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Orbit Closure Problems
G acts linearly on V
Orbit Closure Intersection: Given two points u,w ∈ V , do their orbit
closures intersect?

Ou ∩Ow �= ∅?
If w = 0, we get the null cone problem:

0 ∈ Ou?

Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.

N = {u ∈ V | 0 ∈ Ou}
Orbit Closure Containment: Given two points u,w ∈ V , does the
orbit of u contain the orbit closure of w?

Ow ⊂ Ow?

Given u ∈ V , is its orbit closed?

Ou = Ou?
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Orbit Problems and Invariant Polynomials

[Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.
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Orbit Problems and Invariant Polynomials

[Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

[Hilbert-Mumford]: orbit closure intersection

Ou ∩Ow = ∅ ⇔ p(u) �= p(w) for some p ∈ C[V ]G

1 G = SL(2), V = Cd linear transformations of curves

Discriminants, Catalecticants (and more)

2 G = SL(n), V = Mat(n) left multiplication

Determinant

3 G = GL(n), V = Mat(n) conjugation

Trace polynomials.

4 G = ST(n)× ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
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Scaling Algorithms

Is there a geometric way to approach such problems?

Would help us when invariants are hard to obtain
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Scaling Algorithms

Is there a geometric way to approach such problems?

Would help us when invariants are hard to obtain

When our vector space has an inner product, motivates the following
optimization question:

cap(u) = inf
g∈G

�g ◦ u�2

u in Nullcone iff cap(u) = 0
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Matrix Scaling

G = ST(n)× ST(n), V = Mat(n) row/column scaling

Nullcone: Graphs without bipartite matching.

Norm of a scaled element:

Distance to doubly-balanced:

Matrix scaling problem:

Input: A ∈ Mat(n), ε > 0
Output: can A be scaled to �-doubly balanced? If yes, return scalings
R�,Cεsuch that ds(RεAC�) ≤ �.

Normalized matrices

An ancient algorithm:

Alternating minimization

1 For T steps, repeat the following:
2 If ds(A) ≤ εreturn A
3 If ds(A) > εand A not row-normalized, then normalize rows of A
4 If ds(A) > εand A not column-normalized, normalize columns of A
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�c,∇2f (a) · b� = ∂s∂t f (a+ b · t + c · s)|s,t=0

Function f : Rn → R convex iff ∇2f (a) � 0 for all a ∈ Rn
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Gradient descent (with line search)
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Output: Find point y ∈ Rn such that �∇f (y)�2 ≤ ε.
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Gradient descent (with line search)

Input: convex function f : Rn → R, ε > 0, initial point a ∈ Rn

Output: Find point y ∈ Rn such that �∇f (y)�2 ≤ ε.

Start with your initial point x(0) = a

Let ∇(k) := ∇f (x(k)).
While �∇(k)�2 > ε

Let gk : R → R be the function gk(t) = f (x(k) + t∇(k))
Let x(k+1) = argmintgk
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Gradient descent (with fixed step size)

Input: convex function f : Rn → R, ε > 0, initial point a ∈ Rn

Output: Find point y ∈ Rn such that �∇f (y)�2 ≤ ε.

Start with your initial point x(0) = a

Let ∇(k) := ∇f (x(k)).
While �∇(k)�2 > ε

Let x(k+1) = x(k) − η · �∇(k)�2
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Gradient descent (with fixed step size)

Input: convex function f : Rn → R, ε > 0, initial point a ∈ Rn

Output: Find point y ∈ Rn such that �∇f (y)�2 ≤ ε.

Start with your initial point x(0) = a

Let ∇(k) := ∇f (x(k)).
While �∇(k)�2 > ε

Let x(k+1) = x(k) − η · �∇(k)�2

If your function is L-smooth, that is, has gradient L-Lipschitz, then can set
η = 2/L.
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Conjugation Action

G = GL(n), V = Mat(n) conjugation

Nullcone: Nilpotent Matrices

Norm of a scaled element:

Conjugation action scaling problem:

Input: A ∈ Mat(n)
Output: Is A nilpotent?

Cannot do Alternating Minimization here (nothing to alternate on!)

How do we generalize the notion of gradient here?

Why would gradient descent work here?

Wouldn’t gradient equal zero only give us a local optimum? Why
would that work in general?

Geodesic Convexity!
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Conclusion

Today we learned the basics about scaling algorithms

How optimization naturally comes up in geometric invariant theoretic
questions

Connections to other areas of mathematics

Alternating minimization algorithms

Next lecture: is this a general phenomenon?

Yes – geodesic convexity!

Will see how to compute gradients of conjugation action and show
that it is geodesically convex next lecture!
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