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Finite Generation Problem

o Let G be a nice! group and V be a C-vector space

e G acts linearly on V' if

go(au+pv)=algou)+fgov)

@ Examples:

Q@ G=5,v=C permuting coordinates
@ G=SL(2), V=cC linear transformations of curves
o Invariant polynomials form a subring of C[V], denoted C[V]®
@ Question from last lecture:

Given a nice group G acting linearly on a vector space V, is C[V]®
finitely generated as a C-algebra?

Last lecture, we saw this was the case for first example. Is this a
general phenomenon?

o Hilbert (twice) 1890, 1893: YES!

!Today: finite groups and SL(n). More generally linearly-reductive
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@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

e Invariant polynomials form a subring of C[x], denoted C[x]®



Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

e Invariant polynomials form a subring of C[x], denoted C[x]®

@ For the ring of symmetric polynomials, we know that

Clx1, ..., xa]>" = Cley, e, . . . , €n]
where
ed(xl, e ,Xn) = Z HX,‘
SC[n]i€S
|S|=d

@ Every symmetric polynomial is itself a polynomial function of the
elementary symmetric polynomials

@ Elementary symmetric polynomials are a fundamental system of
invariants



Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
o Use degree lexicographic order

e Every symmetric polynomial p(x) has a non-zero leading term

ai, a2

.. an
XX X5

with a1 > a > - > a,
@ Then
p(x) — LC(p) - ef' ™ - e* ey T e
has smaller leading monomial! division algorithm!

@ Procedure must terminate because of well-ordering of monomial
ordering!



Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
o Use degree lexicographic order

e Every symmetric polynomial p(x) has a non-zero leading term

ai, a2

.. an
XX X5

with a1 > a > - > a,
@ Then
p(x) — LC(p) - ef' ™ - e* ey T e
has smaller leading monomial! division algorithm!

@ Procedure must terminate because of well-ordering of monomial
ordering!

@ Can we generalize this to work for every finite group?



Averaging Operator
e If G is a finite group acting linearly on V = CN, let p : C[x] — C[x]¢
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p(p) = |G, > gop projection
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Averaging Operator

e If G is a finite group acting linearly on V = CN, let p : C[x] — C[x]¢
p(p) = Z gop
geaqG

@ Properties of p:
@ o :C[x] = C[x]® is a linear operator projection
@ p(p-q) = p-p(q) for any p € C[x]® and g € C[x]
@ deg(p(p)) = deg(p) whenever p(p) 0
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Averaging Operator

e If G is a finite group acting linearly on V = CV, let p: C[x] — C[x]®

1
p(p)ZW-ZgOP
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@ Properties of p:
Q@ p:C[x] — C[x]® is a linear operator projection
@ p(p-q) = p-p(q) for any p € C[x]° and q € C[x]
© deg(p(p)) = deg(p) whenever p(p) # 0
@ Now, we can use p to reduce finite generation as C-algebra to finite
generation of ideals!
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Averaging Operator

e If G is a finite group acting linearly on V = CV, let p: C[x] — C[x]®

1
p(p)ZW-ZgOP

geai

@ Properties of p:
Q@ p:C[x] — C[x]® is a linear operator projection
@ p(p-q) = p-p(q) for any p € C[x]° and q € C[x]
© deg(p(p)) = deg(p) whenever p(p) # 0
@ Now, we can use p to reduce finite generation as C-algebra to finite
generation of ideals!

@ Note that our ring C[x] is graded by degree, and so is our ring of
invariants!

@ Plus, note that our invariants can always be taken to be homogeneous
polynomials (otherwise we can take homogeneous components).



Finite Generation

qedeetic ™

o Let C[x] = C[x]o ¢ C[x]1 & C[x]2 & - - - be grading by degree
—_ e
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Finite Generation

o Let C[x] = C[x]o ¢ C[x]1 & C[x]2 & - - - be grading by degree
e Similarly C[x]® = C[x]§ @ C[x|¢ @ C[x]S @ - --
o Let J C C[x] be the ideal generated by
CXIf & C[x]S @ ---
—ee———
N - Comryam + (sw gy )
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Finite Generation
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Finite Generation

Let C[x] = C[x]o ® C[x]1 ® C[x]2 @ - - - be grading by degree
Similarly C[x]¢ = C[x]$ @ C[x]¢ @ C[x]S @ - --
Let J C CI[x] be the ideal generated by

Clx|f ®C[x]S @ - --

e By Hilbert Basis Theorem (HBT), we know that J is finitely
generated.

J=(a1,...,at)
Moreover, we can take a;'s to be invariants (from proof of HBT)

@ We can assume a;'s are homogeneous (otherwise take their
homogeneous components as generators)

o We will now show that C[x]® = C[ay, ..., a(]



Finite Generation

o Proof that C[x]® = C[ay, ..., a] is by induction on degree.
= hae J"é dl.e,('w.i\\"w\
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Finite Generation

o Proof that C[x]® = C[ay, ..., a] is by induction on degree.

e Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]®, where we now have d > 0.



Finite Generation

@ Proof that C[x]® = CJ[ay,. .., a:] is by induction on degree.

e Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]®, where we now have d > 0.

o If p € C[x]§, since we know that p € J by definition of J, we have

om——
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Finite Generation

o Proof that C[x]® = C[ay, ..., a] is by induction on degree.

e Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]®, where we now have d > 0.

o lfpe (C[x]g. since we know that p € J by definition of J, we have
p=aiby + -+ acb:
@ Applying the averaging operator on both sides, we have:

p = p(p) = p(arby + - - + atby)
v = plarb1) +--- + p(achy)

?nssf& |
= a1 p(b1) + -+ ar- p(b) Mvo:u‘u’«o :

— —
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Finite Generation

o Proof that C[x]® = C[ay, ..., a] is by induction on degree.

e Claim is true for d = 0 (base case). Suppose claim is true for all
polynomials of degree < d in C[x]®, where we now have d > 0.

If pe (C[x]g, since we know that p € J by definition of J, we have

p=aiby + -+ arb:

Applying the averaging operator on both sides, we have:

= p(p) = p(arby + - - - + a¢by)
= p(arb1) + - + p(acbt) 1
a1 p(b) + -t ac plbe) \E Cloy, 1% )

By induction, and the fact that deg(p(b;)) < d, we have that

pe(C[al,...,at] eCCbCE,“ ,Oq-_-)

bey (640 = 454D (1€ e 40)



@ Reynolds Operator & Finite Generation



Hilbert's Idea

o Let G be our group acting on CV, and C[x] our coordinate ring.

@ If we had a procedure which projected any polynomial from C[x] onto
the ring of invariants C[x]®, we could try to do something similar to
Hilbert Basis Theorem!

2For a proof of this, see Derksen & Kemper Chapter 2



Hilbert's Idea

o Let G be our group acting on CV, and C[x] our coordinate ring.

@ If we had a procedure which projected any polynomial from C[x] onto
the ring of invariants C[x]®, we could try to do something similar to
Hilbert Basis Theorem!

@ Here are the properties we need from such map R : C[x] — C[x]®

e R is a linear map
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e R is a linear map
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the following properties:
@ Rc(p) = p forall p € C[x]®
@ Rg is G-invariant, that is, Rg(g o p) = Rg(p) for all p € C[x] and all
geG
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Hilbert's Idea

o Let G be our group acting on CV, and C[x] our coordinate ring.

@ If we had a procedure which projected any polynomial from C[x] onto
the ring of invariants C[x]®, we could try to do something similar to
Hilbert Basis Theorem!

@ Here are the properties we need from such map R : C[x] — C[x]®

e R is a linear map

o R(p) = p for all p € C[x]®

o R(pq) = p- R(q) for each p € C[x]® and g € C[x]
o deg(R(q)) = deg(q) whenever R(q) # 0

o a linear map Rg : C[x] — C[x]® is a Reynolds operator if it satisfies

the following properties:
@ Rc(p) = p forall p € C[x]®
@ Rg is G-invariant, that is, Rg(g o p) = Rg(p) for all p € C[x] and all
geG

@ One can prove (requires representation theory) that the Reynolds
operator exists (and is unique) when G is reductive and that it has
the properties above.?

2For a proof of this, see Derksen & Kemper Chapter 2




From Reynolds Operator to Finite Generation

c - Co cBYe® -
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e Cayley's Q-process and Reynolds Operator for SLL(n)



What if our group is not finite?

@ We reduced the question of finite generation of invariants to the
question of computing the Reynolds Operator of a group action



What if our group is not finite?

@ We reduced the question of finite generation of invariants to the
question of computing the Reynolds Operator of a group action

@ How do we compute the Reynolds Operator?
e Difficult question, today we will see how to do it for SL(n)
Cayley’'s Q-process



Differential Polynomials & Cayley's 2-process

@ Given a polynomial ring C[xq, ..., x,], can define the ring of
differential polynomials C[d1, ..., dp]
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Differential Polynomials & Cayley's 2-process

@ Given a polynomial ring C[xq, ..., x,], can define the ring of
differential polynomials C[01, ..., Op]

e For each polynomial f(x,...,x,) we have its corresponding
differential polynomial D¢(01,...,0,), acts as a differential operator

HASHN
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Differential Polynomials & Cayley's 2-process

@ Given a polynomial ring C[xq, ..., x,], can define the ring of
differential polynomials C[01, ..., Op]

e For each polynomial f(x,...,x,) we have its corresponding
differential polynomial D¢(01,...,0,), acts as a differential operator

e If f € C[x] homogeneous, we have Dr o f is a constant

2y (Xey)
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Differential Polynomials & Cayley's 2-process

@ Given a polynomial ring C[xq, ..., x,], can define the ring of
differential polynomials C[d1, ..., On]

e For each polynomial f(x,...,x,) we have its corresponding
differential polynomial D¢ (01, ...,0,), acts as a differential operator

e If f € C[x] homogeneous, we have Dr o f is a constant
@ Other basic properties of differential operators Ds:

Q Dr(p+4q) = Dr(p) + Dr(q)

@ D.r(p) = De(ap) = a - De(p), for constants « € C

© Drig(p) = Dr(p) + Dg(p)
Q D (p) = DrDg(p) composition of differential operators



Differential Polynomials & Cayley's 2-process

@ Given a polynomial ring C[xq, ..., x,], can define the ring of
differential polynomials C[d1, ..., On]

e For each polynomial f(x,...,x,) we have its corresponding
differential polynomial D¢ (01, ...,0,), acts as a differential operator

e If f € C[x] homogeneous, we have Dr o f is a constant
@ Other basic properties of differential operators Ds:

Q Dr(p+q) = Dr(p) + Dr(q)

@ D.r(p) = De(ap) = a - De(p), for constants « € C

© Drig(p) = Dr(p) + Dg(p)

Q D (p) = DeDg(p) composition of differential operators
@ We are now ready to define the Q-process: G = 5L (Y)X
o If Z is the symbolic n x n matrix over C[Z] =

o Let C[J] be the ring of differential polynomials 2u 2w

ra _ gu on Q:= Ddet = det(9y) (f[bli ! D2 ,311'-3
- P2y du U v T T



From Q-process to Reynolds

@ We show how to use the Q2-process to compute the Reynolds
Operator via an example:
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From Q-process to Reynolds

@ We show how to use the Q2-process to compute the Reynolds
Operator via an example:

e G = SL(2) acting on C3 (binary quadratic forms)
@ To get Reynolds operator, do as follows:

@ Take any polynomial p € C[x] and the generic action of the symbolic
matrix Z = (Zj;)
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From Q-process to Reynolds

@ We show how to use the Q2-process to compute the Reynolds
Operator via an example:

e G = SL(2) acting on C3 (binary quadratic forms)
@ To get Reynolds operator, do as follows:
@ Take any polynomial p € C[x] and the generic action of the symbolic
matrix Z = (Zj;)

@ Compute Zop polynomial in C[Z, x]

s



From Q-process to Reynolds

@ We show how to use the Q2-process to compute the Reynolds
Operator via an example:

e G = SL(2) acting on C3 (binary quadratic forms)

@ To get Reynolds operator, do as follows:

@ Take any polynomial p € C[x] and the generic action of the symbolic
matrix Z = (Zj;)

@ Compute Zop
© Use Q-process (repeatedly) to kill variables Z

O Rep)

deg)% <. dcg)% (= °'P)

polynomial in C[Z, x]




From Q-process to Reynolds

@ We show how to use the Q2-process to compute the Reynolds
Operator via an example:

@ G = SLL(2) acting on C* (binary quadratic forms)

@ To get Reynolds operator, do as follows:

@ Take any polynomial p € C[x] and the generic action of the symbolic
matrix Z = (Zj;)

@ Compute Zop polynomial in C[Z, x]

© Use Q-process (repeatedly) to kill variables Z

© Resulting polynomial is an invariant!



Binary Quadrics

@ Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy + cy® < p = (a, b, c)



Binary Quadrics

@ Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy + cy® < p = (a, b, c)
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Binary Quadrics

@ Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy +_cy2 < p:=(a,b,c)
_(a B
og_<,7 5> acts on p by

o eeelel)

o If (a/, b, ') is the image g~ !

’r_ 2 2
a/—aa + bay 4 ¢y c c[e(( ?(B;%
b =2 (aaf + cy0) + b(ad + 57) bt

¢ = ap® + bpBs + co? &
alz (%)

o p, we have



Binary Quadrics

@ Take monomial ac c (CQ‘ b, L’B



Binary Quadrics

@ Take monomial ac

@ Symbolic transformation takes ac to a'c’

(aa® + bay + ¢3%)(aB + bfs + c6%)



Binary Quadrics

(5 s ) T %
@ Take monomial ac

@ Symbolic transformation takes ac to a’c’

— (aa? + bary 4+ c7?)(aB? + bB6 + c6?) = g

o Apply the Q-process: 2 = 0,05 — 930, until no more variables from
symbolic transformation!

variables from
u((’t‘,%
deds e = O. (ax't boy ¢ cx”)( bP £ 2¢3)
. (bp*zca)(z-w./rbx)
WG = (bt +2c5)(22pr bE)
(bp +2c8>(2«u+bk) - (bu:Z

c¥)(ze P +58)

= k] E
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Binary Quadrics I3 - 9p o
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Conclusion

o

Today we proved the first fundamental theorem of invariant theory

If group G is reductive, the invariant ring is finitely generated as a

C-algebra

Saw how the Reynolds Operator reduces the finite generation as an
algebra to finite generation as an ideal
Learned how to compute Reynolds Operator for finite groups
(averaging)
Learned about the Q-process, which is used to compute the Reynolds
Operator for SL(n) actions

Explicit formulas for Reynolds Operator important for analytic
algorithms in invariant theory!

Even though may be difficult to compute (analogous to Cramer’s
rule), knowing formula is important and gives us quantitative
information!



Conclusion

o

Today we proved the first fundamental theorem of invariant theory
If group G is reductive, the invariant ring is finitely generated as a
C-algebra
Saw how the Reynolds Operator reduces the finite generation as an
algebra to finite generation as an ideal
Learned how to compute Reynolds Operator for finite groups
(averaging)

Learned about the Q-process, which is used to compute the Reynolds
Operator for SL(n) actions

Explicit formulas for Reynolds Operator important for analytic
algorithms in invariant theory!

Even though may be difficult to compute (analogous to Cramer’s
rule), knowing formula is important and gives us quantitative
information!

Lots of open questions in this areal
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