Lecture 1: Algebraic Circuits \& Algebraic Complexity

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

January 11, 2021

Overview

- Algebraic Primitives
- Algebraic Complexity: Complexity Classes
- Conclusion
- Acknowledgements

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
- Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
- Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$
a \circ b=b \circ a, \quad \forall a, b \in G
$$

Groups

- Group: set G with law of composition $\circ: G \times G \rightarrow G$ such that
(1) associative: $(a \circ b) \circ c=a \circ(b \circ c)$
(2) identity element: $1 \in G$ such that $1 \circ a=a \circ 1=a$, for all $a \in G$
(3) inverse: every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$
a \circ a^{-1}=a^{-1} \circ a=1
$$

- Examples:
- Invertible matrices (quintessential example) with matrix multiplication
- Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$
a \circ b=b \circ a, \quad \forall a, b \in G
$$

- Examples of abelian groups
- Integers, with addition operation
- Real numbers, with addition operation
- Integer matrices, with addition operation

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
- associative: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- commutative: $a \cdot b=b \cdot a$
- identity: $1 \in R$ such that $1 \cdot a=a \cdot 1=a$
- distributive over addition:

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

Rings ${ }^{1}$

- Ring : set R with laws of composition
- Addition $+: R \times R \rightarrow R$
- Multiplication $\cdot: R \times R \rightarrow R$
- R is abelian group with respect to addition
- $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
- associative: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- commutative: $a \cdot b=b \cdot a$
- identity: $1 \in R$ such that $1 \cdot a=a \cdot 1=a$
- distributive over addition:

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

- Examples
- Integers with addition and multiplication (quintessential example)
- Real numbers, complex numbers, with usual addition and multiplciation
- Polynomial rings

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.
- Euclidean domain: a ring R is an Euclidean domain if:
- R is an integral domain and there is an Euclidean function

$$
|\cdot|: R \rightarrow \mathbb{N} \cup\{-\infty\}
$$

- for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r \quad \text { and } \quad|r|<|b|
$$

Rings - Definitions

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that $u v=1$
- Associates: two elements $a, b \in R$ are associates if there is a unit $u \in R$ such that $a=u b$
- Zero divisor: a zero divisor in R is an element $a \in R \backslash\{0\}$ such that there is a non-zero $b \in R \backslash\{0\}$ such that $a \cdot b=0$
- Integral domain: a ring R is an integral domain if it has no zero divisor.
- Euclidean domain: a ring R is an Euclidean domain if:
- R is an integral domain and there is an Euclidean function

$$
|\cdot|: R \rightarrow \mathbb{N} \cup\{-\infty\}
$$

- for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r \quad \text { and } \quad|r|<|b|
$$

- Greatest common divisor: the greatest common divisor of $a, b \in R$, denoted by $\operatorname{gcd}(a, b)$ is an element of R which divides both a and b, and if $c \in R$ divides a and b, then c divides $\operatorname{gcd}(a, b)$.

Fields

- Field: a ring \mathbb{F} with addition and multiplication such that - every non-zero element has a multiplicative inverse

Fields

- Field: a ring \mathbb{F} with addition and multiplication such that
- every non-zero element has a multiplicative inverse
- Examples
- Rational numbers
- Real numbers
- Complex numbers
- Set of integers modulo a prime

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

Leading colfficient.

$\checkmark \rightarrow$ leading monomial
$a(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e^{e}}, \quad\left(a_{d}, b_{e} \neq 0\right)$
if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.
- What is our computational model to compute polynomials?

Polynomial Rings

- Given a base ring R, we can construct a polynomial ring $R[x]$ by "adding a new variable" x to R in the freest way possible
- That is:

$$
a_{0}+a_{1} x+\cdots+a_{d} x^{d}=b_{0}+b_{1} x+\cdots+b_{e} x^{e}, \quad\left(a_{d}, b_{e} \neq 0\right)
$$

if, and only if, $d=e$ and $a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{d}=b_{d}$

- Can create the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ by adding the variables x_{1}, \ldots, x_{n} freely as above.
- What is our computational model to compute polynomials?
- How can we measure computational complexity in such base rings?

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b

Complexity measures in rings
$\left\{\begin{array}{l}\bullet \mathbb{Z} \rightarrow \text { bit complexity of integer } \\ \bullet \lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right. \\ \bullet \mathbb{Q} \rightarrow \text { complexity of } a / b \text { is the total bit complexity of } a \text { and } b\end{array}\right.$

- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
$\{\mathbb{C} \rightarrow$ complexity of exch element is 1

$$
\pi, 2, \sqrt{2}
$$

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$
(1) dense representation
write down every coefficient of a monomial

$$
\begin{aligned}
& 7 \subset[x, y] \\
& x y \longmapsto d=2,
\end{aligned} \begin{array}{llll}
x^{2} & x y & y^{2} x & y \\
0,1,0,0,0,0)
\end{array}
$$

$n \quad\binom{$ din }{$d}$ coeffients $\sim n^{d}$

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$
(1) dense representation
(2) sparse representation
write down the non-zus coefficients

$$
p(x, y)=\underline{a} x^{2}+\underline{b} x y+\underline{c} y^{2}
$$

$(a,(2,0))(b,(1,1))(c,(0,2))$

Complexity measures in rings

- $\mathbb{Z} \rightarrow$ bit complexity of integer
- $\lg a:=\left\{\begin{array}{l}1, \text { if } a=0 \\ 1+\lfloor\log |a|\rfloor, \text { otherwise }\end{array}\right.$
- $\mathbb{Q} \rightarrow$ complexity of a / b is the total bit complexity of a and b
- $\mathbb{F}_{q} \rightarrow$ complexity of element is bit complexity $(\log q)$
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$

WORD PROBLEM: Φ, Ψ do they compute same polynomial?

Algebraic Circuits - Definitions

- input gates: gates of in-degree 0
- output gates: gates of out-degree 0
- circuit size: given by the number of edges in the circuit, denoted by $\overline{\mathcal{S}}(\Phi)$
- cost of field elements: in classical algebraic complexity, there is unit cost for the use of any field element
- circuit depth: length of longest direct path from an input to an output
- constant depth circuits: for circuits of constant depth, we don't place restriction on the fan-in of an node
- formal degree of a gate: the degree of a gate is defined inductively
- if input gate: degree is 0 if gate is element of the field, 1 if it is a variable
- $\underline{u}=\underline{w}+\underline{v}$ then $\frac{\operatorname{deg}(u)}{\operatorname{deg}(u)}=\underline{\max (\operatorname{deg}(w), \operatorname{deg}(v))}$
- $\bar{u}=\bar{w} \times v$ then $\overline{\operatorname{deg}(u)}=\overline{\operatorname{deg}(w)+\operatorname{deg}(v)}$

$$
-\quad-
$$

VP [Valiant 1979, Valiant 1982]
Definition (p-bounded family of polynomials)
A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-bounded if there is some polynomial $t: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n,

- the number of variables in f_{n} and
- the degree of f_{n}
are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_{n}.

VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-bounded if there is some polynomial $t: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n,

- the number of variables in f_{n} and
- the degree of f_{n}
are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_{n}.

Definition (VP)

$\mathrm{VP}_{\mathbb{F}}$ is the class of all p-bounded families of polynomials over \mathbb{F}

VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-bounded if there is some polynomial $t: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n,

- the number of variables in f_{n} and
- the degree of f_{n} are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_{n}.

Definition (VP)

$\mathrm{VP}_{\mathbb{F}}$ is the class of all p-bounded families of polynomials over \mathbb{F}

- $\left\{x^{2^{n}}\right\}_{n}$ is not p-bounded, but can be computed by poly-sized circuits repeated squaring
mod

VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-bounded if there is some polynomial $t: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n,

- the number of variables in f_{n} and
- the degree of f_{n}

$$
d y \leq t(n) \quad w \cdot l \cdot \sigma \cdot g .
$$ are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_{n}.

Definition (VP)

$\mathrm{VP}_{\mathbb{F}}$ is the class of all p-bounded families of polynomials over \mathbb{F}

- $\left\{x^{2^{n}}\right\}_{n}$ is not p-bounded, but can be computed by poly-sized circuits
- Note that we don't require circuits in p-bounded family to have polynomial degree, but that comes "for free" as we will see.

VNP [Valiant 1979, Valiant 1982]
Definition (p-definable family of polynomials)
A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-definable if there are

- $v: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function
(variable size)
- $w: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function
- and a family $\left\{g_{n}\right\}_{n} \in \mathrm{VP}_{\mathbb{F}}$
("Turing machine")
such that for every n,

$$
f_{n}\left(x_{1}, \ldots, x_{v(n)}\right)=\overbrace{\sum_{b \in\{0,1\}^{w(n)}} g_{w(n)}\left(x_{1}, \ldots, x_{v(n)}, b_{1}, \ldots, b_{w(n)}\right)}
$$

sum over all witnesses

VNP [Valiant 1979, Valiant 1982]

Definition (p-definable family of polynomials)

A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-definable if there are

- $v: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function
(variable size)
- $w: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function (witness size)
- and a family $\left\{g_{n}\right\}_{n} \in \mathrm{VP}_{\mathbb{F}}$
("Turing machine") such that for every n,

$$
f_{n}\left(x_{1}, \ldots, x_{v(n)}\right)=\sum_{b \in\{0,1\}^{w(n)}} g_{w(n)}\left(x_{1}, \ldots, x_{v n}, b_{1}, \ldots, b_{w n}\right)
$$

Definition (VNP)

$\mathrm{VNP}_{\mathbb{F}}$ is the class of all p-definable families of polynomials over \mathbb{F}

VNP [Valiant 1979, Valiant 1982]

Definition (p-definable family of polynomials)

A family of polynomials $\left\{f_{n}\right\}_{n}$ over \mathbb{F} is p-definable if there are

- $v: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function
(variable size)
- $w: \mathbb{N} \rightarrow \mathbb{N}$ polynomial function (witness size)
- and a family $\left\{g_{n}\right\}_{n} \in \mathrm{VP}_{\mathbb{F}}$
("Turing machine") such that for every n,

$$
f_{n}\left(x_{1}, \ldots, x_{v(n)}\right)=\sum_{b \in\{0,1\}^{w(n)}} g_{w(n)}\left(x_{1}, \ldots, x_{v n}, b_{1}, \ldots, b_{w n}\right)
$$

Definition (VNP)

VNP $_{\mathbb{F}}$ is the class of all p-definable families of polynomials over \mathbb{F}

- Roughly speaking, VNP class of polynomials f such that, given a monomial, one can efficiently compute the coefficient of this monomial in f

Analogies to P vs NP

Valiant's conjecture

- from the definitions above, it follows that

$$
\mathrm{VP} \subseteq \mathrm{VNP}
$$

- Valiant's conjecture is that these two classes are different.

Open Question

$$
V P \neq ? V N P
$$

Natural polynomials in VP?

$$
\operatorname{Det}_{n}(X)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \cdot \prod_{i=1}^{n} x_{i \sigma(i)}
$$

$\{$ Detn $\mathcal{A} \in V P$ (Gaussian elimination)

$$
\begin{aligned}
&\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a & b \\
0 & d-\frac{c b}{a}
\end{array}\right) \\
& a \cdot\left(d-\frac{c b}{a}\right)=a d-c b
\end{aligned}
$$

we used divisions [if you can compute polynomial with divisions, then compuk polynomial efficiently without] S'F3

Natural polynomials in VP?

$$
\begin{gathered}
\left.t \pi\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]\left[\begin{array}{ll}
y_{11} & y_{22} \\
y_{21} & y_{22}
\end{array}\right] \cdots\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{22} & z_{22}
\end{array}\right]\right] \\
A B P_{S}
\end{gathered}
$$

Natural polynomials in VP?

Natural polynomials in VNP?

$$
\begin{aligned}
& \operatorname{gaxiy)}_{\operatorname{Per}_{n}(x)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}}^{\prod_{\in V P}^{n}\left(\sum_{j=1}^{n} x_{i j} y_{j}\right)=y_{1} y_{2} \cdot y_{n} \cdot \operatorname{Per}_{n}(x)+\cdots} \\
& \operatorname{Per}_{n}(x)=\sum_{b \in\{0,1\}^{n}} \underbrace{g(x, b) \cdot \alpha_{b}}_{\in \cup P}
\end{aligned}
$$

Natural polynomials in VNP?
$\left\{\operatorname{Per}_{n}(x)\right\}_{n}$ complete for

$$
V_{\hat{1}} P
$$

$\left\{\begin{array}{l}\text { counting \# perfect matching s } \\ \text { in bipartite graphs is }\end{array}\right.$ in bipartite graphs is complete for \#P

Reductions

Definition (linear projections)
A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a projection of a polynomial $g\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{m}\right]$ if there is an assignment
$\rho \in\left(\left\{x_{1}, \ldots, x_{n} \cup \mathbb{F}\right\}\right)^{m}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(\rho_{1}, \ldots, \rho_{m}\right)$

$$
\begin{aligned}
& y_{i} \longmapsto \Phi_{i}(\bar{x}) \longleftarrow \\
& g\left(\Phi_{1,}, \quad \Phi_{m}\right)=\underbrace{}_{\in V P}(
\end{aligned}
$$

Reductions

Definition (linear projections)

A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a projection of a polynomial $g\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{m}\right]$ if there is an assignment $\rho \in\left(\left\{x_{1}, \ldots, x_{n} \cup \mathbb{F}\right\}\right)^{m}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(\rho_{1}, \ldots, \rho_{m}\right)$

Definition (reduction via p-projections)

A polynomial family $\left\{f_{n}\right\}_{n}$ is a p-projection of a family $\left\{g_{n}\right\}_{n}$ if there is a polynomially bounded $t: \mathbb{N} \rightarrow \mathbb{N}$ such that for every n, f_{n} is a p-projection of $g_{t(n)}$.

Complete polynomials for VP and VNP?
Theorem (Completeness under quasi-poly projections [Valiant 1979])
The family $\left\{\operatorname{Det}_{n}\right\}$ is $V_{\mathbb{F}}$-complete with respect to quasi-polynomial projections. VQP quasi-poly che size

Theorem (Completeness for VNP [Valiant 1979])
The family $\left\{\mathrm{Per}_{n}\right\}$ is $V N P_{\mathbb{F}}$-complete with respect to polynomial projections, as long as $\operatorname{char}(\mathbb{F}) \neq 2$.
quasi- - ply

$$
2^{\log ^{c} n}
$$

$$
n^{\log n}
$$

Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family $\left\{\right.$ Det $\left._{n}\right\}$ is $V P_{\mathbb{F}}$-complete with respect to quasi-polynomial projections.

Theorem (Completeness for VNP [Valiant 1979])

The family $\left\{\mathrm{Per}_{n}\right\}$ is $V N P_{\mathbb{F}}$-complete with respect to polynomial projections, as long as $\operatorname{char}(\mathbb{F}) \neq 2$.

- Denoting VQP the class of quasi-p-bounded families (i.e., changing in the definition of VP all polynomially bounded by quasi-polynomially bounded), we have Valiant's second conjecture.

Open Question (Valiant)

$$
V N P_{\mathbb{F}} \not \subset ? V Q P_{\mathbb{F}}
$$

Conclusion

- Today we learned some algebraic models of computation and their connections to some important problems in TCS
- We learned about the reductions between problems in the main classes
- We saw complete problems for the main algebraic classes

Det \leftarrow bedrock of linear algebra "linear algebra $\subset N C^{2}$ "
Per \leftarrow Captures most interesting problems in combinatrics, statistical physics and mams more, a. z. z sac

Director's cut: getting rid of divisions [Strassen 1973]

Director's cut: getting rid of divisions [Strassen 1973]

Director's cut: getting rid of divisions [Strassen 1973]

Acknowledgement

- Lecture based largely on:
- Excellent survey by Shpilka and Yehudayoff [Shpilka \& Yehudayoff 2010]
https://www.nowpublishers.com/article/Details/TCS-039

References I

0 Valiant, Leslie 1979.
Completeness classes in algebra.
STOC
\square Valiant, Leslie 1982.
Reducibility by algebraic projections
L'Enseignement Mathematique
Shpilka, Amir and Yehudayoff, Amir 1982.
Arithmetic circuits: a survey of recent results and open questions
Foundations and Trends in Theoretical Computer Science
Strassen, Volker 1973.
Vermeidung von Divisionen
The Journal fur die Reine und Angewandte Mathematik

