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Graded Rings and Algebras

A graded ring is a ring R together with a direct sum decomposition
into abelian groups:

R = R0 ⊕ R1 ⊕ R2 ⊕ · · ·

such that
Ri · Rj ⊆ Ri+j
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Graded Rings and Algebras

A graded ring is a ring R together with a direct sum decomposition
into abelian groups:

R = R0 ⊕ R1 ⊕ R2 ⊕ · · ·

such that
Ri · Rj ⊆ Ri+j

Example: R = C[x1, . . . , xn], grading by degree

A homogeneous element of R is an element of some Rd

A homogeneous ideal of R is an ideal generated by homogeneous
elements

For any f ∈ R there is a unique expression of f into homogeneous
parts:

f = f0 + f1 + · · · fd ∈ Rd

and fk = 0 for all but finitely many k ∈ N
A graded C-algebra is a graded ring R with R0 = C.
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Algebraic Independence

Given a C-algebra R , we say that elements f1, . . . fk are algebraically
dependent if there is a non-zero polynomial P ∈ C[z1, . . . , zk ] such
that

P(f1, . . . , fk) = 0
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Algebraic Independence

Given a C-algebra R , we say that elements f1, . . . fk are algebraically
dependent if there is a non-zero polynomial P ∈ C[z1, . . . , zk ] such
that

P(f1, . . . , fk) = 0

If there are no non-zero polynomials P which vanish on f1, . . . , fk , we
say they are algebraically independent
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Algebraic Independence

Given a C-algebra R , we say that elements f1, . . . fk are algebraically
dependent if there is a non-zero polynomial P ∈ C[z1, . . . , zk ] such
that

P(f1, . . . , fk) = 0

If there are no non-zero polynomials P which vanish on f1, . . . , fk , we
say they are algebraically independent

The maximal number n ∈ N of algebraically independent elements in
R is called its Krull dimension
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Graded Modules

Given a graded ring R , a graded R-module M is an R-module with a
direct sum decomposition into abelian groups

M = M0 ⊕M1 ⊕M2 ⊕ · · ·

such that Ri ·Mj ⊆ Mi+j
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Graded Modules

Given a graded ring R , a graded R-module M is an R-module with a
direct sum decomposition into abelian groups

M = M0 ⊕M1 ⊕M2 ⊕ · · ·

such that Ri ·Mj ⊆ Mi+j

Examples:
1 homogeneous ideal I ⊂ R
2 Free R-modules Rn

An R-module M is finitely generated iff there are elements
m1, . . . ,mk such that

M = Rm1 + Rm2 + · · ·+ Rmk

Note that finitely generated modules need not be free.

R = C[x , y ] M = Rx2y + Rxy2
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Regular Sequences

A sequence of elements m1,m2, . . . ,mk in an R-module M is a
regular sequence if

1 m1 is a non-zero divisor over M and
2 mi is a non-zero divisor over M/(Rm1 + · · ·+ Rmi−1)
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Regular Sequences

A sequence of elements m1,m2, . . . ,mk in an R-module M is a
regular sequence if

1 m1 is a non-zero divisor over M and
2 mi is a non-zero divisor over M/(Rm1 + · · ·+ Rmi−1)

Example: R = C[x , y , z ], M = R and m1 = y − x2, m2 = z − y3

A good intuition for regular sequences: they give “new equations”

Non-Example: m1 = y − x2, m2 = z − y3 and m3 = xz − y2
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Homogeneous System of Parameters

Given a graded C-algebra R of Krull dimension n, a set of
homogeneous elements θ1, . . . , θn is a

homogeneous system of parameters (h.s.o.p.)

if

R is finitely generated as a C[θ1, . . . , θn]-module.
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Homogeneous System of Parameters

Given a graded C-algebra R of Krull dimension n, a set of
homogeneous elements θ1, . . . , θn is a

homogeneous system of parameters (h.s.o.p.)

if

R is finitely generated as a C[θ1, . . . , θn]-module.

In particular, θ1, . . . , θn are algebraically independent

Noether Normalization Lemma:

An h.s.o.p always exists for finitely generated C-algebras.
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Properties of Homogeneous System of Parameters

If R is a finitely generated graded C-algebra of dimension n, and
a1, . . . , an ∈ Z>0

1 θ1, . . . , θn is an h.s.o.p. iff θa11 , . . . , θann is an h.s.o.p.
2 a sequence f1, . . . , fn of homogeneous and algebraically independent

elements is regular iff f a11 , . . . , f ann is regular
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Properties of Homogeneous System of Parameters

If R is a finitely generated graded C-algebra of dimension n, and
a1, . . . , an ∈ Z>0

1 θ1, . . . , θn is an h.s.o.p. iff θa11 , . . . , θann is an h.s.o.p.
2 a sequence f1, . . . , fn of homogeneous and algebraically independent

elements is regular iff f a11 , . . . , f ann is regular

First property is usually used to make h.s.o.p. of elements of same
degree

Weak exchange property: if f1, . . . , fn and θ1, . . . , θn are h.s.o.p.’s
of R , with deg(θi ) = deg(θj).
Then, there is linear combination θ = λ1θ1 + · · ·+ λnθn such that

f1, . . . , fn−1, θ is an h.s.o.p.
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Cohen-Macaulay Property

If R is a graded C-algebra with dim(R) = n, and θ1, . . . , θn are an
h.s.o.p. for R , the following are equivalent

1 R is a finitely generated free C[θ1, . . . , θn]-module. That is, there is
η1, . . . , ηt such that

R =
t�

i=1

C[θ1, . . . , θn] · ηi

2 R is finitely generated as a free C[f1, . . . , fn]-module for every h.s.o.p.
f1, . . . , fn

Moreover, the elements ηi satisfy equation (1) iff their images form a
C-vector space basis over R/(θ1, . . . , θn)
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If R is a graded C-algebra with dim(R) = n, and θ1, . . . , θn are an
h.s.o.p. for R , the following are equivalent

1 R is a finitely generated free C[θ1, . . . , θn]-module. That is, there is
η1, . . . , ηt such that

R =
t�

i=1

C[θ1, . . . , θn] · ηi

2 R is finitely generated as a free C[f1, . . . , fn]-module for every h.s.o.p.
f1, . . . , fn

Moreover, the elements ηi satisfy equation (1) iff their images form a
C-vector space basis over R/(θ1, . . . , θn)

A graded C-algebra R satisfying the above is Cohen-Macaulay

The decomposition above is called Hironaka decomposition

“Life is really worth living in an Noetherian Cohen-Macaulay ring”
Hochster 1978
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Invariant Rings of Finite Groups are Cohen-Macaulay

Let G be a finite group acting linearly on Cn. The invariant ring
C[x]G is Cohen-Macaulay.
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Invariant Rings of Finite Groups are Cohen-Macaulay

Let G be a finite group acting linearly on Cn. The invariant ring
C[x]G is Cohen-Macaulay.

Every xi satisfies a monic polynomial equation with coefficients in
C[x]G integral over C[x]G

Let Pi (t) =
�

h∈G (h ◦ xi − t)

Coefficients of Pi are invariants, and xi is a root
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Invariant Rings of Finite Groups are Cohen-Macaulay

Let G be a finite group acting linearly on Cn. The invariant ring
C[x]G is Cohen-Macaulay.

Every xi satisfies a monic polynomial equation with coefficients in
C[x]G integral over C[x]G

This implies C[x] finitely generated as C[x]G -module

Let K = ker(RG ), where RG is the Reynolds operator. Also a
C[x]G -module

We can write C[x] = C[x]G ⊕ K direct sum of C[x]G -modules

Noether Normalization Lemma ⇒ h.s.o.p. θ1, . . . , θn for C[x]G

C[x] is a finite C[x]G -module, and C[x]G is a finite
C[θ1, . . . , θn]-module ⇒ C[x] is a finite C[θ1, . . . , θn]-module
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Proof of Cohen-Macaulayness

Let G be a finite group acting linearly on Cn. The invariant ring
C[x]G is Cohen-Macaulay.

C[x] is a finite C[x]G -module, and C[x]G is a finite
C[θ1, . . . , θn]-module ⇒ C[x] is a finite C[θ1, . . . , θn]-module
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Let G be a finite group acting linearly on Cn. The invariant ring
C[x]G is Cohen-Macaulay.

C[x] is a finite C[x]G -module, and C[x]G is a finite
C[θ1, . . . , θn]-module ⇒ C[x] is a finite C[θ1, . . . , θn]-module

Thus θ1, . . . , θn is an h.s.o.p. for C[x]
C[x] is Cohen-Macaulay take x1, . . . , xn as h.s.o.p.

Our Cohen-Macaulay Theorem says that C[x] is a finitely generated
free C[θ1, . . . , θn]-module!

From module decomposition C[x] = C[x]G ⊕ K we get finite
dimensional C-vector space decomposition

C[x]/(θ1, . . . , θn) = C[x]G/(θ1, . . . , θn)⊕ K/(θ1, . . . , θn)
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Proof of Cohen-Macaulayness

From module decomposition C[x] = C[x]G ⊕ K we get finite
dimensional C-vector space decomposition

C[x]/(θ1, . . . , θn) = C[x]G/(θ1, . . . , θn)⊕ K/(θ1, . . . , θn)

Taking vector-space basis
α1, . . . ,αt for C[x]G/(θ1, . . . , θn) and
β1, . . . ,βs for K/(θ1, . . . , θn)
and taking their pre-images in C[x]G and K we get our Hironaka
decomposition.
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Proof of Cohen-Macaulayness

From module decomposition C[x] = C[x]G ⊕ K we get finite
dimensional C-vector space decomposition

C[x]/(θ1, . . . , θn) = C[x]G/(θ1, . . . , θn)⊕ K/(θ1, . . . , θn)

Taking vector-space basis
α1, . . . ,αt for C[x]G/(θ1, . . . , θn) and
β1, . . . ,βs for K/(θ1, . . . , θn)
and taking their pre-images in C[x]G and K we get our Hironaka
decomposition.

This shows C[x]G is Cohen-Macaulay.
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Primary and Secondary Invariants

Hironaka decomposition is very useful way of representing invariant
ring of finite groups!
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Primary and Secondary Invariants

Hironaka decomposition is very useful way of representing invariant
ring of finite groups!

Every invariant f (x) can then be written as

f (x) =
t�

i=1

ηi (x) · pi (θ1, . . . , θn)

We call the θ1, . . . , θn primary invariants and η1, . . . , ηn secondary
invariants

Hironaka decompositions are not unique (in fact, one could have
many of them)

Also, degrees of primary and secondary invariants are not unique

But if we find primary invariants of certain degrees d1, . . . , dt then the
number of secondary invariants is determined, as well as their degrees!

Computational aspects of Hironaka’s decomposition widely open!
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Basic Thoughts on Computation
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Conclusion

Today we proved that invariant rings of finite groups are
Cohen-Macaulay and learned about Hironaka decomposition

Cohen-Macaulayness gives us great algebro-geometric properties of
invariant rings!

Many different Hironaka decompositions not a bad thing! One of
them could be efficiently computable!

Lots of open questions in this area!
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