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Groups

Group: set G with law of composition ◦ : G × G → G such that
1 associative: (a ◦ b) ◦ c = a ◦ (b ◦ c)
2 identity element: 1 ∈ G such that 1 ◦ a = a ◦ 1 = a, for all a ∈ G
3 inverse: every element a ∈ G has an inverse a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = 1
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Groups

Group: set G with law of composition ◦ : G × G → G such that
1 associative: (a ◦ b) ◦ c = a ◦ (b ◦ c)
2 identity element: 1 ∈ G such that 1 ◦ a = a ◦ 1 = a, for all a ∈ G
3 inverse: every element a ∈ G has an inverse a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = 1

Examples:

Invertible matrices (quintessential example) with matrix multiplication
Permutations of a set with function composition

G is abelian group if the law of composition is commutative

a ◦ b = b ◦ a, ∀a, b ∈ G

Examples of abelian groups

Integers, with addition operation
Real numbers, with addition operation
Integer matrices, with addition operation

6 / 54



Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

1Commutative rings with unit
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Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

R is abelian group with respect to addition

0 ∈ R identity w.r.t. addition

Multiplication satisfies following properties

associative: a · (b · c) = (a · b) · c
commutative: a · b = b · a
identity: 1 ∈ R such that 1 · a = a · 1 = a
distributive over addition:

a · (b + c) = a · b + a · c and (a+ b) · c = a · c + b · c

1Commutative rings with unit
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Rings1

Ring : set R with laws of composition

Addition + : R × R → R
Multiplication · : R × R → R

R is abelian group with respect to addition

0 ∈ R identity w.r.t. addition

Multiplication satisfies following properties

associative: a · (b · c) = (a · b) · c
commutative: a · b = b · a
identity: 1 ∈ R such that 1 · a = a · 1 = a
distributive over addition:

a · (b + c) = a · b + a · c and (a+ b) · c = a · c + b · c

Examples

Integers with addition and multiplication (quintessential example)
Real numbers, complex numbers, with usual addition and multiplciation
Polynomial rings

1Commutative rings with unit
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Rings - Definitions

Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1
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Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1

Associates: two elements a, b ∈ R are associates if there is a unit
u ∈ R such that a = ub

Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that
there is a non-zero b ∈ R \ {0} such that a · b = 0

Integral domain: a ring R is an integral domain if it has no zero
divisor.

Euclidean domain: a ring R is an Euclidean domain if:
R is an integral domain and there is an Euclidean function
| · | : R → N ∪ {−∞}
for all a, b ∈ R, with b �= 0, there exists q, r ∈ R such that

a = qb + r and |r | < |b|
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Rings - Definitions

Unit: an element u ∈ R is a unit if there is v ∈ R such that uv = 1

Associates: two elements a, b ∈ R are associates if there is a unit
u ∈ R such that a = ub

Zero divisor: a zero divisor in R is an element a ∈ R \ {0} such that
there is a non-zero b ∈ R \ {0} such that a · b = 0

Integral domain: a ring R is an integral domain if it has no zero
divisor.

Euclidean domain: a ring R is an Euclidean domain if:
R is an integral domain and there is an Euclidean function
| · | : R → N ∪ {−∞}
for all a, b ∈ R, with b �= 0, there exists q, r ∈ R such that

a = qb + r and |r | < |b|

Greatest common divisor: the greatest common divisor of a, b ∈ R ,
denoted by gcd(a, b) is an element of R which divides both a and b,
and if c ∈ R divides a and b, then c divides gcd(a, b).
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Fields

Field: a ring F with addition and multiplication such that

every non-zero element has a multiplicative inverse
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Fields

Field: a ring F with addition and multiplication such that

every non-zero element has a multiplicative inverse

Examples

Rational numbers
Real numbers
Complex numbers
Set of integers modulo a prime
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible

That is:

a0 + a1x + · · ·+ adx
d = b0 + b1x + · · ·+ bex

e , (ad , be �= 0)

if, and only if, d = e and a0 = b0, a1 = b1, . . . , ad = bd
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Polynomial Rings

Given a base ring R , we can construct a polynomial ring R[x ] by
“adding a new variable” x to R in the freest way possible

That is:

a0 + a1x + · · ·+ adx
d = b0 + b1x + · · ·+ bex

e , (ad , be �= 0)

if, and only if, d = e and a0 = b0, a1 = b1, . . . , ad = bd

Can create the polynomial ring R[x1, . . . , xn] by adding the variables
x1, . . . , xn freely as above.

What is our computational model to compute polynomials?

How can we measure computational complexity in such base rings?
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Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise
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Complexity measures in rings

Z → bit complexity of integer

lg a :=

�
1, if a = 0

1 + �log |a|�, otherwise

Q → complexity of a/b is the total bit complexity of a and b

Fq → complexity of element is bit complexity (log q)

Polynomial rings R[x1, . . . , xn]
1 dense representation
2 sparse representation
3 algebraic circuits
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Algebraic Circuits - Definitions

input gates: gates of in-degree 0

output gates: gates of out-degree 0

circuit size: given by the number of edges in the circuit, denoted by
S(Φ)
cost of field elements: in classical algebraic complexity, there is unit
cost for the use of any field element

circuit depth: length of longest direct path from an input to an
output

constant depth circuits: for circuits of constant depth, we don’t
place restriction on the fan-in of an edge.

formal degree of a gate: the degree of a gate is defined inductively

if input gate: degree is 0 if gate is element of the field, 1 if it is a
variable
u = w + v then deg(u) = max(deg(w), deg(v))
u = w × v then deg(u) = deg(w) + deg(v)
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VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials {fn}n over F is p-bounded if there is some
polynomial t : N → N such that for every n,

the number of variables in fn and

the degree of fn

are ≤ t(n), and there is algebraic circuit of size ≤ t(n) computing fn.
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VP [Valiant 1979, Valiant 1982]

Definition (p-bounded family of polynomials)

A family of polynomials {fn}n over F is p-bounded if there is some
polynomial t : N → N such that for every n,

the number of variables in fn and

the degree of fn

are ≤ t(n), and there is algebraic circuit of size ≤ t(n) computing fn.

Definition (VP)

VPF is the class of all p-bounded families of polynomials over F

{x2n}n is not p-bounded, but can be computed by poly-sized circuits

Note that we don’t require circuits in p-bounded family to have
polynomial degree, but that comes “for free” as we will see.
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VNP [Valiant 1979, Valiant 1982]

Definition (p-definable family of polynomials)

A family of polynomials {fn}n over F is p-definable if there are

v : N → N polynomial function (variable size)

w : N → N polynomial function (witness size)

and a family {gn}n ∈ VPF (“Turing machine”)

such that for every n,

fn(x1, . . . , xv(n)) =
�

b∈{0,1}w(n)

gw(n)(x1, . . . , xvn, b1, . . . , bwn)
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VNP [Valiant 1979, Valiant 1982]

Definition (p-definable family of polynomials)

A family of polynomials {fn}n over F is p-definable if there are

v : N → N polynomial function (variable size)

w : N → N polynomial function (witness size)

and a family {gn}n ∈ VPF (“Turing machine”)

such that for every n,

fn(x1, . . . , xv(n)) =
�

b∈{0,1}w(n)

gw(n)(x1, . . . , xvn, b1, . . . , bwn)

Definition (VNP)

VNPF is the class of all p-definable families of polynomials over F

Roughly speaking, VNP class of polynomials f such that, given a
monomial, one can efficiently compute the coefficient of this
monomial in f
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Analogies to P vs NP
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Valiant’s conjecture

from the definitions above, it follows that

VP ⊆ VNP

Valiant’s conjecture is that these two classes are different.

Open Question

VP �=? VNP
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Natural polynomials in VP?
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Natural polynomials in VNP?
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Natural polynomials in VNP?
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Reductions

Definition (linear projections)

A polynomial f (x1, . . . , xn) ∈ F[x1, . . . , xn] is a projection of a polynomial
g(y1, . . . , ym) ∈ F[y1, . . . , ym] if there is an assignment
ρ ∈ ({x1, . . . , xn ∪ F})m such that f (x1, . . . , xn) = g(ρ1, . . . , ρm)
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Reductions

Definition (linear projections)

A polynomial f (x1, . . . , xn) ∈ F[x1, . . . , xn] is a projection of a polynomial
g(y1, . . . , ym) ∈ F[y1, . . . , ym] if there is an assignment
ρ ∈ ({x1, . . . , xn ∪ F})m such that f (x1, . . . , xn) = g(ρ1, . . . , ρm)

Definition (reduction via p-projections)

A polynomial family {fn}n is a p-projection of a family {gn}n if there is a
polynomially bounded t : N → N such that for every n, fn is a p-projection
of gt(n).
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Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family {Detn} is VPF-complete with respect to quasi-polynomial
projections.

Theorem (Completeness for VNP [Valiant 1979])

The family {Pern} is VNPF-complete with respect to polynomial
projections, as long as char(F) �= 2.
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Complete polynomials for VP and VNP?

Theorem (Completeness under quasi-poly projections [Valiant 1979])

The family {Detn} is VPF-complete with respect to quasi-polynomial
projections.

Theorem (Completeness for VNP [Valiant 1979])

The family {Pern} is VNPF-complete with respect to polynomial
projections, as long as char(F) �= 2.

Denoting VQP the class of quasi-p-bounded families (i.e., changing in
the definition of VP all polynomially bounded by quasi-polynomially
bounded), we have Valiant’s second conjecture.

Open Question (Valiant)

VNPF �⊂? VQPF
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Conclusion

Today we learned some algebraic models of computation and their
connections to some important problems in TCS

We learned about the reductions between problems in the main classes

We saw complete problems for the main algebraic classes
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Director’s cut: getting rid of divisions [Strassen 1973]
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