∼ L + u2 ⇔ u1 − u2 ∈ L

The dimension of V /L is the codimension of L

The linear transformation

Π : V → V /L, Π(u) = L + u

is the projection onto the quotient space V /L
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Halfspaces, Isolation and Separation

Let V be a R-vector space and H ⊂ V be a hyperplane

H = {u ∈ V | f (u) = α}

The complement
V \ H = H+ t H−

union of two open convex sets, the open halfspaces

A hyperplane H ⊂ V isolates a set A ⊂ V iff A ⊂ H− or A ⊂ H+.
H strictly isolates A iff A ⊂ H− or A ⊂ H+.

A hyperplane H ⊂ V separates sets A,B ⊂ V iff A ⊂ H− AND
B ⊂ H+ (or vice-versa).
H strictly separates A and B iff A ⊂ H− AND B ⊂ H+ (or vice-versa).
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Algebraically Open Subsets

Let V be R-vector space and A ⊂ V

A is algebraically open if the intersection of A with every straight line
in V is an open interval (possibly empty)
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Isolation Theorem

Theorem (Isolation Theorem)

Let V be a vector space, A ⊂ V an algebraically open convex set, and
u 6∈ A be a point. Then there is an affine hyperplane H which contains u
and strictly isolates A.

May assume w.l.o.g. that u = 0

Let us prove the theorem for V = R2.
1 Let S = {x ∈ R2 | ‖x‖ = 1} unit circle

2 Project A radially into S v 7→ v/‖v‖
3 A connected (since it is convex) ⇒ image of projection is a connected

arc Γ ⊂ S
4 A algebraically open ⇒ Γ is an open arc

Γ = {(cos θ, sin θ) | α < θ < β}

5 α− β ≤ π, otherwise Γ would contain antipodal points and thus 0 ∈ A
6 Thus, if y ∈ R2 is an endpoint of Γ (thus not in Γ), the line through 0

and y is our desired hyperplane.
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Isolation Theorem

We have proved isolation theorem in R2. Let’s generalize.

If dim(V ) ≥ 2, let’s prove that there is a straight line L through 0
such that L ∩ A = ∅.
Take any plane B ⊂ V such that 0 ∈ B.

B ∩ A is a convex algebraically open set.
By previous slide, we have a line L ⊂ B through 0 such that L ∩ A = ∅.

Let H ⊂ V be the maximal (under set inclusion) affine subspace such
that 0 ∈ H and H ∩ A = ∅.
We’ll prove H is a hyperplane:

1 Let Π : V → V /H be the projection map
2 If H not hyperplane, dim(V /H) ≥ 2 and Π(A) convex algebraically

open subset of V /H

3 By previous slide, there is a line L ∈ V /H such that 0 ∈ L and
L ∩ Π(A) = ∅

4 Taking preimage of L we contradict maximality of H
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Interior and Boundary

A ⊂ Rd be a set

Point u ∈ A is an interior point of A if there is ε > 0 such that

Bε(u) ⊂ A

the interior of A

int(A) := {u ∈ A | u interior point of A}

The boundary of A, denoted ∂A, is ∂A := A \ int(A)

If A is convex, then so is int(A)

Theorem (Empty interior implies not full dimensional)

Let A ⊂ Rd be convex. If int(A) = ∅ then there is an affine subspace
L ⊂ Rd such that A ⊂ L and dim(L) < d .

The dimension of a convex set A is the dimension of the smallest
affine subspace that contains A. Convention: dim(∅) = −1.
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Faces and Exposed Points

K ⊂ Rd be a closed convex set

A (possibly empty) set F ⊂ K is a face of K if there is a hyperplane
H which

1 H isolates K
2 F = H ∩ K

If F is a point, then it is called an exposed point of K

If F 6= ∅,K then F is a proper face of K

The following theorem relates the boundary and faces

Theorem (Boundary point lies in a face)

Let K ⊂ Rd be a convex set where int(K ) 6= ∅. Let u ∈ ∂K be a point.
Then, there exists a hyperplane H - called a support hyperplane at u such
that u ∈ H and H isolates K .

37 / 57

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Faces and Exposed Points

K ⊂ Rd be a closed convex set

A (possibly empty) set F ⊂ K is a face of K if there is a hyperplane
H which

1 H isolates K
2 F = H ∩ K

If F is a point, then it is called an exposed point of K

If F 6= ∅,K then F is a proper face of K

The following theorem relates the boundary and faces

Theorem (Boundary point lies in a face)

Let K ⊂ Rd be a convex set where int(K ) 6= ∅. Let u ∈ ∂K be a point.
Then, there exists a hyperplane H - called a support hyperplane at u such
that u ∈ H and H isolates K .

38 / 57

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Faces and Exposed Points

K ⊂ Rd be a closed convex set

A (possibly empty) set F ⊂ K is a face of K if there is a hyperplane
H which

1 H isolates K
2 F = H ∩ K

If F is a point, then it is called an exposed point of K

If F 6= ∅,K then F is a proper face of K

The following theorem relates the boundary and faces

Theorem (Boundary point lies in a face)

Let K ⊂ Rd be a convex set where int(K ) 6= ∅. Let u ∈ ∂K be a point.
Then, there exists a hyperplane H - called a support hyperplane at u such
that u ∈ H and H isolates K .

39 / 57



Faces and Exposed Points

K ⊂ Rd be a closed convex set

A (possibly empty) set F ⊂ K is a face of K if there is a hyperplane
H which

1 H isolates K
2 F = H ∩ K

If F is a point, then it is called an exposed point of K

If F 6= ∅,K then F is a proper face of K

The following theorem relates the boundary and faces

Theorem (Boundary point lies in a face)

Let K ⊂ Rd be a convex set where int(K ) 6= ∅. Let u ∈ ∂K be a point.
Then, there exists a hyperplane H - called a support hyperplane at u such
that u ∈ H and H isolates K .

40 / 57



Extreme Points

V be a R-vector space and A ⊂ V be a set.

A point u ∈ A is an extreme point of A if for any two points b, c ∈ A

such that u =
b + c

2
, we have u = b = c

ex(A) is the set of extreme points of A

Given A ⊂ V non-empty and f : V → R a linear functional
1 If f attains its maximum (or minimum) on A at a unique point u ∈ A,

then u is an extreme point of A

2 If f attains its maximum (or minimum) α on A, let

B := {u ∈ A | f (u) = α}

then ex(B) ⊂ ex(A).
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Minkowski’s Theorem

Theorem (Minkowski’s Theorem - or finite-dimensional Krein-Milman)

Let K ⊂ Rd be a compact convex set. Then K is the convex hull of the
set of its extreme points.

K = conv(ex(K ))

Proof by induction on dimension d .

Base case: d = 0. In this case K is a point and the result follows.

If d > 0, we can assume that int(K ) 6= ∅, otherwise K lies in an
affine subspace of smaller dimension

Now let’s show that each point u ∈ K can be written as a convex
combination of ex(K )

if u ∈ ∂K then there is a face F ⊂ K that contains u and we are done
by induction, since ex(F ) ⊂ ex(K )

u ∈ int(K ) and u ∈ L a line, then compact convex K ⇒ L ∩ K is an
interval L ∩ K = [a, b], where a, b ∈ ∂K .
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Extreme points and Optimization

If K ⊂ Rd is compact and convex, and f : Rd → R be a linear
functional, then there is u ∈ ex(K ) such that f (u) ≥ f (x) for all
x ∈ K .

K compact ⇒ f attains a maximum value, α, on K

Let F = {u ∈ K | f (u) = α}
F is also compact convex, and non-empty

Minkowski’s theorem implies ex(F ) 6= ∅
ex(F ) ⊂ ex(K ) finishes the proof.
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Conclusion

Today we learned more basic definitions on convex sets

Isolation theorem

Basics on faces and extreme points

Minkowski’s Theorem

Importance of extreme points in optimization
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