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Euclidean Space

Euclidean space V
1 V is R-vector space
2 V has positive definite inner product

〈·, ·〉 : V × V → R

Examples
1 Rd with usual inner product

2 If D =
(
n−1+d

d

)
, then RD with inner product defined by:

〈xa, xb〉 =

0, if a 6= b
a!

d!
, otherwise

Bombieri inner product on space of homogeneous polynomials of
degree d .
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Convex sets, convex combinations and convex hulls

Let V be our Euclidean space finite dimensional1

Given two points x , y ∈ V , let the interval [x , y ] be the set

[x , y ] = {αx + (1− α)y | α ∈ [0, 1]}

A set A ⊂ V is convex if

x , y ∈ A⇒ [x , y ] ⊂ A

Given a finite set of points X = {x1, . . . , xm} ⊂ V , a point y is a
convex combination of X iff

y = α1x1 + · · ·+ αmxm, where αi ≥ 0, and α1 + · · ·+ αm = 1

Given a set X ⊂ V , the convex hull of X , denoted conv(X ), is the set
of all convex combinations of finite subsets of X

1Only for the purpose of this course, though one can define convexity for
infinite-dimensional spaces. See [Barvinok 2002]

6 / 71



Convex sets, convex combinations and convex hulls

Let V be our Euclidean space finite dimensional1

Given two points x , y ∈ V , let the interval [x , y ] be the set

[x , y ] = {αx + (1− α)y | α ∈ [0, 1]}

A set A ⊂ V is convex if

x , y ∈ A⇒ [x , y ] ⊂ A

Given a finite set of points X = {x1, . . . , xm} ⊂ V , a point y is a
convex combination of X iff

y = α1x1 + · · ·+ αmxm, where αi ≥ 0, and α1 + · · ·+ αm = 1

Given a set X ⊂ V , the convex hull of X , denoted conv(X ), is the set
of all convex combinations of finite subsets of X

1Only for the purpose of this course, though one can define convexity for
infinite-dimensional spaces. See [Barvinok 2002]

7 / 71



Convex sets, convex combinations and convex hulls

Let V be our Euclidean space finite dimensional1

Given two points x , y ∈ V , let the interval [x , y ] be the set

[x , y ] = {αx + (1− α)y | α ∈ [0, 1]}

A set A ⊂ V is convex if

x , y ∈ A⇒ [x , y ] ⊂ A

Given a finite set of points X = {x1, . . . , xm} ⊂ V , a point y is a
convex combination of X iff

y = α1x1 + · · ·+ αmxm, where αi ≥ 0, and α1 + · · ·+ αm = 1

Given a set X ⊂ V , the convex hull of X , denoted conv(X ), is the set
of all convex combinations of finite subsets of X

1Only for the purpose of this course, though one can define convexity for
infinite-dimensional spaces. See [Barvinok 2002]

8 / 71



Convex sets, convex combinations and convex hulls

Let V be our Euclidean space finite dimensional1

Given two points x , y ∈ V , let the interval [x , y ] be the set

[x , y ] = {αx + (1− α)y | α ∈ [0, 1]}

A set A ⊂ V is convex if

x , y ∈ A⇒ [x , y ] ⊂ A

Given a finite set of points X = {x1, . . . , xm} ⊂ V , a point y is a
convex combination of X iff

y = α1x1 + · · ·+ αmxm, where αi ≥ 0, and α1 + · · ·+ αm = 1

Given a set X ⊂ V , the convex hull of X , denoted conv(X ), is the set
of all convex combinations of finite subsets of X

1Only for the purpose of this course, though one can define convexity for
infinite-dimensional spaces. See [Barvinok 2002]

9 / 71



Convex sets, convex combinations and convex hulls

Let V be our Euclidean space finite dimensional1

Given two points x , y ∈ V , let the interval [x , y ] be the set

[x , y ] = {αx + (1− α)y | α ∈ [0, 1]}

A set A ⊂ V is convex if

x , y ∈ A⇒ [x , y ] ⊂ A

Given a finite set of points X = {x1, . . . , xm} ⊂ V , a point y is a
convex combination of X iff

y = α1x1 + · · ·+ αmxm, where αi ≥ 0, and α1 + · · ·+ αm = 1

Given a set X ⊂ V , the convex hull of X , denoted conv(X ), is the set
of all convex combinations of finite subsets of X

1Only for the purpose of this course, though one can define convexity for
infinite-dimensional spaces. See [Barvinok 2002]

10 / 71



Convex hull as “convex closure”

Given a set S ⊂ V
1 conv(S) is convex
2 Any convex set A that contains S , contains conv(S)

So, the convex hull behaves as a closure of the set S under convexity.

To prove that conv(S) is a convex set: given two convex
combinations of elements of S

a =
m∑
i=1

αiui , and b =
n∑

i=1

βivi

the interval [a, b] satisfies

λa + (1− λ)b ∈ conv(S)

Now, if any convex set A contains S , let’s show that conv(S) ⊂ A
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Convex hull as “convex closure”

If convex set A contains S , let’s show that conv(S) ⊂ A

Let u ∈ conv(S)
u = α1u1 + · · ·+ αnun

need to prove that u ∈ A. Can assume αi > 0.

Prove by induction on n.

Base case n = 1 holds by definition. And case n = 2 holds since A is
convex.

Suppose it is true for n − 1. Write

u = (1− αn)w + αnun

where w =
1

1− αn
· (α1u1 + · · ·+ αn−1un−1)

w ∈ A, as w is convex combination of u1, . . . , un−1

Above proves that u ∈ [w , un] ⊂ A
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Gauss-Lucas Theorem
If f (z) ∈ C[z ] is a non-constant polynomial and α1, . . . , αm ∈ C are
its roots, seen as elements αi = (xi , yi ) ∈ R2, we have that the roots
of f ′(z) are in conv(α1, . . . , αm).

Note that f (z) =
m∏
i=1

(z − αi ) and thus

f ′(z) =
m∑
i=1

∏
j 6=i

(z − αj)

If β is a root of f ′(z), we have

0 = f ′(β) =
m∑
i=1

∏
j 6=i

(β − αj) ⇒ 0 = f ′(β) =
m∑
i=1

∏
j 6=i

(β − αj)

Multiplying both sides by f (z) we get

0 =
m∑
i=1

(β − αi ) ·
∏
j 6=i

|β − αj |2
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Gauss-Lucas Theorem

26 / 71

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Mikowski Sums

Given two convex sets A,B ⊂ V , their Minkowski sum is

A + B := {a + b | a ∈ A, b ∈ B}

It is a convex set

If B = {b} is a point, then Minkowski sum is the translation of A

If we have a number α ∈ R, then αA is a scaling (or dilation) of A

A surprising property:

If A ∈ Rd is a compact convex set and B = (−1/d) · A, then there is
a vector b ∈ Rd such that b + B ⊂ A.
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Carathéodory’s Theorem

Intuition: x ∈ A in a low-dimensional space, need few points of A to
represent x as a convex combination.

Carathéodory’s theorem proves just that!

Let S ⊂ Rd be a set. Then every point x ∈ conv(S) can be
represented as a convex combination of d + 1 points from S .

x ∈ conv(S) then write

x = α1y1 + · · ·+ αmym α1 + · · ·+ αm = 1

for some {y1, . . . , ym} ⊂ S .

If m ≤ d + 1 we are done. Otherwise, assume that m > d + 1 and
αi > 0 for all i ∈ [m]. Consider the following system:

γ1y1 + · · ·+ γmym = 0 and γ1 + · · ·+ γm = 0

Take nontrivial solution (γ1, . . . , γm)
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Proof of Carathéodory’s Theorem

Have m > d + 1 and αi > 0 for all i ∈ [m]. Consider the following
system:

γ1y1 + · · ·+ γmym = 0 and γ1 + · · ·+ γm = 0

Take nontrivial solution (γ1, . . . , γm)

Let
τ = min{αi/γi | γi > 0} = αi0/γi0

Have δi := αi − τγi satisfy:

δi0 = 0, δ1 + · · ·+ δm = 1, δi ≥ 0

So we got a representation of x as a convex combination of < m
points. Iterating this procedure we get our result.
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Convex hull and compactness

Carathéodory’s theorem has an important topological corollary

If S ⊂ V is a compact set, then conv(S) is compact.

Take the simplex

δ := {(α0, . . . , αd) | α0 + · · ·+ αd = 1, αi ≥ 0} ⊂ Rd+1

it is compact.

Thus, the direct product is also compact

Sd+1 × δ

The map Φ : Sd+1 ×∆→ Rd

Φ(y0, . . . , yd , α0, . . . , αd) = α0y0 + · · ·+ αdyd

is continuous, and Im(Φ) = conv(S) by Carathéodory.
Thus, conv(S) is also compact.
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Positive Polynomials

Let H(n, 2d) := R[x1, . . . , xn]2d be R-vector space of homogeneous
polynomials of degree 2d , equipped with the Bombieri inner product.

Orthogonal basis of H(n, 2d) given by monomials.

The set of positive polynomials P(n, 2d) ⊂ H(n, 2d) is the set

PD(n, 2d) := {p(x) ∈ H(n, 2d) | p(a) > 0, ∀a ∈ Rn}

The set of non-negative polynomials N(n, 2d) ⊂ H(n, 2d) is the set

PSD(n, 2d) := {p(x) ∈ H(n, 2d) | p(a) ≥ 0, ∀a ∈ Rn}
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Positive Polynomials

Let H(n, 2d) := R[x1, . . . , xn]2d be R-vector space of homogeneous
polynomials of degree 2d , equipped with the Bombieri inner product.

Orthogonal basis of H(n, 2d) given by monomials.

The set of positive polynomials P(n, 2d) ⊂ H(n, 2d) is the set

PD(n, 2d) := {p(x) ∈ H(n, 2d) | p(a) > 0, ∀a ∈ Rn}

The set of non-negative polynomials N(n, 2d) ⊂ H(n, 2d) is the set

PSD(n, 2d) := {p(x) ∈ H(n, 2d) | p(a) ≥ 0, ∀a ∈ Rn}
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Orthogonal Transformations

We have a group action of the orthogonal group O(n):

U ◦ p(x) = p(U−1x)

An invariant:
‖x‖2d2

It is the only invariant!
1 Let p(x) be a non-zero invariant of the action above. Let y ∈ Rn be

such that p(y) = γ 6= 0

2 Let q(x) = p(x)− γ · ‖x‖2d2
3 q(x) invariant and q(y) = 0 implies q(x) ≡ 0
4 Thus, p(x) = γ · ‖x‖2d2
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An Interesting Identity

There exist vectors c1, . . . , cm ∈ Rn such that

‖x‖2d2 =
m∑
i=1

〈ci , x〉2d

Let us consider unit sphere

Sn−1 := {c ∈ Rn | ‖c‖2 = 1}

the set
K = conv

(
〈c, x〉2d | c ∈ Sn−1

)
is compact, by our corollary of Carathéodory.

We will now prove that ‖x‖2d2 ∈ K , and by Carathéodory the identity
will hold.

Idea: average the polynomials 〈c, x〉2d over all vectors c ∈ Sn−1!
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An Interesting Identity
Idea: average the polynomials 〈c, x〉2d over all vectors c ∈ Sn−1!

Let dc be the Haar-measure on Sn−1 and let:

p(x) =

∫
Sn−1

〈c, x〉2ddc

p(x) is invariant!
By our lemma: p(x) = γ‖x‖2d2 for some γ > 0

γ > 0 because given a ∈ Sn−1, 〈c, a〉2d = 0 for a set of measure zero.

We can approximate the integral above by finite Riemann sum

p(x) ≈ 1

N
·

N∑
i=1

〈ci , x〉2d

thus p is in the closure of K .
K compact (thus closed) implies that p ∈ K , and by Carathéodory we
have

‖x‖2d2 =
D+1∑
i=1

〈ci , x〉2d
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have

‖x‖2d2 =
D+1∑
i=1

〈ci , x〉2d

64 / 71

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




An Interesting Identity
Idea: average the polynomials 〈c, x〉2d over all vectors c ∈ Sn−1!
Let dc be the Haar-measure on Sn−1 and let:

p(x) =

∫
Sn−1

〈c, x〉2ddc

p(x) is invariant!
By our lemma: p(x) = γ‖x‖2d2 for some γ > 0

γ > 0 because given a ∈ Sn−1, 〈c, a〉2d = 0 for a set of measure zero.

We can approximate the integral above by finite Riemann sum

p(x) ≈ 1

N
·

N∑
i=1

〈ci , x〉2d

thus p is in the closure of K .
K compact (thus closed) implies that p ∈ K , and by Carathéodory we
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Application: uniform sum-of-squares

Hilbert’s 17th problem: given a polynomial in PSD(n, 2d), can it be
written as a sum of quotients of square polynomials?

Uniform version:

Is there a polynomial p(x) ∈ H(n, 2d) such that given any polynomial
q(x) ∈ PSD(n, 2d), there is N ∈ N such that

p(x)N · q(x)

is a sum of square polynomials?

Pólya proved that the answer is YES!

Pólya & Reznick’s Theorem:

Can take p(x) = ‖x‖2d2
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Conclusion

Today we started our study of convexity from an algebraic perspective

Learned some structural results on convex sets

Carathéodory’s theorem

Saw applications of Carathéodory’s theorem to prove a Waring-type
result

Writing certain polynomial as sum of powers of linear forms.

Application to writing positive polynomials as sum of squares of a
particular rational function

Uniform version of Hilbert’s 17th problem.
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