# Lecture 2: Algebraic Circuits \& Algebraic Complexity 

Rafael Oliveira<br>University of Waterloo<br>Cheriton School of Computer Science<br>rafael.oliveira.teaching@gmail.com

January 13, 2021

## Overview

- Algebraic Complexity Classes
- Structural Results on Algebraic Circuits
- Conclusion
- Acknowledgements

Complexity Measures in Algebraic Circuits

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements

$$
p(x, y)=x^{2}+2 x y-3 y+1
$$

sparse reprentation

$$
\left(1, x^{2}\right),(2, x y),(-3, y),(1,1)
$$

dense representation

$$
\left[2,\left(1, x^{2}\right),(2, x y),\left(0, y^{2}\right),(0, x),(-3, y),(1,1)\right]
$$

Complexity Measures in Algebraic Circuits

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output

depth -2
depth $=$ parallel complexity

Complexity Measures in Algebraic Circuits

- circuit size: number of edges in the circuit, denoted by $\mathcal{S}(\Phi)$
- cost of ring elements: in classical algebraic complexity, there is unit cost for the use of any base ring element
- Sometimes we will add bit complexity of base ring elements
- circuit depth: length of longest direct path from an input to an output
- constant depth circuits: for circuits of constant depth, we don't place restriction on the fan-in of an edge.

Convention: whenever we don't specify depth, the famin of each gate is $\leq 2$ circuits of constant depth may have arbitrary fanin.

Examples - Constant Depth Circuits
$\sum \pi$-chess $\longleftrightarrow$ sparse polynomials

$$
\begin{aligned}
& \prod_{i=1}^{n}\left(x_{i}+1\right)
\end{aligned} 2^{n} \text { size } \sum \Pi \text {-ckts }, ~ \sum_{i=1}^{s} \prod_{j=1}^{d} e_{i j}\left(x_{1}, \ldots, x_{n}\right) .
$$

$\sum \Pi \sum \Pi$-ckts $\leftrightarrow \sum_{i=1}^{n} \prod_{j=1}^{d}{\underset{\text { sparse }}{ }{\underset{i}{i j}}_{\sum \pi}^{P_{i j}}}_{\text {polynomials }}$

Algebraic Formulas

- when the computation graph is a tree (ie., we don't reuse computation) we get an algebraic formula


Result: $p$ has che of size $s$, then $P$ has a formula of size $s^{\log d \log n}=s^{\log ^{2} n}$ poly-size cht $\subset$ quasi-poly formula.

Algebraic Branching Programs

- polynomials which are projections of the Iterated Matrix Multiplication (IMM) polynomial


$$
\begin{aligned}
& P_{1,1}=\sum_{k} x_{1 k}^{(1)} \cdot x_{k 1}^{(2)} \\
& {\left[X_{1} X_{2}\right]_{11}=P_{11}} \\
& P=X_{1} X_{2} \\
& P_{i j}
\end{aligned}
$$


$\sum \pi$ (varsin path)
$s-t$ path

$$
x \cdot x \cdot 1+y \cdot y \cdot(-1)=x^{2}-y^{2}
$$

Algebraic branching program

- Algebraic Complexity Classes
- Structural Results on Algebraic Circuits
- Conclusion
- Acknowledgements

Homogeneous Components
Theorem ([Strassen 1973])
If a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ can be computed by a circuit $\Phi$ of size $\mathcal{S}(\Phi)$, then the homogeneous components $H_{0}[p], H_{1}[p], \ldots, H_{r}[p]$ can be computed by a circuit of size $O\left(r^{2} \cdot \mathcal{S}(\Phi)\right)$.
nomogen caus
Proof: induction over depth.
Base: input gates homogeneous.


$$
\begin{aligned}
& p_{u}=p_{u}+p_{w} \\
& H_{r}\left[p_{u}\right]=H_{r}\left[p_{v}\right]+H_{r}\left[p_{w}\right]
\end{aligned}
$$



$$
\begin{aligned}
& p_{u}=p_{u} \cdot p_{w} \\
& f_{r}\left[p_{u}\right]=\sum_{d=0}^{n} H_{d}\left[p_{v}\right]
\end{aligned}
$$

$$
O(\log x) \stackrel{r \text { gats }}{\leftarrow}+\Psi^{P u, n}
$$

$H_{r-d}[P \omega],<$

## Universal Circuits

## Definition

A circuit $\Phi$ is called $(n, d, s)$-universal, if the following holds:
If $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)$ are homogeneous polynomials of degree $d$ which can be simultaneously computed by a circuit of size $s$, then there is a circuit $\Psi$ computing $f_{1}, \ldots, f_{n}$ with same computation graph as $\Phi$.
$\Phi$
嘼
$\Phi_{n}$

$x_{1}$
$x_{2}$

$x \quad x$
$x_{n}$

## Universal Circuits

## Definition

A circuit $\Phi$ is called ( $n, d, s$ )-universal, if the following holds:
If $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)$ are homogeneous polynomials of degree $d$ which can be simultaneously computed by a circuit of size $s$, then there is a circuit $\psi$ computing $f_{1}, \ldots, f_{n}$ with same computation graph as $\Phi$.

- $\Phi$ is $(n, d, s)$-universal if any circuit $\psi$ of size $\leq s$ computing homogeneous polynomials of degree $d$ are a projection of $\Phi$


## Universal Circuits

## Definition

A circuit $\Phi$ is called ( $n, d, s$ )-universal, if the following holds:
If $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)$ are homogeneous polynomials of degree $d$ which can be simultaneously computed by a circuit of size $s$, then there is a circuit $\Psi$ computing $f_{1}, \ldots, f_{n}$ with same computation graph as $\Phi$.

- $\Phi$ is $(n, d, s)$-universal if any circuit $\psi$ of size $\leq s$ computing homogeneous polynomials of degree $d$ are a projection of $\Phi$
- Normal-homogeneous form:
- all input gates are labelled by a variable
- all edges leaving input gates are connected to sum gates
- all output gates are sum gates
- alternating sum-product layers

- fanin of each product gate is exactly 2
- out-degree of each addition gate is $\leq 1$

Universal Circuits
Theorem ([Raz 2008])
For any integers $s \geq n$ and $d$, we can construct in time poly( $s, d$ ) a circuit $\Phi$ in normal-homogeneous form with at most $O(5)$ nodes that is ( $n, d, s$ )-universal. $s \cdot d^{4}$

- For every circuit $\Psi$, there is a circuit $\chi$ in normal homogeneous form computing all polynomials that $\psi$ computes $O\left(1 \cdot d^{2}\right)$


Universal Circuits
Theorem ([Raz 2008])
For any integers $s \geq n$ and $d$, we can construct in time poly( $s, d$ ) a circuit $\Phi$ in normal-homogeneous form with at most $O\left(s^{4} d\right)$ nodes that is ( $n, d, s$ )-universal.

- Every circuit $\Psi$ in normal homogeneous form is a projection of the

lilmost all polynomials are hard to compute

Corollary: the set of polynomials which can be computed by small circuits has "measure zero" over $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.
Prof: look $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]_{d}$ $\operatorname{dim}\binom{n+d-1}{d} \quad d^{n}$ or $n^{d}$
if polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] d$ computed by cut of size $s$ them
$f$ con be computed by projection of universal chat $O\left(s d^{4}\right)(\operatorname{poly}(n))$

unisersal cht

$$
\begin{aligned}
& \operatorname{Im}(\Phi) \supset\{f \mid \underset{\substack{\text { by smale } \\
\text { chto }}}{ } \text { computed } \\
& \operatorname{dim}(\overline{\operatorname{Im}(\Phi)}) \leq O\left(s d^{4}\right) \\
& \ll\binom{n+d-1}{d}
\end{aligned}
$$

$\Rightarrow$ most polys hard.

Computing Partial Derivatives
Theorem ([Bur, Strassen 1983])
If a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ can be computed by a circuit $\phi$ of size $\underline{s}$ and depth $\underline{d}$, then there is a circuit $\Psi$ of size $O(s)$ and depth $\underline{O(d)}$ computing (simultaneously) the polynomials $\partial_{1} p, \partial_{2} p, \ldots, \partial_{n} p$.
Notation: $v, \omega$ two gates in $\Phi$
computing $f_{v}, f_{\omega} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
if delete wires into $\omega$ (make it "input") and label it by new variable $y$, then

- $\Phi_{\omega=y}$ is sun new cut
- $f v, w\left(x_{1}, \ldots, x_{n}, y\right)$ polynomial computed in gate $v$ in $\Phi_{\omega}=y$.

Computing Partial Derivatives
Theorem ([Barr, Strassen 1983])
If a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ can be computed by a circuit $\Phi$ of size $s$ and depth d, then there is a circuit $\psi$ of size $O(s)$ and depth $O(d)$ computing (simultaneously) the polynomials $\partial_{1} p, \partial_{2} p, \ldots, \partial_{n} p$.

- Taking partial derivative with respect to a gate

Computing Partial Derivatives

- Induction on circuit size

Base case: input gates
Induction cut size: $\Phi$ let $\omega$ be the lowest gate that we have not computed $\Psi_{\partial_{1} f \omega} \cdots \Psi_{\partial_{n} f_{w}}$

$$
S\left(\Phi_{\omega=y}\right) \leqslant S(\Phi)-1 \quad \text { (removed twe edge) }
$$

By induction can compute $\Psi_{\omega=y}$

Computing Partial Derivatives
Chain rule:

$$
\begin{aligned}
& \partial_{i} f_{v}=\left.\partial_{i} f_{v, \omega}\right|_{y=\underline{f_{w}}}+\begin{array}{l}
\text { be subcht } \\
s(\psi)+s(\Phi)
\end{array} \\
& \underbrace{\left.\partial_{y} f_{v i \omega}\right|_{y=f u}}_{\text {in } \psi_{\omega=y}} \cdot \underbrace{\partial_{i} f_{\omega}}_{\text {in } \psi_{\omega=y}}
\end{aligned}
$$

compute $\partial_{\text {if }}$ by adding constant number of edges.

Computing Partial Derivatives
Open problem: can we also compute second order partial derivatives with only a constant blow-up in cat size?
Consequence: if yes, we would get that matrix multiplication can be computed in $O\left(n^{2}\right)$ time.

Practice problem: prove this consequence.

## Depth Reduction

## Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d$ can be computed by a circuit of size $s$, there is a homogeneous circuit $\Phi$ of size poly $(d, s)$ computing $p$ such that:
(1) $\Phi$ has alternating levels of sum and product gates
(2) each product gate $v \in \Phi$ computes the product of five polynomials, each of degree $\leq 2 \cdot \operatorname{deg}(v) / 3$
(3) Sum gates have arbitrary fanin \} $O(\log s)$ depth foin 2 In particular, the number of levels in $\Phi$ is $O(\log d)$.
The above yields circuit (with fanin 2 for every gate) of depth

$$
O(\log d(\log d+\log s))
$$

\#levels $C$ sum gates fanin 2

## Depth Reduction

$N C^{1} \subset N C^{2} \subset \cdots$

## Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d$ can be computed by a circuit of size s, there is a homogeneous circuit $\Phi$ of size poly $(d, s)$ computing $p$ such that:
(1) $\Phi$ has alternating levels of sum and product gates
(2) each product gate $v \in \Phi$ computes the product of five polynomials, each of degree $\leq 2 \cdot \operatorname{deg}(v) / 3$
(3) Sum gates have arbitrary fanin

In particular, the number of levels in $\Phi$ is $O(\log d)$.
The above yields circuit (with fanin 2 for every gate) of depth

$$
O(\log d(\log d+\log s))
$$

## Corollary

$$
V P=V N C^{2}
$$

## Depth Reduction

Theorem (Depth Reduction for Formulas)
If $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is computed by a formula of size $s$, then $p\left(x_{1}, \ldots, x_{n}\right)$ can also be computed by a formula of depth $O(\log s)$.
$\Phi$ sizc s

$$
\underbrace{O}_{i / 2}>+2
$$

find gate $v$ s.t. $S\left(\Phi_{v}\right)$ satinfies

$$
\begin{aligned}
& \Phi_{v=y} \frac{\Delta}{3} \leq S\left(\Phi_{v}\right) \leq \frac{2 s}{3} \\
& f_{v=y}=y \cdot \partial_{v} f+\left.f_{v=y}\right|_{y=0} \\
& \text { formule } \\
& \qquad \underbrace{}_{y}=\overbrace{f_{0}\left(\Phi_{v}\right)}
\end{aligned}
$$

Depth Reduction $\frac{\Delta}{3} \leq S\left(\Phi_{v}\right) \leq \frac{2 \Delta}{3}$

$$
\begin{aligned}
& \left(\frac{2}{3}\right)^{i} s \rightarrow O(i) \\
& i=O(\log s) \quad \leq \frac{2 \Delta}{3} \quad s-S\left(\Phi_{0}\right) \leq \frac{2 \Delta}{3} \\
& f=\tilde{f}_{v} \cdot \underbrace{\partial_{v} f}_{\leq 2 \Delta}+\left.f_{0=y}\right|_{y=0} \\
& \text { (4) } \\
& \text { (s) } \\
& \Phi=A \cdot B+C \\
& \Delta(A), s(B), \Delta(C) \leq \frac{2 s}{3}
\end{aligned}
$$

Depth Reduction

$$
V P_{\text {frimpas }} \subset V N C^{\perp}
$$

Our world map so far


## Conclusion

- Today we learned some additional algebraic complexity classes
- constant depth circuits (formulas)
- algebraic branching programs
- algebraic formulas
- Construction of universal circuit
- Efficient computation of partial derivatives using algebraic circuits
- Depth reduction
- Consequences to algebraic complexity


## Acknowledgement

- Lecture based largely on:
- Excellent survey [Shpilka \& Yehudayoff 2010, Chapter 2] https://www.nowpublishers.com/article/Details/TCS-039


## References I

$\square$ Valiant, L. and Skyum, S. and Berkowitz, S. and Rackoff, C. 1983.
Fast parallel computation of polynomials using few processors
SIAM Journal on Computing
B. Baur, W. and Strassen, V. 1983.

The complexity of partial derivatives
Theoretical Computer Science
Shpilka, Amir and Yehudayoff, Amir 1982.
Arithmetic circuits: a survey of recent results and open questions Foundations and Trends in Theoretical Computer Science

Raz, Ran 2008.
Elusive functions and lower bounds for arithmetic circuits
STOC
Strassen, Volker 1973.
Vermeidung von Divisionen
The Journal fur die Reine und Angewandte Mathematik

