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Complexity Measures in Algebraic Circuits

circuit size: number of edges in the circuit, denoted by S(Φ)
cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

Sometimes we will add bit complexity of base ring elements
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Complexity Measures in Algebraic Circuits

circuit size: number of edges in the circuit, denoted by S(Φ)
cost of ring elements: in classical algebraic complexity, there is unit
cost for the use of any base ring element

Sometimes we will add bit complexity of base ring elements

circuit depth: length of longest direct path from an input to an output

constant depth circuits: for circuits of constant depth, we don’t place
restriction on the fan-in of an edge.
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Examples - Constant Depth Circuits
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Algebraic Formulas

when the computation graph is a tree (i.e., we don’t reuse
computation) we get an algebraic formula
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Algebraic Branching Programs

polynomials which are projections of the Iterated Matrix
Multiplication (IMM) polynomial

tr[X1X2 · · ·Xd ]
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Homogeneous Components

Theorem ([Strassen 1973])

If a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] can be computed by a circuit
Φ of size S(Φ), then the homogeneous components H0[p],H1[p], . . . ,Hr [p]
can be computed by a circuit of size O(r2 · S(Φ)).
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Universal Circuits

Definition

A circuit Φ is called (n, d , s)-universal, if the following holds:
If f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) are homogeneous polynomials of degree
d which can be simultaneously computed by a circuit of size s, then there
is a circuit Ψ computing f1, . . . , fn with same computation graph as Φ.
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Universal Circuits

Definition

A circuit Φ is called (n, d , s)-universal, if the following holds:
If f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) are homogeneous polynomials of degree
d which can be simultaneously computed by a circuit of size s, then there
is a circuit Ψ computing f1, . . . , fn with same computation graph as Φ.

Φ is (n, d , s)-universal if any circuit Ψ of size ≤ s computing
homogeneous polynomials of degree d are a projection of Φ

Normal-homogeneous form:

all input gates are labelled by a variable
all edges leaving input gates are connected to sum gates
all output gates are sum gates
alternating sum-product layers
fanin of each product gate is exactly 2
out-degree of each addition gate is ≤ 1
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Universal Circuits

Theorem ([Raz 2008])

For any integers s ≥ n and d, we can construct in time poly(s, d) a circuit
Φ in normal-homogeneous form with at most O(s4d) nodes that is
(n, d , s)-universal.

For every circuit Ψ, there is a circuit χ in normal homogeneous form
computing all polynomials that Ψ computes
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Universal Circuits

Theorem ([Raz 2008])

For any integers s ≥ n and d, we can construct in time poly(s, d) a circuit
Φ in normal-homogeneous form with at most O(s4d) nodes that is
(n, d , s)-universal.

Every circuit Ψ in normal homogeneous form is a projection of the
universal circuit

15 / 30









Computing Partial Derivatives

Theorem ([Baur, Strassen 1983])

If a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] can be computed by a circuit
Φ of size s and depth d, then there is a circuit Ψ of size O(s) and depth
O(d) computing (simultaneously) the polynomials ∂1p, ∂2p, . . . , ∂np.
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Computing Partial Derivatives

Theorem ([Baur, Strassen 1983])

If a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] can be computed by a circuit
Φ of size s and depth d, then there is a circuit Ψ of size O(s) and depth
O(d) computing (simultaneously) the polynomials ∂1p, ∂2p, . . . , ∂np.

Taking partial derivative with respect to a gate
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Computing Partial Derivatives

Induction on circuit size
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Computing Partial Derivatives
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Computing Partial Derivatives
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Depth Reduction

Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree d can
be computed by a circuit of size s, there is a homogeneous circuit Φ of
size poly(d , s) computing p such that:

1 Φ has alternating levels of sum and product gates

2 each product gate v ∈ Φ computes the product of five polynomials,
each of degree ≤ 2 · deg(v)/3

3 Sum gates have arbitrary fanin

In particular, the number of levels in Φ is O(log d).

The above yields circuit (with fanin 2 for every gate) of depth

O(log d(log d + log s))
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Depth Reduction

Theorem ([Valiant, Skyum, Berkowitz, Rackoff 1983])

If a homogeneous polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree d can
be computed by a circuit of size s, there is a homogeneous circuit Φ of
size poly(d , s) computing p such that:

1 Φ has alternating levels of sum and product gates

2 each product gate v ∈ Φ computes the product of five polynomials,
each of degree ≤ 2 · deg(v)/3

3 Sum gates have arbitrary fanin

In particular, the number of levels in Φ is O(log d).

The above yields circuit (with fanin 2 for every gate) of depth

O(log d(log d + log s))

Corollary

VP = VNC2
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Depth Reduction

Theorem (Depth Reduction for Formulas)

If p(x1, . . . , xn) ∈ F[x1, . . . , xn] is computed by a formula of size s, then
p(x1, . . . , xn) can also be computed by a formula of depth O(log s).
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Depth Reduction
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Depth Reduction
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Depth Reduction
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Our world map so far
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Conclusion

Today we learned some additional algebraic complexity classes

constant depth circuits (formulas)
algebraic branching programs
algebraic formulas

Construction of universal circuit

Efficient computation of partial derivatives using algebraic circuits

Depth reduction

Consequences to algebraic complexity
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