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Groups

@ Group: set G with law of composition o : G X G — G such that
@ associative: (aob)oc=ao(boc)
© identity element: 1 € G such that loa=aol =24, forallaec G
@ inverse: every element a € G has an inverse a~! € G such that

@ Examples:
e Invertible matrices (quintessential example) with matrix multiplication
e Permutations of a set with function composition

o G is abelian group if the law of composition is commutative
aob=boa, VabeG

@ Examples of abelian groups
o Integers, with addition operation
e Real numbers, with addition operation
o Integer matrices, with addition operation
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Rings?

@ Ring : set R with laws of composition
e Addition +: Rx R— R
o Multiplication - : R x R =+ R
@ R is abelian group with respect to addition
e 0 € R identity w.r.t. addition
@ Multiplication satisfies following properties
associative: a-(b-¢c)=(a-b)-c
commutative: a-b=>b-a
identity: 1 € Rsuchthatl-a=a-1=a
distributive over addition:
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Rings?

@ Ring : set R with laws of composition
e Addition +: Rx R— R
o Multiplication - : R x R =+ R

@ R is abelian group with respect to addition
e 0 € R identity w.r.t. addition

@ Multiplication satisfies following properties
e associative: a-(b-c)=(a-b)-c
e commutative: a-b=>b-a
o identity: 1 € Rsuchthatl-a=a-1=a
e distributive over addition:

a-(b+c)=a-b+a-c and (a+b)-c=a-c+b-c

@ Examples
o Integers with addition and multiplication (quintessential example)
o Real numbers, complex numbers, with usual addition and multiplciation
e Polynomial rings

!Commutative rings with unit
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Rings - Definitions

@ Unit: an element v € R is a unit if there is v € R such that uv =1

@ Associates: two elements a, b € R are associates if there is a unit
u € R such that a = ub

@ Zero divisor: a zero divisor in R is an element a € R\ {0} such that
there is a non-zero b € R\ {0} such that a- b=0

o Integral domain: a ring R is an integral domain if it has no zero
divisor.

@ Euclidean domain: a ring R is an Euclidean domain if:

e R is an integral domain and there is an Euclidean function
[-]: R—=NU{-00}
e for all a,b € R, with b # 0, there exists g, r € R such that

a=gqgb+r and |r| <|b]

o Greatest common divisor: the greatest common divisor of a, b € R,
denoted by gcd(a, b) is an element of R which divides both a and b,
and if ¢ € R divides a and b, then c divides gcd(a, b).
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Fields

o Field: a ring ¥ with addition and multiplication such that
e every non-zero element has a multiplicative inverse
@ Examples

Rational numbers

o Real numbers

o Complex numbers

e Set of integers modulo a prime
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Polynomial Rings

e Given a base ring R, we can construct a polynomial ring R[x] by
“adding a new variable” x to R in the freest way possible

o That is:

ao+81X+'--+adXd:bo—i-le—i-"'—i-beXe, (ad,be;«éO)

if, and onIy if, d = e and ap = bo,al = bl,...,ad = bd
e Can create the polynomial ring R[x1, ..., xn] by adding the variables
X1,...,Xp freely as above.

@ What is our computational model to compute polynomials?

@ How can we measure computational complexity in such base rings?
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Complexity measures in rings

@ 7 — bit complexity of integer

1, ifa=0
e lga:= .
1+ |loglal], otherwise

@ Q — complexity of a/b is the total bit complexity of a and b
o Fq — complexity of element is bit complexity (log q)

@ Polynomial rings R[x1, ..., Xn]
uﬁ\”‘{e dense representation
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Algebraic Circuits - Definitions

@ input gates: gates of in-degree 0

@ output gates: gates of out-degree 0

@ circuit size: given by the number of edges in the circuit, denoted by
S(®)

o cost of field elements: in classical algebraic complexity, there is unit
cost for the use of any field element

@ circuit depth: length of longest direct path from an input to an
output

o constant depth circuits: for circuits of constant depth, we don't
place restriction on the fan-in of an agigge. nocke_

o formal degree of a gate: the degree of a gate is defined inductively

o if input gate: degree is O if gate is element of the field, 1 if it is a
variable

o u=w+y then deg(u) = max(deg(w), deg(v))

o u=w x v then deg(u) = deg(w) + deg(v)




VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials {f,}, over IF is p-bounded if there is some

polynomial t : N — N such that for every n,
@ the number of variables in f, and

o the degree of f,

are < t(n), and there is algebraic circuit of size < t(n) computing f,.
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VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials {f,}, over IF is p-bounded if there is some
polynomial t : N — N such that for every n,

@ the number of variables in f, and
o the degree of f, dﬁ; 4 {‘.(‘\) W ‘l‘o"s-

are < t(n), and there is algebraic circuit of size < t(n) computing f,.
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Definition (VP)

VPr is the class of all p-bounded families of polynomials over F

o {x*"}, is not p-bounded, but can be computed by poly-sized circuits

@ Note that we don’t require circuits in p-bounded family to have
polynomial degree, but that comes “for free” as we will see.



VNP [Valiant 1979, Valiant 1982]
Definition (p-definable family of polynomials)

A family of polynomials {f,}, over F is p-definable if there are

e v: N — N polynomial function (variable size)
e w : N — N polynomial function (witness size)
e and a family {gn}n € VPr (“Turing machine”)

such that for every n,

fn(le---,Xv(n)): Z gw(n)(xl,...,X@bl,...,b,,,t,)
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VNP [Valiant 1979, Valiant 1982]
Definition (p-definable family of polynomials)

A family of polynomials {f,}, over F is p-definable if there are

e v: N — N polynomial function (variable size)
e w : N — N polynomial function (witness size)
e and a family {g,}» € VPr (“Turing machine”)

such that for every n,

fn(Xl,...,Xv(n)) = Z gw(n)(xl,...,Xvn, bl,---;bwn)
be{0,1}w(n)

Definition (VNP)

VNP is the class of all p-definable families of polynomials over F

@ Roughly speaking, VNP class of polynomials f such that, given a
monomial, one can efficiently compute the coefficient of this
monomial in f



Analogies to P vs NP



Valiant's conjecture

@ from the definitions above, it follows that
VP C VNP

@ Valiant’s conjecture is that these two classes are different.

Open Question

VP £’ VNP




Natural polynomials in VP?
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Natural polynomials in VNP?
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Reductions

Definition (linear projections)
A polynomial f(xi,...,xn) € F[x1,...,xn] is a projection of a polynomial

gyi,---y¥m) € Fya, ..., ym] if there is an assignment
p € ({x1,....,xp UF})™ such that f(x1,...,xn) = g(p1,...,pm)
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Reductions

Definition (linear projections)

A polynomial f(xi,...,xn) € F[x1,...,xn] is a projection of a polynomial
gyi,---y¥m) € Fya, ..., ym] if there is an assignment
p € ({x1,....,xp UF})™ such that f(x1,...,xn) = g(p1,...,pm)

Definition (reduction via p-projections)

A polynomial family {f,}, is a p-projection of a family {gn}n if there is a
polynomially bounded t : N — N such that for every n, f, is a p-projection
of gt(n)-




Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family {Det,} is ViRr-complete with respect to quasi-polynomial
projections.

Theorem (Completeness for VNP [Valiant 1979])

The family {Per,} is VNPg-complete with respect to polynomial
projections, as long as char(F) # 2.




Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family {Det,} is VPgp-complete with respect to quasi-polynomial
projections.

Theorem (Completeness for VNP [Valiant 1979])

The family {Per,} is VNPg-complete with respect to polynomial
projections, as long as char(F) # 2.

@ Denoting VQP the class of quasi-p-bounded families (i.e., changing in
the definition of VP all polynomially bounded by quasi-polynomially
bounded), we have Valiant's second conjecture.

Open Question (Valiant)

VNPr ¢7 VQPg




Conclusion

@ Today we learned some algebraic models of computation and their
connections to some important problems in TCS

@ We learned about the reductions between problems in the main classes

@ We saw complete problems for the main algebraic classes
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