Lecture 1: Algebraic Circuits & Algebraic Complexity

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 11, 2021

Overview

- Algebraic Primitives
- Algebraic Complexity: Complexity Classes

- Conclusion
- Acknowledgements

• Group: set G with law of composition $\circ: G \times G \to G$ such that

1 associative:
$$(a \circ b) \circ c = a \circ (b \circ c)$$

- 2 *identity element:* $1 \in G$ such that $1 \circ a = a \circ 1 = a$, for all $a \in G$
- **(3)** *inverse:* every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$a \circ a^{-1} = a^{-1} \circ a = 1$$

イロン (語) (注) (注) (注) まつの(で

• Group: set G with law of composition $\circ: G \times G \to G$ such that

1 associative:
$$(a \circ b) \circ c = a \circ (b \circ c)$$

- 2 *identity element:* $1 \in G$ such that $1 \circ a = a \circ 1 = a$, for all $a \in G$
- **(3)** *inverse:* every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$a \circ a^{-1} = a^{-1} \circ a = 1$$

- Examples:
 - Invertible matrices (quintessential example) with matrix multiplication
 - Permutations of a set with function composition

• Group: set G with law of composition $\circ: G \times G \to G$ such that

1 associative:
$$(a \circ b) \circ c = a \circ (b \circ c)$$

- 2 *identity element:* $1 \in G$ such that $1 \circ a = a \circ 1 = a$, for all $a \in G$
- **(3)** *inverse:* every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$a \circ a^{-1} = a^{-1} \circ a = 1$$

- Examples:
 - Invertible matrices (quintessential example) with matrix multiplication
 - Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$a \circ b = b \circ a, \quad \forall a, b \in G$$

• Group: set G with law of composition $\circ: G \times G \to G$ such that

1 associative:
$$(a \circ b) \circ c = a \circ (b \circ c)$$

- 2 *identity element:* $1 \in G$ such that $1 \circ a = a \circ 1 = a$, for all $a \in G$
- **(3)** *inverse:* every element $a \in G$ has an inverse $a^{-1} \in G$ such that

$$a \circ a^{-1} = a^{-1} \circ a = 1$$

- Examples:
 - Invertible matrices (quintessential example) with matrix multiplication
 - Permutations of a set with function composition
- G is abelian group if the law of composition is commutative

$$a \circ b = b \circ a, \quad \forall a, b \in G$$

- Examples of abelian groups
 - Integers, with addition operation
 - Real numbers, with addition operation
 - Integer matrices, with addition operation

- *Ring* : set *R* with laws of composition
 - Addition $+: R \times R \rightarrow R$
 - Multiplication $\cdot : R \times R \rightarrow R$

¹Commutative rings with unit

- *Ring* : set *R* with laws of composition
 - Addition $+: R \times R \rightarrow R$
 - Multiplication $\cdot : R \times R \to R$
- *R* is *abelian group* with respect to addition
 - $0 \in R$ identity w.r.t. addition

¹Commutative rings with unit

- *Ring* : set *R* with laws of composition
 - Addition $+: R \times R \rightarrow R$
 - Multiplication $\cdot : R \times R \rightarrow R$
- R is abelian group with respect to addition
 - $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
 - associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - commutative: $a \cdot b = b \cdot a$
 - *identity*: $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$
 - distributive over addition:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 and $(a + b) \cdot c = a \cdot c + b \cdot c$

(D) (B) (E) (E) (E) (E) (O)

¹Commutative rings with unit

- *Ring* : set *R* with laws of composition
 - Addition $+: R \times R \rightarrow R$
 - Multiplication $\cdot : R \times R \rightarrow R$
- R is abelian group with respect to addition
 - $0 \in R$ identity w.r.t. addition
- Multiplication satisfies following properties
 - associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - commutative: $a \cdot b = b \cdot a$
 - *identity*: $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$
 - distributive over addition:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 and $(a + b) \cdot c = a \cdot c + b \cdot c$

Examples

- Integers with addition and multiplication (quintessential example)
- Real numbers, complex numbers, with usual addition and multiplciation
- Polynomial rings

¹Commutative rings with unit

• Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1
- Associates: two elements a, b ∈ R are associates if there is a unit u ∈ R such that a = ub

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1
- Associates: two elements a, b ∈ R are associates if there is a unit u ∈ R such that a = ub
- Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that there is a non-zero b ∈ R \ {0} such that a ⋅ b = 0

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1
- Associates: two elements a, b ∈ R are associates if there is a unit u ∈ R such that a = ub
- Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that there is a non-zero b ∈ R \ {0} such that a ⋅ b = 0

(D) (B) (E) (E) (E) (E) (O)

• Integral domain: a ring *R* is an integral domain if it has *no zero divisor*.

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1
- Associates: two elements a, b ∈ R are associates if there is a unit u ∈ R such that a = ub
- Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that there is a non-zero b ∈ R \ {0} such that a ⋅ b = 0
- Integral domain: a ring *R* is an integral domain if it has *no zero divisor*.
- Euclidean domain: a ring R is an Euclidean domain if:
 - R is an integral domain and there is an Euclidean function $|\cdot|: R \to \mathbb{N} \cup \{-\infty\}$
 - for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$
 and $|r| < |b|$

- Unit: an element $u \in R$ is a unit if there is $v \in R$ such that uv = 1
- Associates: two elements a, b ∈ R are associates if there is a unit u ∈ R such that a = ub
- Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that there is a non-zero b ∈ R \ {0} such that a ⋅ b = 0
- Integral domain: a ring *R* is an integral domain if it has *no zero divisor*.
- Euclidean domain: a ring R is an Euclidean domain if:
 - R is an integral domain and there is an Euclidean function $|\cdot|: R \to \mathbb{N} \cup \{-\infty\}$
 - for all $a, b \in R$, with $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$
 and $|r| < |b|$

Greatest common divisor: the greatest common divisor of a, b ∈ R, denoted by gcd(a, b) is an element of R which divides both a and b, and if c ∈ R divides a and b, then c divides gcd(a, b).

 \bullet Field: a ring $\mathbb F$ with addition and multiplication such that

イロト イヨト イミト イミト ニモー のくで

• every non-zero element has a multiplicative inverse

Fields

• Field: a ring ${\mathbb F}$ with addition and multiplication such that

イロン (語) イミン (き) き の(の

- every non-zero element has a multiplicative inverse
- Examples
 - Rational numbers
 - Real numbers
 - Complex numbers
 - Set of integers modulo a prime

• Given a base ring *R*, we can construct a polynomial ring *R*[*x*] by "adding a new variable" *x* to *R* in the *freest way possible*

- Given a base ring *R*, we can construct a polynomial ring *R*[*x*] by "adding a new variable" *x* to *R* in the *freest way possible*
- That is: • That is: • That is: • Leading coefficient • $a_0 + a_1x + \dots + a_dx^d = b_0 + b_1x + \dots + b_ex^e$, • $(a_d, b_e \neq 0)$ if, and only if, d = e and $a_0 = b_0, a_1 = b_1, \dots, a_d = b_d$

- Given a base ring *R*, we can construct a polynomial ring *R*[*x*] by "adding a new variable" *x* to *R* in the *freest way possible*
- That is:

$$a_0 + a_1 x + \dots + a_d x^d = b_0 + b_1 x + \dots + b_e x^e$$
, $(a_d, b_e \neq 0)$

if, and only if, d=e and $a_0=b_0, a_1=b_1,\ldots,a_d=b_d$

• Can create the polynomial ring $R[x_1, \ldots, x_n]$ by adding the variables x_1, \ldots, x_n freely as above.

- Given a base ring *R*, we can construct a polynomial ring *R*[*x*] by "adding a new variable" *x* to *R* in the *freest way possible*
- That is:

$$a_0 + a_1 x + \dots + a_d x^d = b_0 + b_1 x + \dots + b_e x^e$$
, $(a_d, b_e \neq 0)$

if, and only if, d=e and $a_0=b_0, a_1=b_1,\ldots,a_d=b_d$

- Can create the polynomial ring $R[x_1, \ldots, x_n]$ by adding the variables x_1, \ldots, x_n freely as above.
- What is our computational model to compute polynomials?

- Given a base ring *R*, we can construct a polynomial ring *R*[*x*] by "adding a new variable" *x* to *R* in the *freest way possible*
- That is:

$$a_0 + a_1 x + \dots + a_d x^d = b_0 + b_1 x + \dots + b_e x^e$$
, $(a_d, b_e \neq 0)$

if, and only if,
$$d=e$$
 and $a_0=b_0, a_1=b_1,\ldots,a_d=b_d$

- Can create the polynomial ring $R[x_1, \ldots, x_n]$ by adding the variables x_1, \ldots, x_n freely as above.
- What is our computational model to compute polynomials?
- How can we measure computational complexity in such base rings?

 $\bullet~\mathbb{Z} \to \mathsf{bit}$ complexity of integer

•
$$\lg a := \begin{cases} 1, \text{ if } a = 0 \\ 1 + \lfloor \log |a| \rfloor, \text{ otherwise} \end{cases}$$

イロン 不通 とく たとく たとう たいのなび

 $\bullet~\mathbb{Z} \to \mathsf{bit}$ complexity of integer

•
$$\lg a := egin{cases} 1, \ ext{if } a = 0 \ 1 + \lfloor \log |a| \rfloor, \ ext{otherwise} \end{cases}$$

• $\mathbb{Q}
ightarrow$ complexity of a/b is the total bit complexity of a and b

イロト イヨト イミト イミト ニモー のくで

• $\mathbb{Z} \rightarrow \text{bit complexity of integer}$ • $\lg a := \begin{cases} 1, \text{ if } a = 0\\ 1 + |\log |a| \end{bmatrix}$, otherwise • $\mathbb{Q} \rightarrow$ complexity of a/b is the total bit complexity of a and b• $\mathbb{F}_q \rightarrow$ complexity of element is bit complexity (log q) • Polynomial rings $R[x_1, \ldots, x_n]$ dense representation write down every coefficient of a monomial (2, 3) $x^{2} xy y^{2} x y i$ $xy \mapsto d=2, (0, 1, 0, 0, 0, 0)$ 76 [2,4] coefficients ~ nd

• $\mathbb{Z} \rightarrow \text{bit complexity of integer}$

•
$$\lg a := \begin{cases} 1, \text{ if } a = 0 \\ 1 + \lfloor \log |a| \rfloor, \text{ otherwise} \end{cases}$$

- $\mathbb{Q} \rightarrow$ complexity of a/b is the total bit complexity of a and b
- $\mathbb{F}_q \rightarrow$ complexity of element is bit complexity (log q)
- Polynomial rings $R[x_1, \ldots, x_n]$
 - dense representation
 - 2 sparse representation

white down the non-zue coefficients $\mathcal{P}(x,y) = \alpha x^2 + b x y + c y^2$ (a, (2,0)) (b, (1,1)) (c, (0,2))

Algebraic Circuits - Definitions

- input gates: gates of in-degree 0
- output gates: gates of out-degree 0
- **circuit size**: given by the number of edges in the circuit, denoted by $\overline{\mathcal{S}}(\Phi)$
- **cost of field elements:** in classical algebraic complexity, there is unit cost for the use of any field element
- **circuit depth**: length of longest direct path from an input to an output
- **constant depth circuits:** for circuits of constant depth, we don't place restriction on the fan-in of an edge.
- formal degree of a gate: the degree of a gate is defined inductively
 - if input gate: degree is 0 if gate is element of the field, 1 if it is a variable

1-X

(a) D (b) (a) D (b)

4 (1) (1) (2) (2) (3)

- u = w + v then deg(u) = max(deg(w), deg(v))
- $u = w \times v$ then $\overline{\deg(u)} = \overline{\deg(w)} + \deg(v)$

Definition (*p*-bounded family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-bounded if there is some polynomial $t : \mathbb{N} \to \mathbb{N}$ such that for every *n*,

- the *number of variables* in f_n and
- the *degree* of f_n

are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_n .

poly bounded

polynomial

A D > A B > A B > A B > B 900

Definition (*p*-bounded family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-bounded if there is some polynomial $t : \mathbb{N} \to \mathbb{N}$ such that for every *n*,

- the *number of variables* in f_n and
- the *degree* of f_n

are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_n .

化白豆 化氯丁 化氯丁 化氯丁二氯丁

Definition (VP)

 $\mathsf{VP}_\mathbb{F}$ is the class of all $\mathit{p}\text{-}\mathsf{bounded}$ families of polynomials over \mathbb{F}

Definition (*p*-bounded family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-bounded if there is some polynomial $t : \mathbb{N} \to \mathbb{N}$ such that for every *n*,

- the *number of variables* in f_n and
- the *degree* of f_n

are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_n .

Definition (VP)

 $\mathsf{VP}_\mathbb{F}$ is the class of all $\mathit{p}\text{-}\mathsf{bounded}$ families of polynomials over \mathbb{F}

• {x^{2ⁿ}}_n is not *p*-bounded, but can be computed by poly-sized circuits *Repeated squaring Qⁿ* mod *p*

Definition (*p*-bounded family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-bounded if there is some polynomial $t : \mathbb{N} \to \mathbb{N}$ such that for every *n*,

- the *number of variables* in *f_n* and
- the *degree* of f_n

 $dg \leq t(n) \quad w \cdot l \cdot \sigma \cdot g \cdot$

are $\leq t(n)$, and there is algebraic circuit of size $\leq t(n)$ computing f_n .

Definition (VP)

 $\mathsf{VP}_\mathbb{F}$ is the class of all *p*-bounded families of polynomials over \mathbb{F}

- $\{x^{2^n}\}_n$ is not *p*-bounded, but can be computed by poly-sized circuits
- Note that we don't require circuits in *p*-bounded family to have polynomial degree, but that comes "for free" as we will see.

VNP [Valiant 1979, Valiant 1982] Definition (*p*-definable family of polynomials) A family of polynomials $\{f_n\}_n$ over \mathbb{F} is p-definable if there are • $v : \mathbb{N} \to \mathbb{N}$ polynomial function (variable size) (witness size) • $w : \mathbb{N} \to \mathbb{N}$ polynomial function • and a family $\{g_n\}_n \in \mathsf{VP}_{\mathbb{F}}$ ("Turing machine") such that for every n, $f_n(x_1,\ldots,x_{\nu(n)}) = \sum g_{w(n)}(x_1,\ldots,x_{\nu(n)},b_1,\ldots,b_{\nu(n)})$ $b \in \{0,1\}^{w(n)}$ sum over all within NP: x E L (=) V M(x,y) = 1 "existence J counting (1=1- (14(n)) 4 etoinen) + Q(xid) "counting # of solutions (withing 出?

Definition (*p*-definable family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-definable if there are

- $v: \mathbb{N} \to \mathbb{N}$ polynomial function
- $w: \mathbb{N} \to \mathbb{N}$ polynomial function
- and a family $\{g_n\}_n \in \mathsf{VP}_\mathbb{F}$

such that for every n,

$$f_n(x_1,\ldots,x_{\nu(n)}) = \sum_{b \in \{0,1\}^{w(n)}} g_{w(n)}(x_1,\ldots,x_{\nu n},b_1,\ldots,b_{wn})$$

Definition (VNP)

 $\mathsf{VNP}_{\mathbb{F}}$ is the class of all $\mathit{p}\text{-definable}$ families of polynomials over $\mathbb F$

(variable size)

(witness size)

("Turing machine")

化白豆 化氯丁 化氯丁 化氯丁二氯丁

Definition (*p*-definable family of polynomials)

A family of polynomials $\{f_n\}_n$ over \mathbb{F} is *p*-definable if there are

- $v:\mathbb{N}\to\mathbb{N}$ polynomial function
- $w: \mathbb{N} \to \mathbb{N}$ polynomial function
- and a family $\{g_n\}_n \in \mathsf{VP}_\mathbb{F}$

such that for every n,

$$f_n(x_1,\ldots,x_{\nu(n)}) = \sum_{b \in \{0,1\}^{w(n)}} g_{w(n)}(x_1,\ldots,x_{\nu n},b_1,\ldots,b_{wn})$$

Definition (VNP)

 $\mathsf{VNP}_\mathbb{F}$ is the class of all p-definable families of polynomials over $\mathbb F$

 Roughly speaking, VNP class of polynomials f such that, given a monomial, one can efficiently compute the coefficient of this monomial in f

(variable size)

(witness size)

("Turing machine")

Analogies to P vs NP

- < ロ > < 団 > < ミ > < ミ > 、 ミ ・ の Q (*)

• from the definitions above, it follows that

 $\mathsf{VP}\subseteq\mathsf{VNP}$

• Valiant's conjecture is that these two classes are different.

Open Question		
	$VP \neq$? VNP	

Natural polynomials in VP? $Det_n(X) = \sum_{\sigma \in S_n} (-1)^{\sigma} \cdot \prod_{i=1}^n X_{i\sigma(i)}$ JDetn S E VP (Gaussian elimination) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \begin{pmatrix} a & b \\ 0 & d - \frac{cb}{a} \end{pmatrix}$ $Q \cdot \left(d - \frac{cb}{a}\right) = ad - cb$ we used divisions [if you can compute polynomial with divisions, then compute polynomial efficiently without] 5'73 Natural polynomials in VP?

$$\frac{1}{4\pi} \left[\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{22} \\ y_{21} & y_{22} \end{bmatrix} - \begin{bmatrix} z_{11} & z_{12} \\ z_{22} & z_{22} \end{bmatrix} \right]$$

$$ABPs$$

イロン 不通 とくさと くきとうき うのくび

Natural polynomials in VP?

Natural polynomials in VNP? $\operatorname{Per}_{n}(X) = \sum_{\sigma \in S_{n}} \operatorname{TI}_{i=1}^{i} X_{i\sigma(i)}$ 36.3) $\prod_{i=1}^{n} \left(\sum_{j=1}^{n} X_{ij} \mathcal{G}_{j} \right) = \mathcal{G}_{ij} \mathcal{G}_{ij} \mathcal{G}_{n} (\mathbf{x}) + \cdots$ EVP $\operatorname{Per}_{n}(x) = \sum_{b \in \{0,1\}^{n}} g(x, b) \cdot \alpha_{b}$ EVP

Natural polynomials in VNP?

マロン マヨン マミン マミン しき つのので

Reductions

Definition (linear projections)

A polynomial $f(x_1, ..., x_n) \in \mathbb{F}[x_1, ..., x_n]$ is a *projection* of a polynomial $g(y_1, ..., y_m) \in \mathbb{F}[y_1, ..., y_m]$ if there is an assignment $\rho \in (\{x_1, ..., x_n \cup \mathbb{F}\})^m$ such that $f(x_1, ..., x_n) = g(\rho_1, ..., \rho_m)$

$$y_{i} \mapsto \overline{\Phi}_{i}(\overline{x}) \leftarrow$$

$$g\left(\overline{\Phi}_{i}, \ldots, \overline{\Phi}_{m}\right) = \frac{h}{G}($$

$$g\left(\overline{\Phi}_{i}, \ldots, \overline{\Phi}_{m}\right) = \frac{h}{G}($$

Reductions

Definition (linear projections)

A polynomial $f(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ is a *projection* of a polynomial $g(y_1, \ldots, y_m) \in \mathbb{F}[y_1, \ldots, y_m]$ if there is an assignment $\rho \in (\{x_1, \ldots, x_n \cup \mathbb{F}\})^m$ such that $f(x_1, \ldots, x_n) = g(\rho_1, \ldots, \rho_m)$

Definition (reduction via *p*-projections)

A polynomial family $\{f_n\}_n$ is a *p*-projection of a family $\{g_n\}_n$ if there is a polynomially bounded $t : \mathbb{N} \to \mathbb{N}$ such that for every *n*, f_n is a *p*-projection of $g_{t(n)}$.

Complete polynomials for VP and VNP?

2 login

nlegin

Theorem (Completeness for VNP [Valiant 1979])

quosi - poly

The family $\{\operatorname{Per}_n\}$ is $VNP_{\mathbb{F}}$ -complete with respect to polynomial projections, as long as $\operatorname{char}(\mathbb{F}) \neq 2$.

Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family $\{Det_n\}$ is $VP_{\mathbb{F}}$ -complete with respect to quasi-polynomial projections.

Theorem (Completeness for VNP [Valiant 1979])

The family $\{\operatorname{Per}_n\}$ is $VNP_{\mathbb{F}}$ -complete with respect to polynomial projections, as long as $\operatorname{char}(\mathbb{F}) \neq 2$.

• Denoting VQP the class of quasi-*p*-bounded families (i.e., changing in the definition of VP all polynomially bounded by quasi-polynomially bounded), we have Valiant's second conjecture.

Open Question (Valiant)

$$VNP_{\mathbb{F}} \not\subset^? VQP_{\mathbb{F}}$$

Conclusion

- Today we learned some algebraic models of computation and their connections to some important problems in TCS
- We learned about the reductions between problems in the main classes
- We saw complete problems for the main algebraic classes

Det
bedroch of linea algebra "Ilinear algebra C NC²" Por
Captures most inknesting problems in combinetorics, statistical physics and many more and a physics Director's cut: getting rid of divisions [Strassen 1973]

- < ロ > < 回 > < 三 > < 三 > ・ 三 ・ の Q @

Director's cut: getting rid of divisions [Strassen 1973]

- < ロ > < 回 > < 三 > < 三 > ・ 三 ・ の Q @

Director's cut: getting rid of divisions [Strassen 1973]

- < ロ > < 回 > < 三 > < 三 > ・ 三 ・ の Q @

Acknowledgement

- Lecture based largely on:
 - Excellent survey by Shpilka and Yehudayoff [Shpilka & Yehudayoff 2010] https://www.nowpublishers.com/article/Details/TCS-039

References I

Valiant, Leslie 1979.

Completeness classes in algebra. STOC

Valiant, Leslie 1982.

Reducibility by algebraic projections L'Enseignement Mathematique

Shpilka, Amir and Yehudayoff, Amir 1982.

Arithmetic circuits: a survey of recent results and open questions Foundations and Trends in Theoretical Computer Science

化白豆 化氯丁 化氯丁 化氯丁二氯丁

500

Strassen, Volker 1973.

Vermeidung von Divisionen

The Journal fur die Reine und Angewandte Mathematik