Lecture 15: Scaling Algorithms

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com
March 8, 2021

Overview

- Nullcone Problem, and Scaling Algorithms
- Matrix Scaling \& Analysis
- Crash Course on Convex Optimization
- Conjugation Action - Teaser
- Conclusion

Orbit Closure Problems

- G acts linearly on V
- Orbit Closure Intersection: Given two points $u, w \in V$, do their orbit closures intersect?

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w} \neq \emptyset ?
$$

Orbit Closure Problems

- G acts linearly on V
- Orbit Closure Intersection: Given two points $u, w \in V$, do their orbit closures intersect?

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w} \neq \emptyset ?
$$

- If $w=0$, we get the null cone problem:

$$
0 \in \overline{\mathcal{O}}_{u} ?
$$

$$
\begin{array}{r}
\left\{g_{t}\right\}_{t \in \mathbb{N}} c \in s \cdot t \cdot \\
\lim _{t \rightarrow \infty} \mid\left(g_{t} \circ u l=0\right.
\end{array}
$$

Orbit Closure Problems

- G acts linearly on V
- Orbit Closure Intersection: Given two points $u, w \in V$, do their orbit closures intersect?

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w} \neq \emptyset ?
$$

- If $w=0$, we get the null cone problem:

$$
0 \in \overline{\mathcal{O}}_{u} ?
$$

- Null-cone problem has its name from the definition that the nullcone is the set of elements that have zero in their orbit closure.

$$
\mathcal{N}=\left\{u \in V \quad \mid 0 \in \overline{\mathcal{O}}_{u}\right\}
$$

Orbit Closure Problems

- G acts linearly on V
- Orbit Closure Intersection: Given two points $u, w \in V$, do their orbit closures intersect?

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w} \neq \emptyset ?
$$

- If $w=0$, we get the null cone problem:

$$
0 \in \overline{\mathcal{O}}_{u} ?
$$

- Null-cone problem has its name from the definition that the nullcone is the set of elements that have zero in their orbit closure.

$$
\mathcal{N}=\left\{u \in V \quad \mid 0 \in \overline{\mathcal{O}}_{u}\right\}
$$

- Orbit Closure Containment: Given two points $u, w \in V$, does the orbit of u contain the orbit closure of w ?

$$
\overline{\mathcal{O}}_{w} \subset \overline{\mathcal{O}}_{w} ?
$$

Orbit Closure Problems

- G acts linearly on V
- Orbit Closure Intersection: Given two points $u, w \in V$, do their orbit closures intersect?

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w} \neq \emptyset ?
$$

- If $w=0$, we get the null cone problem:

$$
0 \in \overline{\mathcal{O}}_{u} ?
$$

- Null-cone problem has its name from the definition that the nullcone is the set of elements that have zero in their orbit closure.

$$
\mathcal{N}=\left\{u \in V \quad \mid 0 \in \overline{\mathcal{O}}_{u}\right\}
$$

- Orbit Closure Containment: Given two points $u, w \in V$, does the orbit of u contain the orbit closure of w ?

$$
\overline{\mathcal{O}}_{w} \subset \overline{\mathcal{O}}_{w ?} ?
$$

- Given $u \in V$, is its orbit closed?

$$
\mathcal{O}_{u}=\overline{\mathcal{O}}_{u} ?
$$

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.
- [Hilbert-Mumford]: orbit closure intersection

$$
\begin{aligned}
& \overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w}=\emptyset \Leftrightarrow p(u) \neq p(w) \text { for some } \frac{p \in \mathbb{C}[V]^{G}}{\text { invariant }} \\
& \text { do not }
\end{aligned}
$$ in terseet

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.
- [Hilbert-Mumford]: orbit closure intersection

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w}=\emptyset \Leftrightarrow p(u) \neq p(w) \text { for some } p \in \mathbb{C}[V]^{G}
$$

(1) $G=\mathbb{S L}(2), V=\mathbb{C}^{d}$ linear transformations of curves Discriminants, Catalecticants (and more)

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.
- [Hilbert-Mumford]: orbit closure intersection

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w}=\emptyset \Leftrightarrow p(u) \neq p(w) \text { for some } p \in \mathbb{C}[V]^{G}
$$

(1) $G=\operatorname{SL}(2), V=\mathbb{C}^{d}$ linear transformations of curves Discriminants, Catalecticants (and more)
(2) $G=\mathbb{S L}(n), V=\operatorname{Mat}(n)$
left multiplication
Determinant

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.
- [Hilbert-Mumford]: orbit closure intersection

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w}=\emptyset \Leftrightarrow p(u) \neq p(w) \text { for some } p \in \mathbb{C}[V]^{G}
$$

(1) $G=\operatorname{SL}(2), V=\mathbb{C}^{d}$ linear transformations of curves Discriminants, Catalecticants (and more)
(2) $G=\mathbb{S L}(n), V=\operatorname{Mat}(n)$
left multiplication

> Determinant
(3) $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$ conjugation
Trace polynomials.

Orbit Problems and Invariant Polynomials

- [Hilbert 1893]: Nullcone is the zero set of non-constant, homogeneous invariant polynomials.
- [Hilbert-Mumford]: orbit closure intersection

$$
\overline{\mathcal{O}}_{u} \cap \overline{\mathcal{O}}_{w}=\emptyset \Leftrightarrow p(u) \neq p(w) \text { for some } p \in \mathbb{C}[V]^{G}
$$

(1) $G=\operatorname{SL}(2), V=\mathbb{C}^{d}$ linear transformations of curves
Discriminants, Catalecticants (and more)
(2) $G=\mathbb{S L}(n), V=\operatorname{Mat}(n)$
left multiplication

> Determinant
(3) $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$ conjugation
Trace polynomials.
(9) $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Matching/Permutation monomials.

Scaling Algorithms

- Is there a geometric way to approach such problems?
- Would help us when invariants are hard to obtain

Scaling Algorithms

- Is there a geometric way to approach such problems?
- Would help us when invariants are hard to obtain
- When our vector space has an inner product, motivates the following optimization question:

$$
\begin{aligned}
& \qquad \underline{\operatorname{cap}(u)}=\inf _{g \in G}\|g \circ u\|_{2} \\
& \text { Capacity } \\
& \text { of vector } u \quad \overline{G \cdot u}=\bar{O}_{u} \\
&
\end{aligned}
$$

Scaling Algorithms

- Is there a geometric way to approach such problems?
- Would help us when invariants are hard to obtain
- When our vector space has an inner product, motivates the following optimization question:

$$
\operatorname{cap}(u)=\inf _{g \in G}\|g \circ u\|_{2}
$$

- u in Nullcone iff $\operatorname{cap}(u)=0$

Matrix Scaling $\quad\left(\begin{array}{cc}1 / 3 & 2 / 3 \\ 2 / 3 & 1 / 3\end{array}\right)$

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Graphs without bipartite matching.

$$
\begin{aligned}
& S T(n)=\left\{\left.\left(\begin{array}{ll}
a_{1} & 0 \\
0 & a_{n}
\end{array}\right) \right\rvert\, \prod_{i=1}^{n} a_{i}=1\right\} \\
& S T(n) \times S T(n) \cdot M_{a} t(n) \\
& (X, Y) \quad A \longmapsto X A Y \\
& X_{i}(A)=R_{j}(A)=\frac{\mid A \|_{F}^{2}}{n}
\end{aligned}
$$

A is oloubly-balameed:
$R_{i}(A)=\sum_{j=1}^{n}\left|A_{i j}\right|^{2}$ norm squared of $i^{\text {th }}$ row
$C_{j}(A)=\sum_{i=1}^{n}\left|A_{i j}\right|^{2} \quad$ norm squoed of $j^{\text {th }}$ column

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Graphs without bipartite matching.

$$
\begin{aligned}
& \text { - Distance to doubly-balanced: } \\
& d b(A)=\sum_{i=1}^{n} \underbrace{\left(R_{i}(A)-\frac{\|A\|_{F}^{2}}{n}\right)^{2}}_{n=w}+ \\
& +\sum_{j=1}^{n} \underbrace{\text { bolomel el }}_{\text {for th or is form }} \begin{array}{l}
\text { condition }
\end{array} \\
& \left.C_{j}(A)-\frac{\|A\|_{F}^{2}}{n}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { boa } \delta^{\text {th }} \text { column is } \\
& \text { from balanced con edition }
\end{aligned}
$$

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Graphs without bipartite matching.
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0 \quad d b\left(\operatorname{Re}_{\in} C_{\varepsilon}\right) \leq 6$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\epsilon} A C_{\epsilon}\right) \leq \epsilon$.

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Graphs without bipartite matching.
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\epsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Null-cone problem for matrix scaling:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A in the Nullcone of the matrix scaling action?
- How do these two relate?
they ore the same problem!

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Graphs without bipartite matching.
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\epsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Null-cone problem for matrix scaling:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A in the Nullcone of the matrix scaling action?
- How do these two relate?
- Norm of a scaled element:

$$
X=\left(\begin{array}{llll}
x_{1} & & \\
& \ddots & & \\
& & \ddots & \\
& & & \\
& & & \\
\end{array}\right)
$$

$\|X A Y\|_{F}^{2}=\sum_{i=1}^{n}\left|A_{i j}\right|^{2} x_{i}^{2} y_{j}^{2}$

- Nullcone Problem, and Scaling Algorithms
- Matrix Scaling \& Analysis
- Crash Course on Convex Optimization
- Conjugation Action - Teaser
- Conclusion

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$
row/column scaling
Nullcone: Graphs without bipartite matching.

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:

inf $\|X A Y\|_{F}^{2}$
x, y

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:
- Distance to doubly-balanced:

$$
\begin{aligned}
& \operatorname{ds}(A)=\sum_{i=1}^{n}\left(R_{i}(A)-\frac{\|A\|_{i}^{2}}{n}\right)^{2}+ \\
& +\sum_{j=1}^{n}\left(C_{j}(A)-\frac{\|A\|_{F}^{2}}{n}\right)^{2} \\
& =\left\|\left(R_{i}(A)-\frac{\|A\|_{p}^{2}}{n}\right)_{i=1}^{n} \times\left(C_{j}(A)-\frac{\|A\|_{F}^{2}}{n}\right)_{j=1}^{n}\right\|_{2}^{2}
\end{aligned}
$$

(norm of the vector above) an wace

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\varepsilon} A C_{\epsilon}\right) \leq \epsilon$.

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n) \quad$ row/column scaling

Nullcone: Graphs without bipartite matching.

- Norm of a scaled element:
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scaling $R_{\epsilon}, C_{\varepsilon}$ such that ts $\left(R_{\varepsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Normalized matrices

$$
A
$$

Mows don't have same norm :

$$
\frac{\left(\prod_{i=1}^{n} r_{0}\right)^{1 / n}\left({ }^{l / r_{1}} \ddots_{1 / r_{n}}\right)}{\in S T(n)}
$$

$$
r_{i}(A)^{-1}=\frac{\|A\|_{F}}{\sqrt{n R_{i}(A)^{1 / 2}}}
$$

all rows have same norm square

$$
\begin{aligned}
& B=\underbrace{\left(\prod_{i=1}^{n} r_{i}\right.}_{c})\left(\begin{array}{lll}
1 / r_{1} & & \\
& \ddots & \\
& & 1 / r_{m}
\end{array}\right) A \\
& R_{i}(B)=c^{2} \sum_{j=1}^{n}\left(\frac{1}{r_{i}}\right)^{2} \cdot\left|A_{i j}\right|^{2} \\
& B_{i j}=c \cdot \frac{l}{n_{i}} \cdot A_{i j} \\
& =c^{2} \cdot \frac{1}{r_{i}^{2}} \cdot \frac{\sum_{j=1}^{n}\left(\left.A_{i j}\right|^{2}\right.}{R_{i}(A)}=\frac{c^{2} B_{i}(A)}{\frac{n B_{i}(A)}{\|A\|_{F}^{2}}} \\
& =\frac{C^{2}\|A\|_{F}^{2}}{n}
\end{aligned}
$$

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\varepsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Normalized matrices
- An ancient algorithm:

Alternating minimization
(1) For T steps, repeat the following:
(2) If $\mathrm{ds}(A) \leq \varepsilon$ return A

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\varepsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Normalized matrices
- An ancient algorithm:

Alternating minimization
(1) For T steps, repeat the following:
(2) If ds $(A) \leq \varepsilon$ return A
(3) If $\mathrm{ds}(A)>\varepsilon$ and A not row-normalized, then normalize rows of A

Matrix Scaling

- $G=\mathbb{S T}(n) \times \mathbb{S T}(n), V=\operatorname{Mat}(n)$ row/column scaling
Nullcone: Graphs without bipartite matching.
- Norm of a scaled element:
- Distance to doubly-balanced:
- Matrix scaling problem:
- Input: $A \in \operatorname{Mat}(n), \varepsilon>0$
- Output: can A be scaled to ϵ-doubly balanced? If yes, return scalings $R_{\epsilon}, C_{\varepsilon}$ such that $\mathrm{ds}\left(R_{\varepsilon} A C_{\epsilon}\right) \leq \epsilon$.
- Normalized matrices
- An ancient algorithm:

Alternating minimization
(1) For T steps, repeat the following:
(2) If ds $(A) \leq \varepsilon$ return A
(3) If $\mathrm{ds}(A)>\varepsilon$ and A not row-normalized, then normalize rows of A
(9) If $\operatorname{ds}(A)>\varepsilon$ and A not column-normalized, normalize columns of A

$$
\begin{aligned}
& B^{(0)}=A \\
& B^{(+1)}=R^{(+)} B^{(4)}\left(18 B^{(t)}\right.
\end{aligned}
$$

was not row nomeliza)

$$
B^{(t+1)}=B^{(t)} C^{(t)} \text { (if }
$$

$B^{(t)}$ not column nomolited)

Matrix Scaling - Analysis
A can be scaled to drably be lowed iff support (A) has matching.
(there is an nice
invariant $P(A) \neq 0$
Potential function: invariant polynomial P!
$\Pi A_{i i} \neq 0$ in our original matrix.

$$
(=1)
$$

throughout algorithm we know that T $A_{i i}$ went changes sac

Matrix Scaling - Analysis
Potential function $\prod_{i=1}^{n} A_{i i}(=1)$

$$
\Phi\left(B^{(t)}\right)=\left\|B^{(t)}\right\|_{F}^{2}
$$

1) throughout $\prod_{i=1}^{n} B_{i i}^{(t)}$ remains 1

$$
\therefore\left\|B^{(t)}\right\|_{F}^{2} \geqslant 1 \quad(A M-G M)
$$

2) initially we have a bound on $\left(\left\|B^{(0)}\right\|_{P}^{2}=\|A\|_{F}^{2}=C\binom{\right.$ based on size }{ of in $\mu t}$

Matrix Scaling - Analysis
When normalize

$$
r_{i}(A)=\frac{\sqrt{n R_{i}(A)}}{\|A\|}
$$

$$
\begin{aligned}
& B^{(t+1)}=\underbrace{\prod_{i=1}^{n} r_{i}\left(B^{(t)}\right)}_{\alpha}\left(\begin{array}{llll}
1 / r_{n} & & \\
& \ddots & \\
& & 1 / r_{n}
\end{array}\right) B^{(t)} \\
& \left\|B^{(t+1)}\right\|_{i=}^{2}=\alpha^{2} \cdot \sum_{i=1}^{n} \frac{\sum_{j=1}^{n}\left|B_{i j}^{(t+1)}\right|^{2}}{\frac{l}{r_{i}{ }^{2}}-\sum_{j=1}^{n}\left|B_{i j}^{(t)}\right|^{2}} \\
& \frac{\left\|B^{(t)}\right\|^{2}}{n R_{i}\left(B^{(t)}\right)} \cdot R_{i}\left(D^{(t)}\right)=\alpha^{2}\left\|B^{(t)} l\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|B^{(t+1)}\right\|^{2}=\alpha^{2}\left\|B^{(t)}\right\|^{2} \\
& \alpha=\prod_{i=1}^{n} r_{i} \left\lvert\, r_{i}=\frac{n R_{i}\left(b^{(t+1)}\right.}{\left\|B^{(t)}\right\|^{2}}\right. \\
& d s\left(\beta^{(i)}\right)>\xi \\
& \sum_{i=1}^{n}\left(R_{i}-\frac{\left\|B^{(t)}\right\|^{2}}{n}\right)^{2}>\xi \\
& \sum_{i=1}^{n}\left(r_{i}-1\right)^{2}>\frac{\xi n^{2}}{\left\|B^{(t)}\right\|^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& i f \left\lvert\, \frac{d b\left(B^{(t)}\right)>\xi}{}\right. \text { then } \\
& \left(\left\|B^{(t+1)}\right\|<e^{-\xi / 6} \cdot\left\|B^{(t)}\right\|\right. \\
& \left\|B^{(0)}\right\| \leqslant c \quad\left\|B^{(t)}\right\| \geqslant 1
\end{aligned}
$$

Cannot happen indefinin'ely has to stor in $T=\frac{6}{\xi} \cdot \log c$ steps.

Outlime what uc did
nou zers
in vap ount
4
Sower bd
on nam

1) if there in invariunt P : $P(A) \neq 0$ thm $\left\|B^{(t)}\right\| \geqslant 1$
norm alway dicrions
2) if $d s\left(B^{(x)}\right)>\xi$ thm

$$
\left\|B^{(t+1)}\right\|<e^{-9 / 6}-\left\|B^{(t)}\right\|
$$

(nom decruoses)
upper bd
suintited
noim
3) $\left\|B^{(0)}\right\|=c$ some C

Matrix Scaling - Thoughts

$$
\begin{aligned}
& \left\{B^{(t)}\right\}_{t \geqslant 0} \begin{array}{c}
\text { descent } \\
\text { sequence for } \\
\ell(A)=\|A\|_{l}^{2}
\end{array} \\
& f\left(B^{(t+1)}\right) \leq f\left(B^{(t)}\right)
\end{aligned}
$$

dos (A) large

Matrix Scaling - Thoughts

$$
\begin{aligned}
& d_{s}(A)=\sum_{i=1}^{n}\left(R_{i}(A)-\frac{\|A\|^{2}}{n}\right)^{2}+ \\
& \sum_{j=1}^{n}\left(C_{j}(A)-\frac{\|A\|_{j}^{2}}{n}\right)^{2}
\end{aligned}
$$

"norm of the gradient over

$$
f_{A}(x, y)=\|X A Y\|_{F}^{2}
$$

$$
\begin{aligned}
& X=\left(\begin{array}{lll}
e^{x_{1}} & & \\
& e^{x_{2}} & \\
& & \\
& & e^{x_{n}}
\end{array}\right) \quad Y=\left(\begin{array}{lll}
e^{y_{1}} & & \\
& \ddots & \\
& & e^{y_{n}}
\end{array}\right) \\
& \operatorname{det}(x)=\operatorname{det}(y)=1 \Longleftrightarrow \sum x_{i}=\sum y_{i}=0 \\
& \mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \\
& f A\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{0}\right)=\|X A Y\|_{F}^{2}=\sum_{i, j}\left|A_{i j}\right|^{2} \cdot e^{2\left(x_{i}+y_{0}\right)} \\
& \left\langle\nabla f_{A},\left(n_{1}, \ldots, m_{n}, c_{1}, \ldots, k_{n}\right)\right)=\frac{d}{d t}\left(f_{A}\left(r_{1}, \ldots, n_{n} t_{1}, c_{i}, t_{1}, \ldots\right) c_{n}\right)^{c_{n} t} \\
& =\sum_{i, j}\left|A_{i j}\right|^{2} 2 \cdot\left(r_{i}+c_{j}\right) e^{2((n+i(j) t}=\langle(R, c),(n, c)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& R=\left(R_{1}(A), \ldots, R_{n}(A)\right) \\
& C=\left(C_{1}(A), \cdots, C_{n}(A)\right) \\
& \underbrace{\nabla f_{A}}_{H \subset \mathbb{R}^{2 n}}=(\underbrace{\left(R_{1}(A), \ldots, R_{n}(A)\right.}_{1}, \underbrace{\left.C_{1}(A), \ldots, C_{n}(A)\right)}_{1 I} \\
& \nabla \rho_{A}=\left(R_{1}(A)-\frac{\|A\|_{F}^{2}}{n}, \ldots, R_{n}(A)-\frac{\|A\|_{n}^{2}}{n},\right. \\
& \left.C_{1}(A)-\frac{\|A\|_{F}^{2}}{n}, \cdots, C_{n}(A)-\frac{\|A\|_{r}^{2}}{n}\right)
\end{aligned}
$$

- Nullcone Problem, and Scaling Algorithms
- Matrix Scaling \& Analysis
- Crash Course on Convex Optimization
- Conjugation Action - Teaser
- Conclusion

Convex Optimization Crash Course

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$ convex iff $\frac{d^{2}}{d t^{2}} f(t) \geq 0$ for all $t \in \mathbb{R}$

Convex Optimization Crash Course

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$ convex iff $\frac{d^{2}}{d t^{2}} f(t) \geq 0$ for all $t \in \mathbb{R}$
- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex iff the univariate function $g_{\mathbf{a}}(t)=f(\mathbf{a} t+\mathbf{b})$ is convex for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$

Convex Optimization Crash Course

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$ convex iff $\frac{d^{2}}{d t^{2}} f(t) \geq 0$ for all $t \in \mathbb{R}$
- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex iff the univariate function $g_{\mathbf{a}}(t)=f(\mathbf{a} t+\mathbf{b})$ is convex for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$
- Gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{a} is the vector $\nabla f(\mathbf{a}) \in \mathbb{R}^{n}$ such that:

$$
\begin{gathered}
\left\langle\nabla f(\mathbf{a}), \frac{\mathbf{b}\rangle}{\bar{h}}=\left.\partial_{t} f(\mathbf{a}+\mathbf{b} \cdot t)\right|_{t=0}\right. \\
\text { directign } \\
\text { of derivative }
\end{gathered}
$$

Convex Optimization Crash Course

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$ convex iff $\frac{d^{2}}{d t^{2}} f(t) \geq 0$ for all $t \in \mathbb{R}$
- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex iff the univariate function $g_{\mathbf{a}}(t)=f(\mathbf{a} t+\mathbf{b})$ is convex for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$
- Gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{a} is the vector $\nabla f(\mathbf{a}) \in \mathbb{R}^{n}$ such that:

$$
\langle\nabla f(\mathbf{a}), \mathbf{b}\rangle=\left.\partial_{t} f(\mathbf{a}+\mathbf{b} \cdot t)\right|_{t=0}
$$

- Hessian of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{a} is the matrix $\nabla^{2} f(\mathbf{a}) \in \mathbb{R}^{n \times n}$ such that:

$$
\left\langle\underline{\mathbf{c},} \underline{\nabla}^{2} f(\mathbf{a}) \cdot \underline{\mathbf{b}}\right\rangle=\left.\partial_{s} \partial_{t} f(\mathbf{a}+\mathbf{b} \cdot t+\mathbf{c} \cdot s)\right|_{s, t=0}
$$

Convex Optimization Crash Course

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$ convex iff $\frac{d^{2}}{d t^{2}} f(t) \geq 0$ for all $t \in \mathbb{R}$
- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex iff the univariate function $g_{\mathbf{a}}(t)=f(\mathbf{a} t+\mathbf{b})$ is convex for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$
- Gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{a} is the vector $\nabla f(\mathbf{a}) \in \mathbb{R}^{n}$ such that:

$$
\langle\nabla f(\mathbf{a}), \mathbf{b}\rangle=\left.\partial_{t} f(\mathbf{a}+\mathbf{b} \cdot t)\right|_{t=0}
$$

- Hessian of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{a} is the matrix $\nabla^{2} f(\mathbf{a}) \in \mathbb{R}^{n \times n}$ such that:

$$
\left\langle\mathbf{c}, \nabla^{2} f(\mathbf{a}) \cdot \mathbf{b}\right\rangle=\left.\partial_{s} \partial_{t} f(\mathbf{a}+\mathbf{b} \cdot t+\mathbf{c} \cdot s)\right|_{s, t=0}
$$

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex iff $\nabla^{2} f(\mathbf{a}) \succeq 0$ for all $\mathbf{a} \in \mathbb{R}^{n}$

Gradient descent (with line search)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.

Gradient descent (with line search)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$

Gradient descent (with line search)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$
- Let $\nabla^{(k)}:=\nabla f\left(\mathbf{x}^{(k)}\right)$.

While $\left\|\nabla^{(k)}\right\|_{2}>\varepsilon$

- Let $g_{k}: \mathbb{R} \rightarrow \mathbb{R}$ be the function $g_{k}(t)=f\left(\mathbf{x}^{(k)}+t \nabla^{(k)}\right)$

Gradient descent (with line search)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$
- Let $\nabla^{(k)}:=\nabla f\left(\mathbf{x}^{(k)}\right)$.

While $\left\|\nabla^{(k)}\right\|_{2}>\varepsilon$

- Let $g_{k}: \mathbb{R} \rightarrow \mathbb{R}$ be the function $g_{k}(t)=f\left(\mathbf{x}^{(k)}+t \nabla^{(k)}\right)$
- Let $\mathbf{x}^{(k+1)}=\operatorname{argmin}_{t} g_{k}$

Gradient descent (with fixed step size)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.

Gradient descent (with fixed step size)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a} \quad \eta>0$

Gradient descent (with fixed step size)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$
- Let $\nabla^{(k)}:=\nabla f\left(\mathbf{x}^{(k)}\right)$.

While $\left\|\nabla^{(k)}\right\|_{2}>\varepsilon$

Gradient descent (with fixed step size)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$
- Let $\nabla^{(k)}:=\nabla f\left(\mathbf{x}^{(k)}\right)$.

While $\left\|\nabla^{(k)}\right\|_{2}>\varepsilon$

- Let $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\eta \cdot \nabla^{(k)}$

Gradient descent (with fixed step size)

- Input: convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \varepsilon>0$, initial point $\mathbf{a} \in \mathbb{R}^{n}$
- Output: Find point $\mathbf{y} \in \mathbb{R}^{n}$ such that $\|\nabla f(y)\|_{2} \leq \varepsilon$.
- Start with your initial point $\mathbf{x}^{(0)}=\mathbf{a}$
- Let $\nabla^{(k)}:=\nabla f\left(\mathbf{x}^{(k)}\right)$.

While $\left\|\nabla^{(k)}\right\|_{2}>\varepsilon$

- Let $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\eta \cdot\left\|\nabla^{(k)}\right\|_{2}$

If your function is L-smooth, that is, has gradient L-Lipschitz, then can set

$$
\eta=2 / L .
$$

- Nullcone Problem, and Scaling Algorithms
- Matrix Scaling \& Analysis
- Crash Course on Convex Optimization
- Conjugation Action - Teaser
- Conclusion

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$ conjugation
Nullcone: Nilpotent Matrices

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$

Nullcone: Nilpotent Matrices

- Norm of a scaled element:

Conjugation Action

- $G=\mathbb{G L}(n), V=\operatorname{Mat}(n)$

Nullcone: Nilpotent Matrices

- Norm of a scaled element:
- Conjugation action scaling problem:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A nilpotent?

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$ conjugation
Nullcone: Nilpotent Matrices
- Norm of a scaled element:
- Conjugation action scaling problem:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A nilpotent?
- Cannot do Alternating Minimization here (nothing to alternate on!)

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$

Nullcone: Nilpotent Matrices

- Norm of a scaled element:
- Conjugation action scaling problem:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A nilpotent?
- Cannot do Alternating Minimization here (nothing to alternate on!)
- How do we generalize the notion of gradient here?

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$

Nullcone: Nilpotent Matrices

- Norm of a scaled element:
- Conjugation action scaling problem:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A nilpotent?
- Cannot do Alternating Minimization here (nothing to alternate on!)
- How do we generalize the notion of gradient here?
- Why would gradient descent work here?

Conjugation Action

- $G=\mathbb{G} \mathbb{L}(n), V=\operatorname{Mat}(n)$

Nullcone: Nilpotent Matrices

- Norm of a scaled element:
- Conjugation action scaling problem:
- Input: $A \in \operatorname{Mat}(n)$
- Output: Is A nilpotent?
- Cannot do Alternating Minimization here (nothing to alternate on!)
- How do we generalize the notion of gradient here?
- Why would gradient descent work here?
- Wouldn't gradient equal zero only give us a local optimum? Why would that work in general?

Geodesic Convexity!

Conclusion

- Today we learned the basics about scaling algorithms
- How optimization naturally comes up in geometric invariant theoretic questions
- Connections to other areas of mathematics
- Alternating minimization algorithms
- Next lecture: is this a general phenomenon?

> Yes - geodesic convexity!

- Will see how to compute gradients of conjugation action and show that it is geodesically convex next lecture!

