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Complexity Measures in Algebraic Circuits

@ circuit size: number of edges in the circuit, denoted by S(®)

@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

@ Sometimes we will add bit complexity of base ring elements
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Complexity Measures in Algebraic Circuits

@ circuit size: number of edges in the circuit, denoted by S(®)

@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

@ Sometimes we will add bit complexity of base ring elements
@ circuit depth: length of longest direct path from an input to an output
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Complexity Measures in Algebraic Circuits

@ circuit size: number of edges in the circuit, denoted by S(®)

@ cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

@ Sometimes we will add bit complexity of base ring elements
@ circuit depth: length of longest direct path from an input to an output

@ constant depth circuits: for circuits of constant depth, we don't place

restriction on the fan-in of an edge.
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Examples - Constant Depth Circuits
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Algebraic Formulas

@ when the computation graph is a tree (i.e., we don't reuse
computation) we get an algebraic formula
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Algebraic Branching Programs

@ polynomials which are projections of the [terated Matrix
Multiplication (IMM) polynomial
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@ Structural Results on Algebraic Circuits



Homogeneous Components

Theorem ([Strassen 1973])

If a polynomial p(xi,...,xn) € F[xi,...,xn| can be computed by a circuit
® of size S(P), then the homogeneous components Hy[p], Hi[p], - - ., Hr[p]
can be computed by acircuit of size O(r? - S(®)). — ”
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Universal Circuits

Definition

A circuit @ is called (n, d, s)-universal, if the following holds:
If A(x1,---yXn),---,f(x1,-..,%,) are homogeneous polynomials of degree

d which can be simultaneously computed by a circuit of size s, then there
is a circuit‘\ll &omputing fi,..., f, with same computation graph as@.
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Universal Circuits

Definition

A circuit @ is called (n, d, s)-universal, if the following holds:

If A(x1,---yXn),---,f(x1,-..,%,) are homogeneous polynomials of degree
d which can be simultaneously computed by a circuit of size s, then there
is a circuit W computing f, ..., f, with same computation graph as ¢.

e ®is (n,d,s)-universal if any circuit W of size < s computing
homogeneous polynomials of degree d are a projection of ¢



Universal Circuits

Definition

A circuit @ is called (n, d, s)-universal, if the following holds:

If A(x1,---yXn),---,f(x1,-..,%,) are homogeneous polynomials of degree
d which can be simultaneously computed by a circuit of size s, then there
is a circuit W computing f, ..., f, with same computation graph as ¢.

e ®is (n,d,s)-universal if any circuit W of size < s computing
homogeneous polynomials of degree d are a projection of ¢
@ Normal-homogeneous form:

e all input gates are labelled by a variable Q\

o all edges leaving input gates are connected to sum gates é ? ?
e all output gates are sum gates X, Xu ¥
e alternating sum-product layers

e fanin of each product gate is exactly 2 }Q

Ywe ]o out-degree of each addition gate is <1
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Universal Circuits
Theorem ([Raz 2008])

For any integers s > n and d, we can construct in time poly(s, d) a circuit

® in normal-homogeneous form with at most O( MZ nodes that is
(n, d,s)-universal. a-d

@ For every circuit W, there is a circuit x in normal homogeneous form
. . k3
computing all polynomials that W computes O(s -d
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Universal Circuits

Theorem ([Raz 2008])

For any integers s > n and d, we can construct in time poly(s, d) a circuit

® in normal-homogeneous form with at most O(s*d) nodes that is
(n,d,s)-universal.

@ Every circuit W in normal homogeneous form is a projection of the
universal circuit xY
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. . . . w — w
Computing Partial Derivatives /G'{ @

Theorem ([Baur, Strassen 1983])

If a polynomial p(xi,...,xn) € F[xi,...,xn| can be computed by a circuit
® of size s and depth d, then there is a circuit W of size O(s) and depth

O(d) computing (simultaneously) the polynomials &1p, ap, ... ., Onp.
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Computing Partial Derivatives

Theorem ([Baur, Strassen 1983])

If a polynomial p(xi,...,xn) € F[xi,...,xn| can be computed by a circuit
® of size s and depth d, then there is a circuit V of size O(s) and depth

O(d) computing (simultaneously) the polynomials 01p, 0ap, . . ., Onp.

o Taking partial derivative with respect to a gate
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Computing Partial Derivatives E_E q}
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@ Induction on circuit size
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Computing Partial Derivatives
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Computing Partial Derivatives
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Depth Reduction
Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial p(xi, ..., xn) € F[x1,...,x,] of degree d can
be computed by a circuit of size s, there is a homogeneous circuit ® of
size poly(d, s) computing p such that:

@ & has alternating levels of sum and product gates

@ ecach product gate v € & computes the product of five polynomials,
each of degree < 2 -deg(v)/3

© Sum gates have arbitrary fanin '& O(Reg 4) degtn fonin 2
In particular, the number of levels in ® is O(log d).

The above yields circuit (with fanin 2 for every gate) of depth

O(log d(log d + log s))
-
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Depth Reduction AC c NCc © -~
Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial p(xi, ..., xn) € F[x1,...,x,] of degree d can
be computed by a circuit of size s, there is a homogeneous circuit ® of
size poly(d, s) computing p such that:

@ & has alternating levels of sum and product gates

@ ecach product gate v € & computes the product of five polynomials,
each of degree < 2 -deg(v)/3

© Sum gates have arbitrary fanin

In particular, the number of levels in ® is O(log d).
The above yields circuit (with fanin 2 for every gate) of depth

O(log d(log d + log s))
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Depth Reduction

Theorem (Depth Reduction for Formulas)

If p(x1,...,xn) € F[x1,...,x,] is computed by a formula of size s, then
p(xi,...,xn) can also be computed by a formula of depth O(log s).
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Depth Reduction
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Depth Reduction
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Our world map so far
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Conclusion

@ Today we learned some additional algebraic complexity classes
e constant depth circuits (formulas)
e algebraic branching programs
e algebraic formulas
@ Construction of universal circuit
o Efficient computation of partial derivatives using algebraic circuits
@ Depth reduction
@ Consequences to algebraic complexity
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