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Overview

@ Group Actions on Vector Spaces, Orbits & Orbit Closures

@ Geometric Questions

@ Conclusion



Group Actions

@ Let G be a nice! group and V be a C-vector space

!The definition of nice is a bit technical, so we will stick:to finite groups and SL(n)



Group Actions
o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if

go(au+pBv)=algou)+B(gov)

(ghdeou = g=(hew)

!The definition of nice is a bit technical, so we will stick-to finite groups and SIL(n)



Group Actions
@ Let G be a nice! group and V be a C-vector space

o G acts linearly on V if

go(au+tpv)=algou)+pB(gov)

@ Examples:

QO G=5,v=C" permuting coordinates
Q@ G=A,Vv=C" permuting coordinates
& Q@ G=SL(2),Vv=c linear transformations of curves
@ G =SL(n), V = Mat(n) left multiplication
Q@ G =GL(n), V = Mat(n) conjugation
Q@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Q@ G=5, V= c() graph isomorphism

!The definition of nice is a bit technical, so we will stick:to finite groups and SL(n)



Group Orbits

@ Given an element u € V/, its orbit is defined by

u:—{gou | g€ G}
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Group Orbits

@ Given an element u € V, its orbit is defined by
O,:={gou | ge G}
@ Examples

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.



Group Orbits

@ Given an element u € V/, its orbit is defined by

O,:={gou | ge G}

@ Examples

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
@ G =SL(2), V =C9*! change of coordinates

ngear transformations of roots.
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Group Orbits

@ Given an element u € V/, its orbit is defined by
O,:={gou | ge G}

@ Examples

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
@ G =SL(2), V =C9*! change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication

Same rank? (No column exchange)
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Group Orbits

@ Given an element u € V, its orbit is defined by
O,:={gou | ge G}

@ Examples

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V=C91 change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication
Same rank? (No column exchange)
Q@ G =GL(n), V =Mat(n) conjugation

Same eigenvalues? (Diagonalizable vs Jordan blocks)
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Group Orbits

@ Given an element u € V, its orbit is defined by
O,:={gou | ge G}

@ Examples

Q@ G=5,v=C_C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V=C91 change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication
Same rank? (No column exchange)
Q@ G =GL(n), V =Mat(n) conjugation
Same eigenvalues? (Diagonalizable vs Jordan blocks)
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matrix scaling. (Orbits more complex.)



Orbit Closure V inaner prsduct spece |

@ Given an element u € V/, its orbit closure is defined by

O,:={gou | g€ G} U limit points
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Orbit Closure

@ Given an element u € V/, its orbit closure is defined by

‘Zc‘fu--. (’1) = z:: {gou | g€ G} U limit points

@ Limit points either with respect to Euclidean or Zariski Topologies.



Orbit Closure

@ Given an element u € V/, its orbit closure is defined by
O,:={gou | g€ G} U limit points
@ Limit points either with respect to Euclidean or Zariski Topologies.

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
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Orbit Closure

@ Given an element u € V/, its orbit closure is defined by
O,:={gou | g€ G} U limit points

@ Limit points either with respect to Euclidean or Zariski Topologies.

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V =C9*! change of coordinates

Linear transformations of roots.
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Orbit Closure

@ Given an element u € V/, its orbit closure is defined by
O,:={gou | g€ G} U limit points

@ Limit points either with respect to Euclidean or Zariski Topologies.

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V =C9*! change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication

Same rank? (No column exchange)
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Orbit Closure

@ Given an element u € V/, its orbit closure is defined by
O, :={gou | g€ G} U limit points

@ Limit points either with respect to Euclidean or Zariski Topologies.

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V=C9! change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication
Same rank? (No column exchange)
Q@ G =GL(n), V =Mat(n) conjugation

Same eigenvalues? (Diagonalizable vs Jordan blocks)
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Orbit Closure

@ Given an element u € V/, its orbit closure is defined by
O, :={gou | g€ G} U limit points

@ Limit points either with respect to Euclidean or Zariski Topologies.

Q@ G=5,v=C" permuting coordinates
Permutation of coordinates.
Q@ G =SL(2), V=C9! change of coordinates
Linear transformations of roots.
@ G =SL(n), V = Mat(n) left multiplication
Same rank? (No column exchange)
Q@ G =GL(n), V =Mat(n) conjugation
Same eigenvalues? (Diagonalizable vs Jordan blocks)
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matrix scaling.



@ Geometric Questions



Nullcone, Orbit Closure Intersection, Orbit Closure
Containment Hutwi A com

@ G acts linearly on V'  innet qv’ad»%* »
@ Orbit Closure Intersection: Given two points u, w € V, do their orbit
closures intersect?
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0,Nn0, #0?
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Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

@ G acts linearly on V
@ Orbit Closure Intersection: Given two points u, w € V, do their orbit
closures intersect?
0,Nn0, #0?

o If w =0, we get the null cone problem:
0€0,?



Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

@ G acts linearly on V
@ Orbit Closure Intersection: Given two points u, w € V, do their orbit
closures intersect?
O,NO, #0?
o If w =0, we get the null cone problem:

0€0,? H()b%\‘(\ﬁqs
@ Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.
N={ueV | 0e0,}
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Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

G acts linearly on V
Orbit Closure Intersection: Given two points u, w € V, do their orbit

closures intersect?
O,NO, #0?

If w =0, we get the null cone problem:
0€0,?

Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.

N={ueV | 0e0,}

Orbit Closure Containment: Given two points u, w € V/, does the
orbit of u contain the orbit closure of w?

Clowe O, C Oy?



Nullcone, Orbit Closure Intersection, Orbit Closure
Containment

G acts linearly on V
Orbit Closure Intersection: Given two points u, w € V, do their orbit

closures intersect?
O,NO, #0?

If w =0, we get the null cone problem:
0€0,?

Null-cone problem has its name from the definition that the nullcone
is the set of elements that have zero in their orbit closure.

N={ueV | 0e0,}

Orbit Closure Containment: Given two points u, w € V/, does the
orbit of u contain the orbit closure of w?

O, C 0,7
Given u € V, is its orbit closed?

Ou = 511?



Null Cone Problems and Applications

@ G =SL(2), V=C91 change of coordinates
Does the polynomial have a root of multiplicity > d /27
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Null Cone Problems and Applications

@ G =SL(2), V=C91 change of coordinates
Does the polynomial have a root of multiplicity > d /27
@ G =SL(n), V = Mat(n) left multiplication

Singular Matrices
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Null Cone Problems and Applications o ! )

o o
@ G =SL(2), V=C91 change of coordinates
Does the polynomial have a root of multiplicity > d /27
@ G =SL(n), V = Mat(n) left multiplication
Singular Matrices
@ G =GL(n), V = Mat(n) conjugation
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Null Cone Problems and Applications

[0 G =SL(2), V = C9*! change of coordinates
Does the polynomial have a root of multiplicity > d /27
@ G =SL(n), V = Mat(n) left multiplication
Singular Matrices
@ G =GL(n), V = Mat(n) conjugation
dicktttpe (O; Qgotomt mehivg
{0 G = ST(n) x ST(n), V = Mat(n) row/column scaling
Graphs without bipartite matching.
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Null Cone Problems and Applications

@ G =SL(2), V=C91 change of coordinates
Does the polynomial have a root of multiplicity > d/27?
@ G =SL(n), V = Mat(n) left multiplication
Singular Matrices
@ G =GL(n), V = Mat(n) conjugation
Zero Matrix
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Graphs without bipartite matching.
@ G =SL(n) x SL(n), V = Mat(n)™ operator scaling

Word-problem for free skew fields, Rational Identity Testing,
Brascamp-Lieb inequalities.



Null Cone Problems and Applications

@ G =SL(2), V=C91 change of coordinates
Does the polynomial have a root of multiplicity > d/27?
@ G =SL(n), V = Mat(n) left multiplication
Singular Matrices
@ G =GL(n), V = Mat(n) conjugation
Zero Matrix
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Graphs without bipartite matching.
@ G =SL(n) x SL(n), V = Mat(n)™ operator scaling

Word-problem for free skew fields, Rational Identity Testing,
Brascamp-Lieb inequalities.

@ How do we know this?



Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, #0 < p(u) = p(w) Vp € C[V]®
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, #0 < p(u) = p(w) Vp € C[V]®

© G=SL(2), v=c“ linear transformations of curves

Discriminants (and more)
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, #0 < p(u) = p(w) Vp € C[V]®

© G=SL(2), v=c“ linear transformations of curves
Discriminants (and more)
@ G =SL(n), V = Mat(n) left multiplication
Determinant
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.
o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, #0 < p(u) = p(w) Vp € C[V]®

© G=SL(2), v=c“ linear transformations of curves
Discriminants (and more)
@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation

Trace polynomials.
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Orbit Problems and Invariant Polynomials

o [Hilbert 1893]: Nullcone is the zero set of non-constant,
homogeneous invariant polynomials.

o [Hilbert-Mumford]: orbit closure intersection

0,Nn0, #0 < p(u) = p(w) Vp € C[V]®

Q@ G=SL(2),Vv=C linear transformations of curves
Discriminants (and more)
@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
Q@ G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.



What about Orbit Closure Containment?

@ Orbit closure containment much harder problem
e VP vs VNP question
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An Optimization View on Nullcone

@ Note that with the nullcone, we want to know whether 0 in the orbit
closure



An Optimization View on Nullcone

@ Note that with the nullcone, we want to know whether 0 in the orbit
closure

@ When our vector space have an inner product, motivates the following
optimization question:
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An Optimization View on Nullcone

@ Note that with the nullcone, we want to know whether 0 in the orbit
closure
@ When our vector space have an inner product, motivates the following
optimization question:
inf o ullp
inf g ul

@ Optimization is over the group elements. Geometry determined by the
geometry of the group



Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.

N={ucV | 0c0,}



Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.
N={ucV | 0c0,}
@ 1l-parameter subgroups (1-PSG):
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Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.
N={ucV | 0c0,}
@ 1l-parameter subgroups (1-PSG):
¢p:C"—= G

o [Hilbert-Mumford]: an element v € V is in the nullcone if, and only
if, there is a 1-PSG which drives u to zero.
Today we will, prove this for two actions:

@ ST(n) action on CN /“\6‘\—
@ SL(n) action on C™™ by left-multiplication.
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Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.
N={ueV | 0c0,}
@ 1l-parameter subgroups (1-PSG):
p:C"—> G

o [Hilbert-Mumford]: an element v € V is in the nullcone if, and only
if, there is a 1-PSG which drives u to zero.

Today we will prove this for two actions:

@ ST(n) action on CV
@ SL(n) action on C™™ by left-multiplication.

@ Note that SL(n) = SU(n) x ST(n) x SU(n)



Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.

N={ueV | 0c0,}

1-parameter subgroups (1-PSG):

. C"—= G

[Hilbert-Mumford]: an element u € V is in the nullcone if, and only
if, there is a 1-PSG which drives u to zero.

Today we will prove this for two actions:

@ ST(n) action on CV
@ SL(n) action on C™™ by left-multiplication.

Note that SLL(n) = SU(n) x ST(n) x SU(n)
SU(n) - maximal compact subgroup



Hilbert-Mumford Semistability Theorem

@ Nullcone: the set of elements that have zero in their orbit closure.

N={ueV | 0c0,}

1-parameter subgroups (1-PSG):

. C"—= G

[Hilbert-Mumford]: an element u € V is in the nullcone if, and only
if, there is a 1-PSG which drives u to zero.

Today we will prove this for two actions:

@ ST(n) action on CV
@ SL(n) action on C™™ by left-multiplication.

Note that SLL(n) = SU(n) x ST(n) x SU(n)
SU(n) - maximal compact subgroup

ST(n) < maximal torus



Hilbert-Mumford Semistability
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Examples
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Examples



Examples



@ Conclusion



Conclusion

Today we learned the basics about the geometric side of invariant
theory

Many examples of important group actions and their geometric
problems

Connections to other areas of mathematics

Fundamental problems and theorems in geometric invariant theory
Semistability theorem of Hilbert and Mumford



