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Orbit Closure Problems

@ G acts linearly on V
@ Orbit Closure Intersection: Given two points u, w € V, do their orbit
closures intersect?
O,N0O, #0?
o If w=0, we get the null cone problem:
0€0,?

@ Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.

N={uecV | 0c0,}

Orbit Closure Containment: Given two points u, w € V, does the
orbit of u contain the orbit closure of w?

O, C Oy?
Given u € V, is its orbit closed?
0,=0,7
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, =0« p(u) # p(w) for some pe C[V]®

Q@ G=SL(2),Vv=C linear transformations of curves
Discriminants, Catalecticants (and more)
@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
Q@ G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
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Scaling Algorithms

@ Is there a geometric way to approach such problems?
@ Would help us when invariants are hard to obtain

@ When our vector space has an inner product, motivates the following
optimization question:

cap(u) = inf [lg o ul:

@ u in Nullcone iff cap(u) =0
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Distance to doubly-balanced:
@ Matrix scaling problem:
o Input: A € Mat(n), e >0
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G = ST(n) x ST(n), V = Mat(n) row/column scaling
Graphs without bipartite matching.
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@ Matrix scaling problem:
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o Output: can A be scaled to e-doubly balanced? If yes, return scalings
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How do these two relate?

@ Norm of a scaled element:
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e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Nullcone: Graphs without bipartite matching.
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Matrix Scaling

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Nullcone: Graphs without bipartite matching.

Norm of a scaled element:

Distance to doubly-balanced:
@ Matrix scaling problem:

o Input: A € Mat(n), e >0
e Output: can A be scaled to e-doubly balanced? If yes, return scalings
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Matrix Scaling

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Nullcone: Graphs without bipartite matching.

Norm of a scaled element:

Distance to doubly-balanced:
@ Matrix scaling problem:

o Input: A € Mat(n), e >0
e Output: can A be scaled to e-doubly balanced? If yes, return scalings
R., C.such that ds(R.AC.) < e.

Normalized matrices

@ An ancient algorithm:

Alternating minimization

@ For T steps, repeat the following:

@ If ds(A) < ereturn A

© If ds(A) > cand A not row-normalized, then normalize rows of A
@ If ds(A) > eand A not column-normalized, normalize columns of A
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Matrix Scaling - Thoughts
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e Function f : R — R convex iff %f(t) >0forallteR

@ Function f : R” — R convex iff the univariate function
ga(t) = f(at + b) is convex for every a,b € R”

o Gradient of f : R” — R at a is the vector Vf(a) € R" such that:
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d2
@ Function f : R — R convex iff Pf(t) >0 forallteR
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Convex Optimization Crash Course

d2
@ Function f : R — R convex iff Pf(t) >0 forallteR

Function f : R" — R convex iff the univariate function
ga(t) = f(at + b) is convex for every a,b € R”

Gradient of f : R” — R at a is the vector Vf(a) € R" such that:

(Vf(a),b) = 0:f(a+b - t)]eo

Hessian of f : R” — R at a is the matrix V2f(a) € R™" such that:

(c, V?f(a)-b) = 8s0;f(a+b-t+c-s)|si—0

Function f : R" — R convex iff V2f(a) = 0 for all a € R”
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Gradient descent (with line search)

Input: convex function f : R” — R, € > 0, initial point a € R"
Output: Find point y € R” such that [|[Vf(y)|]2 <e.

Start with your initial point x(0) = a

Let V(K .= v £(x(),

While [V, > ¢

o Let g, : R — R be the function gi(t) = f(x¥) 4 t V)
o Let x(k*1) = argmin, g, —
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Start with your initial point x(¥) = a
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While [|[ V)|, > ¢



Gradient descent (with fixed step size)

Input: convex function f : R” — R, ¢ > 0, initial point a € R"
Output: Find point y € R” such that |V (y)|2 <e.
Start with your initial point x(¥) = a
Let V(K .= V£ (x(¥),
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Gradient descent (with fixed step size)

Input: convex function f : R” — R, ¢ > 0, initial point a € R"
Output: Find point y € R” such that |V (y)|2 <e.
Start with your initial point x(¥) = a
Let V(K .= V£ (x(¥),
While [|[V)|o > e
o Let x(kt1) = x(k) — . ||V (R)||,

If your function is L-smooth, that is, has gradient L-Lipschitz, then can set
n=2/L.
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Conjugation Action

e G =GL(n), V = Mat(n) conjugation
Nullcone: Nilpotent Matrices
@ Norm of a scaled element:

Conjugation action scaling problem:

o Input: A € Mat(n)
e Output: Is A nilpotent?

Cannot do Alternating Minimization here (nothing to alternate on!)
How do we generalize the notion of gradient here?

Why would gradient descent work here?

Wouldn't gradient equal zero only give us a local optimum? Why
would that work in general?

Geodesic Convexity!



Conclusion

o Today we learned the basics about scaling algorithms

@ How optimization naturally comes up in geometric invariant theoretic
questions

@ Connections to other areas of mathematics

@ Alternating minimization algorithms

@ Next lecture: is this a general phenomenon?
Yes — geodesic convexity!

@ Will see how to compute gradients of conjugation action and show
that it is geodesically convex next lecture!



