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Group Actions
Let G be a nice1 group and V be a C-vector space
G acts linearly on V if

g ◦ (αu + βv) = α(g ◦ u) + β(g ◦ v)

Examples:
1 G = Sn, V = Cn permuting coordinates
2 G = An, V = Cn permuting coordinates
3 G = SL(2), V = Cd linear transformations of curves
4 G = SL(n), V = Mat(n) left multiplication
5 G = GL(n), V = Mat(n) conjugation
6 G = ST(n)× ST(n), V = Mat(n) row/column scaling

7 G = Sn, V = C(
n
2) graph isomorphism

1The definition of nice is a bit technical, so we will stick to finite groups and SL(n)
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Group Orbits

Given an element u ∈ V , its orbit is defined by

Ou := {g ◦ u | g ∈ G}

1 G = Sn, V = Cn permuting coordinates

Permutation of coordinates.
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2 G = SL(2), V = Cd+1 change of coordinates

Linear transformations of roots.

3 G = SL(n), V = Mat(n) left multiplication
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4 G = GL(n), V = Mat(n) conjugation

Same eigenvalues? (Diagonalizable vs Jordan blocks)

5 G = ST(n)× ST(n), V = Mat(n) row/column scaling

Matrix scaling. (Orbits more complex.)
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Orbit Closure

Given an element u ∈ V , its orbit closure is defined by
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Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

G acts linearly on V
Orbit Closure Intersection: Given two points u,w ∈ V , do their orbit
closures intersect?

Ou ∩Ow �= ∅?
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Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

G acts linearly on V
Orbit Closure Intersection: Given two points u,w ∈ V , do their orbit
closures intersect?

Ou ∩Ow �= ∅?
If w = 0, we get the null cone problem:

0 ∈ Ou?

Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.

N = {u ∈ V | 0 ∈ Ou}
Orbit Closure Containment: Given two points u,w ∈ V , does the
orbit of u contain the orbit closure of w?

Ow ⊂ Ow?

Given u ∈ V , is its orbit closed?

Ou = Ou? 24 / 52



Null Cone Problems and Applications

1 G = SL(2), V = Cd+1 change of coordinates

Does the polynomial have a root of multiplicity > d/2?
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Null Cone Problems and Applications

1 G = SL(2), V = Cd+1 change of coordinates

Does the polynomial have a root of multiplicity > d/2?

2 G = SL(n), V = Mat(n) left multiplication

Singular Matrices

3 G = GL(n), V = Mat(n) conjugation

Zero Matrix

4 G = ST(n)× ST(n), V = Mat(n) row/column scaling

Graphs without bipartite matching.

5 G = SL(n)× SL(n), V = Mat(n)m operator scaling

Word-problem for free skew fields, Rational Identity Testing,
Brascamp-Lieb inequalities.

6 How do we know this?
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Orbit Problems and Invariant Polynomials

[Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.
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Orbit Problems and Invariant Polynomials

[Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

[Hilbert-Mumford]: orbit closure intersection

Ou ∩Ow �= ∅ ⇔ p(u) = p(w) ∀p ∈ C[V ]G

1 G = SL(2), V = Cd linear transformations of curves

Discriminants (and more)

2 G = SL(n), V = Mat(n) left multiplication

Determinant

3 G = GL(n), V = Mat(n) conjugation

Trace polynomials.

4 G = ST(n)× ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
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What about Orbit Closure Containment?

Orbit closure containment much harder problem

VP vs VNP question
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An Optimization View on Nullcone

Note that with the nullcone, we want to know whether 0 in the orbit
closure
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An Optimization View on Nullcone

Note that with the nullcone, we want to know whether 0 in the orbit
closure

When our vector space have an inner product, motivates the following
optimization question:
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An Optimization View on Nullcone

Note that with the nullcone, we want to know whether 0 in the orbit
closure

When our vector space have an inner product, motivates the following
optimization question:

inf
g∈G

�g ◦ u�2

Optimization is over the group elements. Geometry determined by the
geometry of the group
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Hilbert-Mumford Semistability Theorem

Nullcone: the set of elements that have zero in their orbit closure.

N = {u ∈ V | 0 ∈ Ou}
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Hilbert-Mumford Semistability Theorem

Nullcone: the set of elements that have zero in their orbit closure.

N = {u ∈ V | 0 ∈ Ou}

1-parameter subgroups (1-PSG):

φ : C∗ → G

[Hilbert-Mumford]: an element u ∈ V is in the nullcone if, and only
if, there is a 1-PSG which drives u to zero.

Today we will prove this for two actions:

1 ST(n) action on CN

2 SL(n) action on Cn×m by left-multiplication.

Note that SL(n) = SU(n)× ST(n)× SU(n)
SU(n) ← maximal compact subgroup

ST(n) ← maximal torus
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Hilbert-Mumford Semistability
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Conclusion

Today we learned the basics about the geometric side of invariant
theory

Many examples of important group actions and their geometric
problems

Connections to other areas of mathematics

Fundamental problems and theorems in geometric invariant theory

Semistability theorem of Hilbert and Mumford
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