Lecture 10: Complexity of Ideal Membership Problem

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

February 10, 2021

Overview

－Ideal Membership Problem \＆a Variant
－Univariate Case
－Multivariate Case
－EXPSPACE－completeness
－Conclusion
－Acknowledgements

Ideal Membership Problem

- Input: $g_{1}, \ldots, g_{s}, f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \quad \operatorname{deg}\left(g_{i}\right), \operatorname{deg}(\rho) \leqslant d$ - Output: is $f \in\left(g_{1}, \ldots, g_{s}\right)$?

Ideal Membership Problem

- Input: $g_{1}, \ldots, g_{s}, f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $f \in\left(g_{1}, \ldots, g_{s}\right)$?
- To solve this, we need to show the existence (or non-existence) of polynomials h_{1}, \ldots, h_{s} such that

$$
f=g_{1} \cdot h_{1}+\cdots+g_{s} h_{s}
$$

Ideal Membership Problem

- Input: $g_{1}, \ldots, g_{s}, f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $f \in\left(g_{1}, \ldots, g_{s}\right)$?
- To solve this, we need to show the existence (or non-existence) of polynomials h_{1}, \ldots, h_{s} such that

$$
f=g_{1} \cdot h_{1}+\cdots+g_{s} h_{s}
$$

- We know that if such polynomials exist then Groebner bases and the division algorithm will find them for us

Ideal Membership Problem

- Input: $g_{1}, \ldots, g_{s}, f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $f \in\left(g_{1}, \ldots, g_{s}\right)$?
- To solve this, we need to show the existence (or non-existence) of polynomials h_{1}, \ldots, h_{s} such that

$$
f=g_{1} \cdot \underline{h_{1}}+\cdots+g_{s} h_{s}
$$

- We know that if such polynomials exist then Groebner bases and the division algorithm will find them for us
- But today we will see a different algorithm for it - we will solve it by converting the polynomial system above into a linear system of equations

Ideal Membership Problem

- Input: $g_{1}, \ldots, g_{s}, f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Output: is $f \in\left(g_{1}, \ldots, g_{s}\right)$?
- To solve this, we need to show the existence (or non-existence) of polynomials h_{1}, \ldots, h_{s} such that

$$
f=g_{1} \cdot \underline{h_{1}}+\cdots+g_{s} h_{s}
$$

- We know that if such polynomials exist then Groebner bases and the division algorithm will find them for us
- But today we will see a different algorithm for it - we will solve it by converting the polynomial system above into a linear system of equations
- The complexity of today's algorithm comes from showing that if the h_{i} 's exist, then they must exist in some "reasonable degree"
- So we need to upper bound the degree of the h_{i} 's

Algorithm - Main Idea

- If we know upper bound on the degree of the h_{i} 's then all we have left is a linear system!

$$
\begin{align*}
& f=g_{1} h_{1}+\cdots+g_{s} h_{s} \quad(*) \tag{*}\\
& \operatorname{deg}(f), \operatorname{deg}\left(g_{i}\right) \leqslant d \quad \operatorname{deg}\left(h_{i}\right) \leqslant D \\
& \bar{\alpha} \in\{0,1, \ldots, D\}^{n} \bar{x}^{\bar{\alpha}} \\
& \frac{f \bar{\alpha}}{\text { input }}=\sum_{i=1}^{s} \sum_{\bar{\beta} \leqslant \bar{\alpha}} \frac{\left.g_{i \bar{\beta}} \cdot h_{i \bar{\alpha}-\bar{\beta}}^{m_{p n t}}\right\}_{\text {unknowns }} \bar{x}^{\alpha} \text { inefficient of }(*)}{}
\end{align*}
$$

gives us D^{n} equations (linear)

Algorithm - Main Idea

- If we know upper bound on the degree of the h_{i} 's then all we have left is a linear system!
- Since linear systems can be solved in polylogarithmic space, a degree bound of \underline{D} on the h_{i} 's, together with a degree bound of \underline{d} for f_{0}, g_{i} would give us a space complexity of:

$$
\operatorname{poly}(n \log (D), \log (s))
$$

D doubly-exponential \Rightarrow EXPSPACE

Linear System of Polynomials

- Input: $g_{i j}, f_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- Output: is there h_{1}, \ldots, h_{t} such that

$$
\left.\begin{array}{c}
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s] \\
G=\left(g_{i j}\right) \in \mathbb{F}[\bar{x}]^{s \times t} \\
\vdots \\
h_{t}
\end{array}\right)=\left(\begin{array}{c}
h_{1} \\
\rho_{1} \\
\rho_{2} \\
\vdots \\
f_{s}
\end{array}\right) .
$$

Linear System of Polynomials

- Input: $g_{i j}, f_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- Output: is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Can be reduced to ideal membership problem by adding extra variables y_{1}, \ldots, y_{s} :

$$
\frac{f_{1} y_{1}}{}+\cdots+f_{s} y_{s} \in\left(\frac{\left.y_{1} \cdot g_{1 j}+y_{2} \cdot g_{2 j}+\cdots+y_{s} \cdot g_{s j}\right)_{j=1}^{t}}{h_{j}}\right.
$$

Linear System of Polynomials

- Input: $g_{i j}, f_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- Output: is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Can be reduced to ideal membership problem by adding extra variables y_{1}, \ldots, y_{s} :

$$
f_{1} y_{1}+\cdots+f_{s} y_{s} \in\left(y_{1} \cdot g_{1 j}+y_{2} \cdot g_{2 j}+\cdots+y_{s} \cdot g_{s j}\right)_{j=1}^{t}
$$

- It will be convenient to prove that this problem can be solved in EXPSPACE

Linear System of Polynomials

- Input: $g_{i j}, f_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- Output: is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Can be reduced to ideal membership problem by adding extra variables y_{1}, \ldots, y_{s} :

$$
f_{1} y_{1}+\cdots+f_{s} y_{s} \in\left(y_{1} \cdot g_{1 j}+y_{2} \cdot g_{2 j}+\cdots+y_{s} \cdot g_{s j}\right)_{j=1}^{t}
$$

- It will be convenient to prove that this problem can be solved in EXPSPACE

Theorem (Hermann, Mayr-Meyer)

If the linear system of polynomials problem has a solution, then it has a solution in which

$$
\operatorname{deg}\left(h_{i}\right) \leq(t \cdot d)^{2^{n}}
$$

Remarks

－The above theorem proves that we can solve the ideal membership problem in EXPSPACE

Remarks

- The above theorem proves that we can solve the ideal membership problem in EXPSPACE
- We can assume that our base field \mathbb{F} is infinite, without loss of generality.
- This is because a system of linear equations has a solution over an extension field $\mathbb{F} \subset \mathbb{K}$ if, and only if, it has a solution in \mathbb{F}
- Practice problem: prove this statement
- Ideal Membership Problem \& a Variant
- Univariate Case
- Multivariate Case
- EXPSPACE-completeness
- Conclusion
- Acknowledgements

Special Case: Univariate Polynomials

- Assume now our input $g_{i j}, f_{i} \in \mathbb{F}[x]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

Special Case: Univariate Polynomials

- Assume now our input $g_{i j}, f_{i} \in \mathbb{F}[x]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Let $M=\left(g_{i j}\right) \in \mathbb{F}[x]^{s \times t}$ and $\mathrm{f}=\left(f_{i}\right) \in \mathbb{F}[x]^{s}$

Special Case: Univariate Polynomials

- Assume now our input $g_{i j}, f_{i} \in \mathbb{F}[x]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
$s \leqslant t$
- is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Let $M=\left(g_{i j}\right) \in \mathbb{F}[x]^{s \times t}$ and $\mathrm{f}=\left(f_{i}\right) \in \mathbb{F}[x]^{s}$
- Can assume that M has full row rank (thus $s \leq t$), otherwise we remove dependencies

Special Case: Univariate Polynomials

- Assume now our input $g_{i j}, f_{i} \in \mathbb{F}[x]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Let $M=\left(g_{i j}\right) \in \mathbb{F}[x]^{s \times t}$ and $\mathrm{f}=\left(f_{i}\right) \in \mathbb{F}[x]^{s}$
- Can assume that M has full row rank (thus $s \leq t$), otherwise we remove dependencies
- If $s=t$ then M is invertible and our solution would be $h=M^{-1} \mathrm{f}$

over $\mathbb{F}(x)$

Special Case: Univariate Polynomials

- Assume now our input $g_{i j}, f_{i} \in \mathbb{F}[x]$ where $i \in[s], j \in[t]$, $\operatorname{deg}\left(g_{i j}\right), \operatorname{deg}\left(f_{i}\right) \leq d$
- is there h_{1}, \ldots, h_{t} such that

$$
f_{i}=g_{i 1} h_{1}+\cdots+g_{i t} h_{t} \quad \forall i \in[s]
$$

- Let $M=\left(g_{i j}\right) \in \mathbb{F}[x]^{s \times t}$ and $\mathrm{f}=\left(f_{i}\right) \in \mathbb{F}[x]^{s}$
- Can assume that M has full row rank (thus $s \leq t$), otherwise we remove dependencies
- If $s=t$ then M is invertible and our solution would be $h=M^{-1} \mathrm{f}$
- Rearranging columns, can write

$$
M=\left(\begin{array}{ccccc}
A & 1 & 1 & v_{1} & v_{2} \\
& 1 & 1 & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

Special Case: Univariate Polynomials

- We have

$$
M=\left(\begin{array}{lllll}
A & v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

$$
\begin{aligned}
& M(h)=(f) \\
& A\binom{n_{1}}{h_{s}}
\end{aligned}=(l)-\sum_{i=1}^{r} \frac{h_{s+i}}{\imath} \cdot v_{i}, ~ l
$$

for any choice of h_{s+i}
get a solution over $\mathbb{F}(x)$ by inverting A

Special Case: Univariate Polynomials

- We have

$$
M=\left(\begin{array}{lllll}
A & v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

- Let $h=\left(y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{r}\right)$ then

$$
\begin{aligned}
& A \cdot y=f-\sum_{i=1}^{r} z_{i} v_{i} \\
& y=A^{-1}\left(f-\sum_{i=1}^{n} z_{i} v_{i}\right)
\end{aligned}
$$

Special Case: Univariate Polynomials

- We have

$$
M=\left(\begin{array}{lllll}
A & v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

- Let $h=\left(y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{r}\right)$ then

$$
A \cdot y=f-\sum_{i=1}^{r} z_{i} v_{i}
$$

- z_{i} 's are the "free variables" and y_{j} 's are the "pivot variables"

$$
y=A^{-1} \cdot\left(f-\sum_{i=1}^{r} z_{i} v_{i}\right)
$$

Special Case: Univariate Polynomials

- We have

$$
M=\left(\begin{array}{lllll}
A & v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

- Let $h=\left(y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{r}\right)$ then

$$
A \cdot y=f-\sum_{i=1}^{r} z_{i} v_{i}
$$

- z_{i} 's are the "free variables" and y_{j} 's are the "pivot variables"

$$
\begin{aligned}
& y=A^{-1} \cdot\left(f-\sum_{i=1}^{r} z_{i} v_{i}\right) \quad(\leq(\rho-1) d \\
& =\frac{\operatorname{Adj}(A)}{\frac{\operatorname{det}(A)}{\operatorname{den}(A)}} \quad \mathrm{Adj}(A)_{i j}=A^{i j}
\end{aligned}
$$ ratio of "low degree"

polynomials.

Special Case: Univariate Polynomials

- We have

$$
M=\left(\begin{array}{lllll}
A & v_{1} & v_{2} & \cdots & v_{r}
\end{array}\right)
$$

where $A \in \mathbb{F}[x]^{s \times s}$ is invertible and $r=t-s$

- Let $h=\left(y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{r}\right)$ then

$$
A \cdot y=f-\sum_{i=1}^{r} z_{i} v_{i}
$$

- z_{i} 's are the "free variables" and y_{j} 's are the "pivot variables"

$$
y=A^{-1} \cdot\left(f-\sum_{i=1}^{r} z_{i} v_{i}\right)
$$

- By Cramer's rule $A^{-1}=\frac{\operatorname{Adj}(A)}{\operatorname{det}(A)}$
- Ratio of polynomials of low degree!

Special Case: Univariate Polynomials

- If $h=(y, z)$ is a polynomial solution to $M h=f$, then for any $c_{1}, \ldots, c_{r} \in \mathbb{F}[x]$ we have that $b_{i}=z_{i}-\overline{c_{i} \cdot \operatorname{det}}(A)$ and

$$
a=A^{-1}\left(f-b_{1} v_{1}-\cdots-b_{r} v_{r}\right)=y+\operatorname{Adj}(A) \cdot\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right)
$$

gives another polynomial solution to $M(a, b)^{T}=f$.

$$
\begin{aligned}
& M\binom{y}{z}=f \\
& y=A^{-1}\left(f-\sum_{i=1}^{n} v_{i} z_{i}\right) \\
& A^{-1}\left(f-\sum_{i=1}^{n} v_{i} b_{i}\right)=\frac{A^{-1}\left(f-\sum_{i=1}^{n} v_{i} z_{i}\right)}{}+ \\
& \frac{A^{-1} \operatorname{det}(A) \sum_{i=1}^{n} v_{i} c_{i}}{\operatorname{adj}(A) \leftarrow \text { polynomial metnirnace }} \begin{array}{l}
\text { p7/52 }
\end{array}
\end{aligned}
$$

Special Case: Univariate Polynomials

- If $h=(y, z)$ is a polynomial solution to $M h=f$, then for any $c_{1}, \ldots, c_{r} \in \mathbb{F}[x]$ we have that $b_{i}=z_{i}-c_{i} \cdot \operatorname{det}(A)$ and

$$
a=A^{-1}\left(f-b_{1} v_{1}-\cdots-b_{r} v_{r}\right)=y+\operatorname{Adj}(A) \cdot\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right)
$$

gives another polynomial solution to $M(a, b)^{T}=f$.

- Because we are in univariate case (thus we have Euclidean domain) we can assume that all z_{i} 's are reduced $\operatorname{modulo} \operatorname{det}(A)$ and thus have degree bounded by $<\ell:=\operatorname{deg}(A) \leq s d$
$\mathbb{F}[x]$ Euclidean Domain

$$
\begin{aligned}
& z_{i}=\operatorname{det}(A) \cdot c_{i}+\underbrace{b_{i}}_{i} \\
& \quad \operatorname{deg}\left(b_{i}\right)<\operatorname{deg}(\operatorname{det}(A))
\end{aligned}
$$

Special Case: Univariate Polynomials

- If $h=(y, z)$ is a polynomial solution to $M h=f$, then for any $c_{1}, \ldots, c_{r} \in \mathbb{F}[x]$ we have that $b_{i}=z_{i}-c_{i} \cdot \operatorname{det}(A)$ and

$$
a=A^{-1}\left(f-b_{1} v_{1}-\cdots-b_{r} v_{r}\right)=y+\operatorname{Adj}(A) \cdot\left(c_{1} v_{1}+\cdots+c_{r} v_{r}\right)
$$

gives another polynomial solution to $M(a, b)^{T}=f$.

- Because we are in univariate case (thus we have Euclidean domain) we can assume that all z_{i} 's are reduced $\operatorname{modulo} \operatorname{det}(A)$ and thus have degree bounded by $<\ell:=\operatorname{deg}(A) \leq s d$
- Thus, we have

$$
\operatorname{deg}(y) \leq \operatorname{deg}\left(A^{-1}\right)+\operatorname{deg}\left(f-z_{1} v_{1}-\cdots-z_{r} v_{r}\right)
$$

$$
=\operatorname{deg}(\operatorname{Adj}(A))-\operatorname{deg}(\operatorname{det}(A))+\max \left\{\operatorname{deg}(f), \operatorname{deg}\left(\sum_{i=1}^{r} z_{i} v_{i}\right)\right\}
$$

$$
\leq \underline{(s-1)} d-\underline{\ell}+\max (\underline{d}, \underline{\ell-1+d})<\underline{s d} \leq t d
$$

$\operatorname{deg}(y) \leqslant \operatorname{td} \quad \operatorname{deg}(z) \leqslant t d$
－Ideal Membership Problem \＆a Variant
－Univariate Case
－Multivariate Case
－EXPSPACE－completeness
－Conclusion
－Acknowledgements

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.
- We will look at the ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$
coefficients
variable

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.
- We will look at the ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$
- All the previous steps of the univariate case work the same way, apart from when we used the Euclidean Algorithm to reduce the degree of the polynomials over the variable x (which now will be x_{n})

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.
- We will look at the ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\underset{\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]}{e}$
- All the previous steps of the univariate case work the same way, apart from when we used the Euclidean Algorithm to reduce the degree of the polynomials over the variable x (which now will be x_{n})
- But Euclidean Divison still works if the polynomials are monic in x_{n} (so all we need is that $\operatorname{det}(A)$ be monic over x_{n})
$R[x]$ not Euclidean domain

$$
f(x)=\frac{\left(x^{d}\right.}{\text { unit coifficimat }} \text { lower ordn terms) } q(x)+x(x)
$$

$$
\log (n)^{\text {unit }}<d
$$

$a_{D} x^{D}$

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.
- We will look at the ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$
- All the previous steps of the univariate case work the same way, apart from when we used the Euclidean Algorithm to reduce the degree of the polynomials over the variable x (which now will be x_{n})
- But Euclidean Divison still works if the polynomials are monic in x_{n} (so all we need is that $\operatorname{det}(A)$ be monic over x_{n})
- To achieve that, we can do a generic linear change of variables of the form $x_{i} \leftarrow x_{i}+\alpha_{i} x_{n}$, which gives us an isomorphism from $\mathbb{F}\left[x_{1}, \ldots, \overline{x_{n}}\right] \rightarrow \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ preserving degree. (use here that) $\alpha_{i} \in \mathbb{F}$

General Case

- To prove the general case, we will simply apply induction with base case being univariate case.
- We will look at the ring $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$
- All the previous steps of the univariate case work the same way, apart from when we used the Euclidean Algorithm to reduce the degree of the polynomials over the variable x (which now will be x_{n})
- But Euclidean Divison still works if the polynomials are monic in x_{n} (so all we need is that $\operatorname{det}(A)$ be monic over x_{n})
- To achieve that, we can do a generic linear change of variables of the form $x_{i} \leftarrow x_{i}+\alpha_{i} x_{n}$, which gives us an isomorphism from $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ preserving degree.
- Since $\operatorname{det}(A) \neq 0$, a generic linear map as above will make

$$
\operatorname{det}(A)=\alpha x_{n}^{\ell}+\quad\left(\text { other terms of } x_{n} \text { degree }<\ell\right)
$$

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{|\bar{B}| \leq \ell} a_{\beta} \cdot \prod_{i=1}^{n}\left(x_{i}\right)^{\beta_{i}} \\
& \hat{\operatorname{det}(A)}=\sum_{|\bar{\beta}| \leq l} \alpha_{\beta} x_{n}^{\beta_{n}} \prod_{i=1}^{n-1}\left(x_{i}+\alpha_{i} x_{n}\right)^{\beta_{i}} \\
& \left.\begin{array}{rl}
=\sum_{|\beta| \leq l}\left(a_{\beta} \cdot \prod_{i=1}^{n-1} \alpha_{i}^{\beta_{i}} \cdot x_{n}^{\beta_{1}+\beta_{2}+\cdots+\beta_{n}}\right. \\
& + \text { lower deg thems in } x_{n}
\end{array}\right) \\
& =\sum_{|P|=l}\left(a_{p} \prod_{i=1}^{n-1} \alpha_{i}^{\beta_{i}}\right) \cdot x_{n}^{l}+0 \text { lowerdes in } x_{n}
\end{aligned}
$$

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$
- So now, enough to only look for solutions where $\operatorname{deg}_{n}\left(h_{i}\right) \leq t \cdot d$

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$
- So now, enough to only look for solutions where $\operatorname{deg}_{n}\left(h_{i}\right) \leq t \cdot d$
- But that reduces to the following linear system of equations!

$$
\begin{aligned}
& \quad \stackrel{\downarrow}{f_{i m} x_{n}^{m}}=H_{m}^{(n)}\left[\frac{g_{i 1} h_{1}}{s t d r d}+\cdots+g_{i t} h_{t}\right] \quad \forall i \in[s], m \in[t d+d] \\
& f_{i}= \\
& \downarrow \\
& \downarrow \\
& f_{i i} h_{1}+\cdots+g_{i t}^{m} h_{t} \\
& x_{n}^{m}=H_{m}^{(n)}\left[g_{i 1} h_{1}+\cdots+g_{i t} h_{t}\right]
\end{aligned}
$$

nom. Comprumts of dey m (variable x_{n})

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$
- So now, enough to only look for solutions where $\operatorname{deg}_{n}\left(h_{i}\right) \leq t \cdot d$
- But that reduces to the following linear system of equations!

$$
\underline{f_{i m}} x_{n}^{m}=H_{m}^{(n)}\left[g_{i 1} h_{1}+\cdots+g_{i t} h_{t}\right] \quad \forall i \in[s], m \in[t d+d]
$$

- System above has $s(t+1) d$ equations of polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$ of degree $\leq d$

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$
- So now, enough to only look for solutions where $\operatorname{deg}_{n}\left(h_{i}\right)<t \cdot d$
- But that reduces to the following linear system of equations!

$$
f_{i m} x_{n}^{m}=H_{m}^{(n)}\left[g_{i 1} h_{1}+\cdots+g_{i t} h_{t}\right] \quad \forall i \in[s], m \in[t d+d]
$$

- System above has $s(t+1) d$ equations of polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$ of degree $\leq d$
- And $\leq t \cdot t d$ unknowns - given by the coefficients

$$
h_{k}=\sum_{i=0}^{t d-1} h_{k i} x_{n}^{i}
$$

General Case

- As in the univariate case, and because we can make $\operatorname{det}(A)$ monic in x_{n} we can reduce to solutions where $\operatorname{deg}_{n}(h)$ is upper bounded by $t \cdot d$
- So now, enough to only look for solutions where $\operatorname{deg}_{n}\left(h_{i}\right) \leq t \cdot d$
- But that reduces to the following linear system of equations!

$$
f_{i m} x_{n}^{m}=H_{m}^{(n)}\left[g_{i 1} h_{1}+\cdots+g_{i t} h_{t}\right] \quad \forall i \in[s], m \in[t d+d]
$$

- System above has $s(t+1) d$ equations of polynomials in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$ of degree $\leq d$
- And $\leq t \cdot t d$ unknowns - given by the coefficients

$$
h_{k}=\sum_{i=0}^{t d-1} h_{k i} x_{n}^{i}
$$

- Thus our recursion becomes

$$
D(\underline{n}, \underline{d}, t) \leq D\left(\underline{n-1}, \underline{d}, t^{2} d\right)+t d=D\left(n-1, d,(t d)^{2} / d\right)+t d
$$

Recursion

$$
\begin{aligned}
& D(n, d, t) \leq D\left(n-1, \frac{d}{}, \frac{(t d)^{2}}{d}\right)+t d \\
& \leqslant D\left(n-2, d,\left(\frac{(t d))^{2}}{d}\right)^{2} d\right)+\frac{(t d)^{2}}{d} \cdot d+z d \\
& =D\left(n-2, d, \frac{(t d)^{2^{2}}}{d}\right)+(t d)^{2}+(t d) \\
& \leqslant D\left(n-n, d, \frac{(t d)^{2^{k}}}{d}\right)+(t d)^{2^{2}-1}+\cdots+(z d) \\
& \Rightarrow(t d)^{2^{n}}
\end{aligned}
$$

- Ideal Membership Problem \& a Variant
- Univariate Case
- Multivariate Case
- EXPSPACE-completeness
- Conclusion
- Acknowledgements

EXPSPACE Completeness

- Since EXPSPACE is far from efficient, one may wonder if this is the best we can do, and it turns out the answer is yes.
- Mayr and Meyer also proved that the ideal membership problem is EXPSPACE-complete

EXPSPACE Completeness

- Since EXPSPACE is far from efficient, one may wonder if this is the best we can do, and it turns out the answer is yes.
- Mayr and Meyer also proved that the ideal membership problem is EXPSPACE-complete
- Reduced from the commutative semigroup problem (which they prove to be EXPSPACE hard) to ideal membership problem

EXPSPACE Completeness

- Since EXPSPACE is far from efficient, one may wonder if this is the best we can do, and it turns out the answer is yes.
- Mayr and Meyer also proved that the ideal membership problem is EXPSPACE-complete
- Reduced from the commutative semigroup problem (which they prove to be EXPSPACE hard) to ideal membership problem
- Setup: finite alphabet $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$, set of rewriting rules S (of the form $\alpha=\beta$ where $\alpha, \beta \in \Sigma^{*}$) where S contains the rules $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$

EXPSPACE Completeness

- Since EXPSPACE is far from efficient, one may wonder if this is the best we can do, and it turns out the answer is yes.
- Mayr and Meyer also proved that the ideal membership problem is EXPSPACE-complete
- Reduced from the commutative semigroup problem (which they prove to be EXPSPACE hard) to ideal membership problem
- Setup: finite alphabet $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$, set of rewriting rules S (of the form $\alpha=\beta$ where $\alpha, \beta \in \Sigma^{*}$) where S contains the rules $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$
- Input: two words $\alpha, \beta \in \Sigma^{*}$
- Output: is $\alpha=\beta$?

EXPSPACE Completeness

- Since EXPSPACE is far from efficient, one may wonder if this is the best we can do, and it turns out the answer is yes.
- Mayr and Meyer also proved that the ideal membership problem is EXPSPACE-complete
- Reduced from the commutative semigroup problem (which they prove to be EXPSPACE hard) to ideal membership problem
- Setup: finite alphabet $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$, set of rewriting rules S (of the form $\alpha=\beta$ where $\alpha, \beta \in \Sigma^{*}$) where S contains the rules $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad x^{\alpha}-x^{\beta} \in$ (S)

$$
\gamma=\delta \in S
$$

- Input: two words $\alpha, \beta \in \Sigma^{*}$
- Output: is $\alpha=\beta$?

$$
\bar{x}^{\gamma}-\bar{x}^{\delta}
$$

- To reduce to ideal membership problem, need to rewrite the rules of S with polynomials, which they write as polynomials of the form $x^{\alpha}-x^{\beta}$, then need to encode all these "relation polynomials" into a small ideal

$$
\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sigma_{6}^{\gamma_{1}} . .
$$

－Ideal Membership Problem \＆a Variant
－Univariate Case
－Multivariate Case
－EXPSPACE－completeness
－Conclusion
－Acknowledgements

Conclusion

- Different algorithm for Ideal Membership Problem and its analysis
- Reduced it to linear system solving!
- Saw degree bounds for the Ideal Membership Problem
- Would be interesting to see an analysis of the Groebner basis algorithm - in case anyone wants to learn and teach it
- Exp space territory
- what are natural problems encoding other complexity classes?
- Can we have a finer-grained complexity theory of AG - problems?

Acknowledgement

- Lecture based entirely on the book by CLO: Ideals, varieties and algorithms (see course webpage for a copy - or get online version through UW library)

