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@ Examples:
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@ Let G be a nice! group and V be a C-vector space

o G acts linearly on V if
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o Let G be a nice! group and V be a C-vector space

o G acts linearly on V' if
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Group Actions

@ Let G be a nice! group and V be a C-vector space
o G acts linearly on V if

go(au+tpv)=algou)+pB(gov)

@ Examples:
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Invariant Functions

@ In this setup, important to study functions which are invariant under
the group action, that is:
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@ Algebraically, would like to understand polynomial invariant functions
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Invariant Functions

@ In this setup, important to study functions which are invariant under
the group action, that is:

f(v)=f(gov) forall ge G, veV

@ Algebraically, would like to understand polynomial invariant functions

Q@ G=5,Vv=C" permuting coordinates
Symmetric polynomials.

Q@ G=A,Vv=C permuting coordinates

Symmetric polynomials (and more)

Q@ G=SL(2), VvV=cC linear transformations of curves
Discriminants (and more)

Q@ G =SL(n), V = Mat(n) left multiplication

Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
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Examples, Continued
@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V =Mat(n) conjugation
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Examples, Continued

@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.
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Examples, Continued

Q@ G =SL(n), V = Mat(n) left multiplication
Determinant
@ G =GL(n), V = Mat(n) conjugation
Trace polynomials.
@ G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.
Q G=S5, V= c(3) graph isomorphism
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@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V
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Ring of Invariant Polynomials

@ G acts linearly on V = CV, let C[x] = C[xi, ..., xyn] be the
polynomial ring over V

e Invariant polynomials form a subring of C[x], denoted C[x]®

@ For the ring of symmetric polynomials, we know that

Clx1, ..., xa]>" = Cley, e, . . . , €n]
where
ed(xl, e ,Xn) = Z HX,‘
SC[n]i€S
|S|=d

@ Every symmetric polynomial is itself a polynomial function of the
elementary symmetric polynomials

@ Elementary symmetric polynomials are a fundamental system of
invariants
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!

o Use degree lexicographic order
e Every symmetric polynomial p(x) has a non-zero leading term
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
@ Use degree lexicographic order
e Every symmetric polynomial p(x) has a non-zero leading term
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Proof of Invariant Ring of Symmetric Polynomials

@ Proof due to van der Waerden using monomial ordering!
o Use degree lexicographic order

e Every symmetric polynomial p(x) has a non-zero leading term

ai a2

.. an
X17 X5 Xn

with a1 > a, > --- > a,
@ Then
p(x) = LC(p) - &' ™ e3> @y e
has smaller leading monomial! division algorithm!
@ Procedure must terminate because of well-ordering of monomial
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Other Fundamental Invariants

@ It turns out that the fundamental system of invariants may not be
unique (an are generally far from being unique)

@ The power sum polynomials py(x) = de + -+ x9 are also a
fundamental system of invariants!

@ The Schur polynomials are also a fundamental system of invariants!

If A= (A1,...,An) is a partition of d (where \; > \;11) we have

X1>\1+n—1 ortn=1 Xr/1\1+n_1
X>\2+nf2 X/\z+nf2 co. xletn=2
1 2 n
sy = det _ _ . _ /H(Xf — x})
x1" X5" e X,;\"

@ The complete symmetric polynomials are also a fundamental system
of invariants!

@ Relations between these bases is very important in algebraic
combinatoric and representation theory!

@ More generally, fundamental systems of invariants give us great
properties and connections between many areas of-mathematics!



Fundamental System of Invariants — Another Example

e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
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e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.

@ OQur group is abelian, so invariants are generated by monomials
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Fundamental System of Invariants — Another Example

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.
@ OQur group is abelian, so invariants are generated by monomials

an be an invariant

@ No monomial of degree < n c
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
@ OQur group is abelian, so invariants are generated by monomials
@ No monomial of degree < n can be an invariant

e Permutation/matching monomials are definitely invariant



Fundamental System of Invariants — Another Example

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.

Our group is abelian, so invariants are generated by monomials

No monomial of degree < n can be an invariant

Permutation/matching monomials are definitely invariant

Any invariant monomial must have degree kn for some k € Z
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.

Our group is abelian, so invariants are generated by monomials
No monomial of degree < n can be an invariant
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e Permutation/matching monomials are definitely invariant

@ Any invariant monomial must have degree kn for some k € Z
°

Invariant monomial of degree kn must have exactly k non-zeros in
each row, and each column



Fundamental System of Invariants — Another Example

G = ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.

Our group is abelian, so invariants are generated by monomials

No monomial of degree < n can be an invariant

Permutation/matching monomials are definitely invariant

Any invariant monomial must have degree kn for some k € Z

Invariant monomial of degree kn must have exactly k non-zeros in
each row, and each column

Birkhoff-von Neumann theorem, must be in convex hull of
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Fundamental System of Invariants — Another Example

e G =ST(n) x ST(n), V = Mat(n) row/column scaling
Matching/Permutation monomials.

Our group is abelian, so invariants are generated by monomials

No monomial of degree < n can be an invariant

Permutation/matching monomials are definitely invariant

Any invariant monomial must have degree kn for some k € Z

Invariant monomial of degree kn must have exactly k non-zeros in
each row, and each column

@ Birkhoff-von Neumann theorem, must be in convex hull of
permutations

@ Relation to combinatorics: if matrix A is adjacency matrix of a
bipartite graph H, then A has no perfect matching iff A vanishes on
all invariants! LA SRR Q!/\\g&\
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Fundamental System of Invariants — Another Example
e G =ST(n) x ST(n), V = Mat(n) row/column scaling

Matching/Permutation monomials.
Our group is abelian, so invariants are generated by monomials
No monomial of degree < n can be an invariant
Permutation/matching monomials are definitely invariant

Any invariant monomial must have degree kn for some k € Z

Invariant monomial of degree kn must have exactly k non-zeros in

each row, and each column

@ Birkhoff-von Neumann theorem, must be in convex hull of
permutations

@ Relation to combinatorics: if matrix A is adjacency matrix of a

bipartite graph H, then A has no perfect matching iff A vanishes on

all invariants!

@ It is no coincidence that polytopes appear naturally with torus
actions. Shall see this more later.



Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax* + bxy + cy® > p = (a, b, ¢)



Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy + cy® < p = (a, b, c)

_ (o B
og—<7 5>actsonpby

erofe()

m——



Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax® + bxy + cy® < p = (a, b, c)
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Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3

p(x) = ax* 4 bxy + cy? <+ p := (a, b, ¢)
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@ The discriminant is an invariant!

b? — 4ac = (b')? —4d'c’




Discriminant & Invariant Theory
o Let SIL(2) act on the space of quadratic polynomials C3
p(x) = ax® + bxy + cy® < p = (a, b, c)
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o If (', b, ) is the image g !

o p, we have

a = aa’® 4 bay + cv?

b'=2-(aaB + cyd) + b(ad + B7)

¢’ = aB? + bBo + 6>
@ The discriminant is an invariant!

b? — 4ac = (b')? — 4d'c
@ It captures exactly the quadratic polynomials which have a double
root! We will see again why this is the case in"a later lecture.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are

called syzygies.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.



Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.

These were the problems Hilbert was trying to solve when he
developed the Hilbert Basis Theorem, Nulistellensatz and Syzygy
theorem - cornerstones of modern commutative algebra and algebraic

geometry.
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Fundamental Problems in Invariant Theory

@ Is the invariant ring finitely generated as a C-algebra?

@ Can we describe the algebraic relations among the fundamental
invariants from the previous question? These algebraic relations are
called syzygies.

e Give an algorithm which writes an invariant p(x) as a polynomial in
the fundamental invariants.

These were the problems Hilbert was trying to solve when he
developed the Hilbert Basis Theorem, Nulistellensatz and Syzygy
theorem - cornerstones of modern commutative algebra and algebraic

geometry.

@ Answer to third problem can be done via Grobner basis methods
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@ Cyclic group of order 4:
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Examples of Invariants with Syzygies
2
e Cyclic group of order 4: ( \ = C

{0 D)

@ Invariant ring equals set of polynomials p(x, y) such that
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Examples of Invariants with Syzygies

@ Cyclic group of order 4:

c_J(1 0 ~1 0 0 1 0 -1
a 0 1/7\0 -1/7\-1 0/ \1 O
@ Invariant ring equals set of polynomials p(x, y) such that
p(x,y) = p(=y, x)

@ Three fundamental invariants:
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Examples of Invariants with Syzygies

@ Cyclic group of order 4:

o) (5 (G (o))
0 1)’7\0 -1)7\-10)7\1 O
@ Invariant ring equals set of polynomials p(x, y) such that
p(x,y) = p(=y,x)
@ Three fundamental invariants:
fi=x*+y? h=xy? f5=x7y —x/°

o Syzygy:
f32 _ f2f12 + 4)4:22



@ Conclusion



Conclusion

Today we learned the basics about the algebraic side of invariant
theory

Some history
Many examples of important rings of invariants

Connections to other areas of mathematics

Fundamental problems in invariant theory



Acknowledgement

@ Lecture based entirely on the wonderful book by Sturmfels:
Algorithms in Invariant Theory



