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Ideal Membership Problem
o Input: gi,...,8, f €F[xq,...,x,] oleg(%‘) . deg('e) <d

e Output: isf € (g1,...,85)?
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Ideal Membership Problem

o Input: g1,...,gs, f €F[xq,...,xy]
e Output: isf € (g1,...,85)?

@ To solve this, we need to show the existence (or non-existence) of
polynomials hy,..., hs such that

f=g - -m+- - +gshs
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o Input: g1,...,gs, f €F[xq,...,xy]
e Output: isf € (g1,...,85)?
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Ideal Membership Problem

o Input: g1,...,gs, f €F[xq,...,xy]

e Output: isf € (g1,...,85)?

@ To solve this, we need to show the existence (or non-existence) of
polynomials hy,..., hs such that

f ::éﬁ_.ﬁl_+... +_g3ﬁf

@ We know that if such polynomials exist then Groebner bases and the
division algorithm will find them for us

o But today we will see a different algorithm for it - we will solve it by
converting the polynomial system above into a /inear system of
equations
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Ideal Membership Problem

o Input: g1,...,gs, f €F[xq,...,xy]
e Output: isf € (g1,...,85)?

@ To solve this, we need to show the existence (or non-existence) of
polynomials hy,..., hs such that

f=g - -m+- - +gshs

@ We know that if such polynomials exist then Groebner bases and the
division algorithm will find them for us

o But today we will see a different algorithm for it - we will solve it by
converting the polynomial system above into a /inear system of
equations

@ The complexity of today's algorithm comes from showing that if the

hi's exist, then they must exist in some “reasonable degree”

So we need to upper bound the degree of the h;'s
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Algorithm - Main |dea

@ If we know upper bound on the degree of the h;’s then all we have
left is a linear system!

¥= g‘hl + - 1’&})5 C’*)
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Algorithm - Main ldea
@ If we know upper bound on the degree of the h;'s then all we have
left is a linear system!

@ Since linear systems can be solved in polylogarithmic space, a degree
bound of D on the h;'s, together with a degree bound of d for f, 8;

would give us a space complexity of:

poly(nlog(D), log(s))

VD deubly- expoumital => EX(IPACE
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Linear System of Polynomials
o Input: g, fi € Flxi,...,xp] where i € [s],j € [t],

deg(g;j), deg(f;) < d
@ QOutput: is there hy,..., h; such that

f,' =g,-1h1 + - —i—g,-tht Vi e [S]

G=(as) ¢ F&S"
h. (i
G ' = 4z
W in

10/52



Linear System of Polynomials
o Input: gj, i € F[x1,...,xs] where i € [s],j € [t],
deg(gjj), deg(f;) < d
@ Output: is there hq,..., h; such that
fi=ginhi+ -+ giche Vi€ |[s]
@ Can be reduced to ideal membership problem by adding extra

variables yi, ..., ys:

fiyi ot fys € (1o gy +y2- g+t s 8y)j-1

—

hy
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Linear System of Polynomials

o Input: gj, i € F[x1,...,xs] where i € [s],j € [t],
deg(gi), deg(f;) < d
@ Output: is there hq,..., h; such that

fi = gith1 + -+ githy Vi € [s]

@ Can be reduced to ideal membership problem by adding extra
variables yi, ..., ys:

fyi o fys € (1o gy +y2- g+t s 8y)j—1

o It will be convenient to prove that this problem can be solved in
EXPSPACE
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Linear System of Polynomials

o Input: gj, i € F[x1,...,xs] where i € [s],j € [t],

deg(gU)7d6g(ﬁ') <d \-_gZ'_L_l
o Output: is there hq, ..., hs such that

fi = gith1 + -+ githy Vi € [s]

@ Can be reduced to ideal membership problem by adding extra
variables yi, ..., ys:

fyi o fys € (1o gy +y2- g+t s 8y)j—1

o It will be convenient to prove that this problem can be solved in
EXPSPACE

Theorem (Hermann, Mayr-Meyer)

If the linear system of polynomials problem has a solution, then it has a
solution in which

deg(h;) < (t- d)*
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Remarks

@ The above theorem proves that we can solve the ideal membership
problem in EXPSPACE
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Remarks

@ The above theorem proves that we can solve the ideal membership
problem in EXPSPACE

@ We can assume that our base field [F is infinite, without loss of
generality.

@ This is because a system of linear equations has a solution over an
extension field F C K if, and only if, it has a solution in F

@ Practice problem: prove this statement
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@ Univariate Case
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Special Case: Univariate Polynomials

@ Assume now our input gj;, fi € F[x] where i € [s],j € [t],
deg(gjj), deg(fi) < d
@ is there hy,..., h; such that

fi=gihh +--+githe Vi€ |[s]
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Special Case: Univariate Polynomials

@ Assume now our input gj;, fi € F[x] where i € [s],j € [t],
deg(gjj), deg(fi) < d
@ is there hy,..., h; such that

fi=gihh +--+githe Vi€ |[s]

o Let M = (gj) € F[x]*** and f = (f;) € F[x]°
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Special Case: Univariate Polynomials

@ Assume now our input gj;, fi € F[x] where i € [s],j € [t],
deg(gjj), deg(f;) < d
@ is there hy,..., h; such that
fi=gihh +--+githe Vi€ |[s]

o Let M = (gj) € F[x]*** and f = (f;) € F[x]°
o Can assume that M has full row rank (thus s < t), otherwise we
remove dependencies
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Special Case: Univariate Polynomials

@ Assume now our input gj;, fi € F[x] where i € [s],j € [t],
deg(gjj), deg(fi) < d

@ is there hy,..., h; such that
fi =giihi+---+ githy Vi€ ls]
o Let M = (gj) € F[x]*** and f = (f;) € F[x]°

Can assume that M has full row rank (thus s < t), otherwise we
remove dependencies

o If s =t then M is invertible and our solution would be h = M~1f

oot F(X) evee (<)
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Special Case: Univariate Polynomials

@ Assume now our input gjj, fi € F[x] where i € [s],j € [t],
deg(gjj), deg(f;) < d
@ is there hy,..., h; such that
fi=gihh + - +githe Vi€ |[s]

o Let M = (gj) € F[x]*** and f = (f;) € F[x]°
o Can assume that M has full row rank (thus s < t), otherwise we
remove dependencies

@ If s =t then M is invertible and our solution would be h = M~1f

@ Rearranging columns, can write
M:(A Vi Vo - Vr)

where A € F[x]°** is invertible and r =t — s
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Special Case: Univariate Polynomials

@ We have
M = (/4 vi Vo oee- vy)

s
where A € F[x]°** is invertible and r =t — s

M) = (4)

n — - S hAﬂ' Ch
) -0 E
-{5; any cholce {
hl.u—('
Qb a adution  ovet
FG<) by inwnbieg A

T | ® ¥ 9ae
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Special Case: Univariate Polynomials

@ We have
M:(A Vi Vo - v,)

where A € F[x]°** is invertible and r =t — s

o Let h=(n,.-.,¥s,21,...,2) then

A-y:f—zr:z,-v,'
i=1

4= A (-2 )
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Special Case: Univariate Polynomials

@ We have
/\/I:(A Vi Vo - v,)

where A € F[x]°** is invertible and r =t — s

o Let h=(n,.-.,¥s,21,...,2) then

A-y:f—Zr:z,-v,-
i=1

@ z;'s are the “free variables” and y;'s are the “pivot variables”

y=A1. (f — Zz,-v,—)
i=1
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Special Case: Univariate Polynomials

@ We have
M = (A Vi Vo - v,)
where A € F[x]°** is invertible and r =t — s

o Let h=(n,.-.,¥s,21,...,2) then

A-y:f—zr:z,-v,'
i=1

@ z;'s are the “free variables” and y;'s are the “pivot variables”

) (L,—\)
poato S (elbo

o> <bad T

. L
o By Cramer's rule A~1 = AdJ—(A) a Adé(ﬂ "3 = [Aj

det(A) > <A

Nnates D( M Qow dcy«.c“ ?abgm\WJ/)

004)
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Special Case: Univariate Polynomials

@ We have
/\/I:(A Vi Vo - v,)

where A € F[x]°** is invertible and r =t — s

o Let h=(n,.-.,¥s,21,...,2) then

A-y:f—Zr:z,-v,-
i=1

@ z;'s are the “free variables” and y;'s are the “pivot variables”
r
-1
y=A -(f—Zz,-v,—)
i=1

Adj(A
o By Cramer's rule A~1 = dei((A;

@ Ratio of polynomials of low degree!
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Special Case: Univariate Polynomials

o If h=(y,z) is a polynomial solution to Mh = f, then for any
c1,. .., ¢ € F[x] we have that’M and

——

a=A1Yf—bvi—-—bv,)=y+Adj(A) - (avi + -+ cv)

gives another polynomial solution to M(a, b)T = f.
JON
A (-2 )
(__/___‘_Qr_s
-\@ Z'u 1:) A (e L’U‘Z) \

\ dd‘ (Aﬂz TiC
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Special Case: Univariate Polynomials

e If h=(y,z) is a polynomial solution to Mh = f, then for any
c1,...,¢ € F[x] we have that|b; =z — ¢; - det(A)/and

a=A1Yf—bvi—-—bv,)=y+Adj(A) - (avi + -+ cv)

gives another polynomial solution to M(a, b)T = f.

@ Because we are in univariate case (thus we have Euclidean domain)
we can assume that all z;'s are reduced modulo det(A) and thus have
degree bounded by < ¢ := deg(A) < sd

FlxD Guclideon Towmain

Z; = deb(H) & +_be
Xewaindn

degcb.’) < deg(d&\‘(k))
= Qeg (det®)) € Ad
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Special Case: Univariate Polynomials
e If h=(y,z) is a polynomial solution to Mh = f, then for any

i, ..., ¢ € F[x] we have that b; = z; — ¢; - det(A) and
- v - .
a :!:/41_7(f —bivi—---=bv,) =y +Adj(A) - (cavi + - + & vr)

gives another polynomial solution to M(a, b)T = f.

! ol Because we are in univariate case (thus we have Euclidean domain)
we can assume that all z;'s are reduced modulo det(A) and thus have
degree bounded by < ¢ := deg(A) < sd

@ Thus, we have

deg(y) < deg(A™1) + deg(f ) (ot
€ < de + de —Z1V1 — = Z Ve -
gl g g -
= deg(Adj(A)) — deg(det(A)) + max} deg(f), deg(z z,-v,-)}
~_ =1

<(s—1)d =+ max(d,/ —1+d) < sd < td

des(§) < td  dag(@ <t
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@ Multivariate Case
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General Case

@ To prove the general case, we will simply apply induction with base
case being univariate case.
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General Case

@ To prove the general case, we will simply apply induction with base
case being univariate case.

o We will look at the ring F[x1,...,xs] = F[x1, ..., xn—1][Xn]
f Sl s —

1 T
z ;'r_‘m\b voﬂi&b‘l
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General Case

@ To prove the general case, we will simply apply induction with base
case being univariate case. net Euck %‘M

o We will look at the ring F[xi, ..., xs] = Fx1, ..., Xp—1][xn]

@ All the previous steps of the univariate case work the same way, apart
from when we used the Euclidean Algorithm to reduce the degree of

the polynomials over the variable x (which now will be x,)
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General Case

@ To prove the general case, we will simply apply induction with base
case being univariate case.

o We will look at the ring F[xi, ..., xs] = Fx1, ..., Xp—1][xn]

@ All the previous steps of the univariate case work the same way, apart
from when we used the Euclidean Algorithm to reduce the degree of
the polynomials over the variable x (which now will be x,)

@ But Euclidean Divison still works if the polynomials are monic in x,
(so all we need is that det(A) be monic over xp)

?[Xl Net Euclidiom dewein

(O = Xt e _Rowen enda o) i) & 7 (%)
-{ unit uﬂ-‘M;uhh
oleg (n) <d

P

Q.D)C
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General Case

To prove the general case, we will simply apply induction with base
case being univariate case.

We will look at the ring F[x1, ..., xn] = F[x1, ..., xn—1][Xn]
All the previous steps of the univariate case work the same way, apart

from when we used the Euclidean Algorithm to reduce the degree of
the polynomials over the variable x (which now will be x,)

But Euclidean Divison still works if the polynomials are monic in x,
(so all we need is that det(A) be monic over xp)
————

To achieve that, we can do a generic linear cra_nge of variables of the
form x; <= x; + a;x,, which gives us an isomorphism from
Flx1,...,xa] = F[x1,...,xn] preserving degree. /o hou +hed

Nieﬂ: ﬁ"in-elm'k
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General Case

To prove the general case, we will simply apply induction with base
case being univariate case.

We will look at the ring F[x1, ..., xn] = F[x1, ..., xn—1][Xn]

All the previous steps of the univariate case work the same way, apart
from when we used the Euclidean Algorithm to reduce the degree of
the polynomials over the variable x (which now will be x,)

But Euclidean Divison still works if the polynomials are monic in x,
(so all we need is that det(A) be monic over xp)

To achieve that, we can do a generic linear change of variables of the
form x; < x; + a;x,, which gives us an isomorphism from
Flxi,...,xn] = F[x1,...,xs] preserving degree.

Since det(A) # 0, a generic linear map as above will make

det(A) = ax’ 4+ (other terms of x, degree < /) ?
=_Z_ QT&' X
|\ plet 20752



Je

/\ - n-{
det (A = S =exn U (xireits)
ipl< X
e L ?!+(b=+ tPn
= Z_QAPI\:M Xn \




General Case

@ As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d

o ——
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General Case

@ As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d
@ So now, enough to only look for solutions where deg,(h;) < t-d
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General Case
@ As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d
@ So now, enough to only look for solutions where\degn(h,-) <t-d|
@ But that reduces to the following linear system of equations!

N
fimx" = H lgishy + -+ + giehe] Vi € [s], m € [td + d]
-~ <tdrd

‘,{i = %hh"" t %itht
\! 0) —
L~ KO L s

Nawm - wwpmmh o’( d;.s m (vm;‘:b[e 5(“)
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General Case
@ As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d
@ So now, enough to only look for solutions where deg,,(h;) < t-d
@ But that reduces to the following linear system of equations!

fimxy' = Hr(r:’)[gilhl + -+ githe] Vi€ [s],m € [td + d]

em—

@ System above has s(t + 1)d equations of polynomials in
Flxi,...,xn_1] of degree < d

—
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General Case

@ As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d

@ So now, enough to only look for solutions where deg,,(h;) S t-d

@ But that reduces to the following linear system of equations!

fimxy' = Hr(r:’)[gilhl + -+ githe] Vi€ [s],m € [td + d]

@ System above has s(t + 1)d equations of polynomials in
Flxi,...,xn_1] of degree < d
@ And < t- td unknowns - given by the coefficients

td—1

i=0
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General Case

As in the univariate case, and because we can make det(A) monic in
Xn we can reduce to solutions where deg,,(h) is upper bounded by t - d
So now, enough to only look for solutions where deg,(hj) <t-d

But that reduces to the following linear system of equations!

fimxy' = Hr(r:’)[gilhl + -+ githe] Vi€ [s],m € [td + d]

System above has s(t + 1)d equations of polynomials in
Flxi,...,xn_1] of degree < d
And < t - td unknowns - given by the coefficients

td—1

hk = E hk,'X,’7
i=0
Thus our recursion becomes

D(n,d,t) < D(n—1,d,t>d) +td = D(n —1,d, (td)?/d) + td
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Recursion

D(’O,o‘r't7 < D(
< D(n-2 19, <££‘j‘>1)1°l>+ %‘321 e
= Do, d chT)z > . @)zegd)
< —D(n_k, o(,@;_)zk) 4-Q__d)z £ -~ +(24)

n'lig\;('tii)) + tel
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o EXPSPACE-completeness
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EXPSPACE Completeness

@ Since EXPSPACE is far from efficient, one may wonder if this is the
best we can do, and it turns out the answer is yes.

@ Mayr and Meyer also proved that the ideal membership problem is
EXPSPACE-complete
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EXPSPACE Completeness

@ Since EXPSPACE is far from efficient, one may wonder if this is the
best we can do, and it turns out the answer is yes.

@ Mayr and Meyer also proved that the ideal membership problem is
EXPSPACE-complete

@ Reduced from the commutative semigroup problem (which they prove
to be EXPSPACE hard) to ideal membership problem
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EXPSPACE Completeness

@ Since EXPSPACE is far from efficient, one may wonder if this is the
best we can do, and it turns out the answer is yes.

@ Mayr and Meyer also proved that the ideal membership problem is
EXPSPACE-complete

@ Reduced from the commutative semigroup problem (which they prove
to be EXPSPACE hard) to ideal membership problem

@ Setup: finite alphabet ¥ = {01,...,0,}, set of rewriting rules S (of
the form « = /3 where a,, f € L*) where S contains the rules
0i0j = 0j0;
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EXPSPACE Completeness

@ Since EXPSPACE is far from efficient, one may wonder if this is the
best we can do, and it turns out the answer is yes.

@ Mayr and Meyer also proved that the ideal membership problem is
EXPSPACE-complete

@ Reduced from the commutative semigroup problem (which they prove
to be EXPSPACE hard) to ideal membership problem

@ Setup: finite alphabet ¥ = {01,...,0,}, set of rewriting rules S (of
the form « = /3 where a,, f € L*) where S contains the rules
oj0j = 0j0;

o Input: two words o, 8 € ¥*

o Output: is o = 57
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EXPSPACE Completeness

@ Since EXPSPACE is far from efficient, one may wonder if this is the
best we can do, and it turns out the answer is yes.

@ Mayr and Meyer also proved that the ideal membership problem is
EXPSPACE-complete

@ Reduced from the commutative semigroup problem (which they prove
to be EXPSPACE hard) to ideal membership problem

@ Setup: finite alphabet ¥ = {01,...,0,}, set of rewriting rules S (of
the form « = /3 where a,, f € *) where S contains the rules
oi0j = 0j0;

o Input: two words o, 8 € ¥*

o Output: is o = 57

@ To reduce to ideal membership problem, need to rewrite the rules of
S with polynomials, which they write as polynomials of the form
x® — xP then need to encode all these “relation polynomials™ into a
small ideal
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@ Conclusion
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Conclusion

Different algorithm for Ideal Membership Problem and its analysis
Reduced it to linear system solving!
Saw degree bounds for the Ideal Membership Problem

Would be interesting to see an analysis of the Groebner basis
algorithm — in case anyone wants to learn and teach it

EXg SPAce {ovdey.

— wnat ore natursl (ﬂ’»LWm emead.iay
ot oswohvi\q) clran ?

— Can we Wve o fian- Wwp_& Wxﬂg
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