Lecture 9: Univariate Polynomial Factoring over Finite

 FieldsRafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

February 8, 2021

Overview

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Square roots over $\mathbb{F}_{p} \quad x^{2}-a=(x-\alpha)(x+\alpha)$

- α is a root of f_{1} and $-\alpha$ is a root of f_{2} ff

$$
f_{1}(x)=x^{\alpha^{(p-1) / 2} \equiv 1} \text { and } \quad(-\alpha)^{(p-1) / 2} \equiv-1 \quad f_{2}(x)=x^{\frac{p-1}{2}}+1
$$

Square roots over \mathbb{F}_{p}

- α is a root of f_{1} and $-\alpha$ is a root of f_{2} iff

$$
\alpha^{(p-1) / 2} \equiv 1 \quad \text { and } \quad(-\alpha)^{(p-1) / 2} \equiv-1
$$

- If $p \equiv 3 \bmod 4$ we know that f_{1}, f_{2} split the roots of $x^{2}-a$ and thus we are good!
- How do we make this work in general?

Square roots over \mathbb{F}_{p}

- α is a root of f_{1} and $-\alpha$ is a root of f_{2} iff

$$
\alpha^{(p-1) / 2} \equiv 1 \quad \text { and } \quad(-\alpha)^{(p-1) / 2} \equiv-1
$$

- If $p \equiv 3 \bmod 4$ we know that f_{1}, f_{2} split the roots of $x^{2}-a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x)=x^{2}-a$ equivalent to factoring

$$
h(x)=(x-d)^{2}-c^{2} a
$$

Square roots over \mathbb{F}_{p}

- α is a root of f_{1} and $-\alpha$ is a root of f_{2} iff

$$
\alpha^{(p-1) / 2} \equiv 1 \quad \text { and } \quad(-\alpha)^{(p-1) / 2} \equiv-1
$$

- If $p \equiv 3 \bmod 4$ we know that f_{1}, f_{2} split the roots of $x^{2}-a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x)=x^{2}-a$ equivalent to factoring

$$
h(x)=(x-d)^{2}-c^{2} a
$$

- $g(x)=(x-\alpha)(x+\alpha)$ if, and only if,

$$
h(x)=(x-d-c \alpha)(x-d+c \alpha)
$$

Square roots over \mathbb{F}_{p}

- α is a root of f_{1} and $-\alpha$ is a root of f_{2} iff

$$
\alpha^{(p-1) / 2} \equiv 1 \quad \text { and } \quad(-\alpha)^{(p-1) / 2} \equiv-1
$$

- If $p \equiv 3 \bmod 4$ we know that f_{1}, f_{2} split the roots of $x^{2}-a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x)=x^{2}-a$ equivalent to factoring

$$
h(x)=(x-d)^{2}-c^{2} a
$$

- $g(x)=(x-\alpha)(x+\alpha)$ if, and only if,

$$
h(x)=(x-d-c \alpha)(x-d+c \alpha)
$$

- So, if g factors, we can try to find "good" (c, d) so that $f_{1}(x), f_{2}(x)$ "split" the factors of h

Square roots over \mathbb{F}_{p}

- What if we pick $c, d \in \mathbb{F}_{p}$ at random? What is the probability that $f_{1}(x)$ has only one of the roots of h as a factor?

Square roots over \mathbb{F}_{p}

- What if we pick $c, d \in \mathbb{F}_{p}$ at random? What is the probability that $f_{1}(x)$ has only one of the roots of h as a factor?
- If $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$ over \mathbb{F}_{p} :

$$
\underset{c, d}{\operatorname{Pr}}\left[c \cdot a_{1}+d=b_{1} \text { and } c \cdot a_{2}+d=b_{2}\right]=\frac{1}{p^{2}}
$$

Square roots over \mathbb{F}_{p}

- What if we pick $c, d \in \mathbb{F}_{p}$ at random? What is the probability that $f_{1}(x)$ has only one of the roots of h as a factor?
- If $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$ over \mathbb{F}_{p} :

$$
\underset{c, d}{\operatorname{Pr}}\left[c \cdot a_{1}+d=b_{1} \text { and } c \cdot a_{2}+d=b_{2}\right]=\frac{1}{p^{2}}
$$

- On the other hand:

$$
\begin{gathered}
\underset{b_{1}}{\operatorname{Pr}}\left[b_{1} \text { is root of } x^{(p-1) / 2}\right]=\frac{1}{2} \\
\left.\underset{b_{2}}{\operatorname{Pr}\left[b_{2}\right.} \text { is not root of } x^{(p-1) / 2}\right]=\frac{1}{2}
\end{gathered}
$$

Square roots over \mathbb{F}_{p}

- What if we pick $c, d \in \mathbb{F}_{p}$ at random? What is the probability that $f_{1}(x)$ has only one of the roots of h as a factor?
- If $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$ over \mathbb{F}_{p} :

$$
\underset{c, d}{\operatorname{Pr}}\left[c \cdot a_{1}+d=b_{1} \text { and } c \cdot a_{2}+d=b_{2}\right]=\frac{1}{p^{2}}
$$

- On the other hand:

$$
\begin{gathered}
\underset{b_{1}}{\operatorname{Pr}}\left[b_{1} \text { is root of } x^{(p-1) / 2}\right]=\frac{1}{2} \\
\left.\underset{b_{2}}{\operatorname{Pr}\left[b_{2}\right.} \text { is not root of } x^{(p-1) / 2}\right]=\frac{1}{2}
\end{gathered}
$$

- Thus, with probability $\approx 1 / 2$, uniform random choice of c, d gives us that $f_{1}(x)$ splits $h(x)$

Square Root Algorithm

(1) Pick random $c, d \in \mathbb{F}_{p}$ and compute $h(x)$

Square Root Algorithm

(1) Pick random $c, d \in \mathbb{F}_{p}$ and compute $h(x)$
(2) Compute $\ell(x) \equiv f_{1}(x) \bmod h(x)$

Square Root Algorithm

(1) Pick random $c, d \in \mathbb{F}_{p}$ and compute $h(x)$
(2) Compute $\ell(x) \equiv f_{1}(x) \bmod h(x)$
(3) Compute $r(x)=\operatorname{gcd}(h(x), \ell(x))$

Square Root Algorithm

(1) Pick random $c, d \in \mathbb{F}_{p}$ and compute $h(x)$
(2) Compute $\ell(x) \equiv f_{1}(x) \bmod h(x)$
(3) Compute $r(x)=\operatorname{gcd}(h(x), \ell(x))$
(9) If $r(x)=1$ or $r(x)=h(x)$, go back to step 1

Square Root Algorithm

(1) Pick random $c, d \in \mathbb{F}_{p}$ and compute $h(x)$
(2) Compute $\ell(x) \equiv f_{1}(x) \bmod h(x)$
(3) Compute $r(x)=\operatorname{gcd}(h(x), \ell(x))$
(4) If $r(x)=1$ or $r(x)=h(x)$, go back to step 1
(0) Otherwise we found a root of $h(x)$

Cantor-Zassenhaus Factoring Algorithm (1981)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$ with (unknown) factorization

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{k}(x)^{e_{k}}
$$

- Output: irreducible factors $f_{1}(x), \ldots, f_{k}(x)$

Cantor-Zassenhaus Factoring Algorithm (1981)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$ with (unknown) factorization

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{k}(x)^{e_{k}}
$$

- Output: irreducible factors $f_{1}(x), \ldots, f_{k}(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$

Cantor-Zassenhaus Factoring Algorithm (1981)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$ with (unknown) factorization

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{k}(x)^{e_{k}}
$$

- Output: irreducible factors $f_{1}(x), \ldots, f_{k}(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
\underline{h_{d}(x)}:=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x) \text { only has }
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), \frac{x^{q^{d}}-x}{\pi \text { all }}\right.$
inced.
les d

Cantor-Zassenhaus Factoring Algorithm (1981)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$ with (unknown) factorization

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{k}(x)^{e_{k}}
$$

- Output: irreducible factors $f_{1}(x), \ldots, f_{k}(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$
(3) Take a random $T(x) \in \mathbb{F}_{q}[x]$ such that $d<\operatorname{deg}(T)<2 \cdot d$ and output

$$
a(x):=\operatorname{gcd}\left(h_{d}, T(x)^{\left(q^{d}-1\right) / 2}-1\right)
$$

if it is not equal to $h_{d}(x)$

Cantor-Zassenhaus Factoring Algorithm (1981)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$ with (unknown) factorization

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{k}(x)^{e_{k}}
$$

- Output: irreducible factors $f_{1}(x), \ldots, f_{k}(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$
(3) Take a random $T(x) \in \mathbb{F}_{q}[x]$ such that $d<\operatorname{deg}(T)<2 \cdot d$ and output

$$
a(x):=\operatorname{gcd}\left(h_{d}, T(x)^{\left(q^{d}-1\right) / 2}-1\right)
$$

if it is not equal to $h_{d}(x)$
(9) Recurse on $h_{d}(x) / a(x)$

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_{q} where $q=p^{m}$ for some prime p
- As in the previous lecture, we can assume that input polynomial $f(x)$ is square-free and its factors have same degree
- For simplicity, let's just stick to the case $f(x)=f_{1}(x) \cdot f_{2}(x)$ both irreducible factors f_{1}, f_{2} having same degree

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_{q} where $q=p^{m}$ for some prime p
- As in the previous lecture, we can assume that input polynomial $f(x)$ is square-free and its factors have same degree
- For simplicity, let's just stick to the case $f(x)=f_{1}(x) \cdot f_{2}(x)$ both irreducible factors f_{1}, f_{2} having same degree
- Key idea: find a polynomial $g(x) \in \mathbb{F}_{q}[x]$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x) \quad \text { and } \quad 0<\operatorname{deg}(g)<\operatorname{deg}(f)
$$

$$
\begin{aligned}
& (\operatorname{deg} ;=0) \\
& \operatorname{deg}(g)=\operatorname{deg}(\varphi) \quad g=f
\end{aligned}
$$

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_{q} where $q=p^{m}$ for some prime p
- As in the previous lecture, we can assume that input polynomial $f(x)$ is square-free and its factors have same degree
- For simplicity, let's just stick to the case $f(x)=f_{1}(x) \cdot f_{2}(x)$ both irreducible factors f_{1}, f_{2} having same degree
- Key idea: find a polynomial $g(x) \in \mathbb{F}_{q}[x]$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x) \quad \text { and } \quad 0<\operatorname{deg}(g)<\operatorname{deg}(f)
$$

- Questions:
(1) Why is it useful?
(2) Does such a polynomial always exist?
(3) If is exists, how do we find it?

Usefulness

- Let us look at $z^{q}-z$ once again:

$$
z^{q}-z=\prod_{\alpha \in \mathbb{F}_{q}}(z-\alpha)
$$

Usefulness

- Let us look at $z^{q}-z$ once again:

$$
z^{q}-z=\prod_{\alpha \in \mathbb{F}_{q}}(z-\alpha)
$$

- If $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$, then we know that

$$
f(x) \text { divides } \prod_{\alpha \in \mathbb{F}_{q}}(g(x)-\alpha)=g(x)^{\gamma}-g(x)
$$

Usefulness

- Let us look at $z^{q}-z$ once again:

$$
z^{q}-z=\prod_{\alpha \in \mathbb{F}_{q}}(z-\alpha)
$$

- If $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$, then we know that

$$
f(x) \text { divides } \prod_{\alpha \in \mathbb{F}_{q}}(\underline{g(x)-\alpha)}
$$

- If $0<\operatorname{deg}(g)<\operatorname{deg}(f)$, then there exists $\alpha \in \mathbb{F}_{q}$ such that

$$
\operatorname{gcd}(g(x)-\alpha, f(x)) \neq 1
$$

get a factor of $f(x)$.

Usefulness

- Let us look at $z^{q}-z$ once again:

$$
z^{q}-z=\prod_{\alpha \in \mathbb{F}_{q}}(z-\alpha)
$$

- If $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$, then we know that

$$
f(x) \text { divides } \prod_{\alpha \in \mathbb{F}_{q}}(g(x)-\alpha)
$$

- If $0<\operatorname{deg}(g)<\operatorname{deg}(f)$, then there exists $\alpha \in \mathbb{F}_{q}$ such that

$$
\operatorname{gcd}(g(x)-\alpha, f(x)) \neq 1
$$

get a factor of $f(x)$.

- Degree condition of g is very important:
- If $g(x)$ was a constant, then $g^{q}-g=0$
- If $\operatorname{deg}(d)=\operatorname{deg}(f)$, then $g(x)=f(x)$ would satisfy our condition, but that is not useful

Existence

- Chinese Remainder Theorem: since $f(x)=f_{1}(x) \cdot f_{2}(x)$

$$
\mathbb{F}_{q}[x] /(f(x)) \simeq \mathbb{F}_{q}[x] /\left(f_{1}(x)\right) \times \mathbb{F}_{q}[x] /\left(f_{2}(x)\right)
$$

Existence

- Chinese Remainder Theorem: since $f(x)=f_{1}(x) \cdot f_{2}(x)$

$$
\mathbb{F}_{q}[x] /(f(x)) \simeq \mathbb{F}_{q}[x] /\left(f_{1}(x)\right) \times \mathbb{F}_{q}[x] /\left(f_{2}(x)\right)
$$

- If $g(x) \equiv \alpha_{1} \bmod f_{1}(x)$ and $g(x) \equiv \alpha_{2} \bmod f_{2}(x)$, where $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{q}$, then

$$
g(x)^{q}-g(x) \equiv \alpha_{i}^{q}-\alpha_{i} \equiv 0 \bmod f_{i}(x) \quad i \in\{1,2\}
$$

so $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$

Existence

- Chinese Remainder Theorem: since $f(x)=f_{1}(x) \cdot f_{2}(x)$

$$
\mathbb{F}_{q}[x] /(f(x)) \simeq \mathbb{F}_{q}[x] /\left(f_{1}(x)\right) \times \mathbb{F}_{q}[x] /\left(f_{2}(x)\right)
$$

- If $g(x) \equiv \alpha_{1} \bmod f_{1}(x)$ and $g(x) \equiv \alpha_{2} \bmod f_{2}(x)$, where $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{q}$, then

$$
g(x)^{q}-g(x) \equiv \alpha_{i}^{q}-\alpha_{i} \equiv 0 \bmod f_{i}(x)
$$

so $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$

- CRT tells us that there is unique $g(x) \in \mathbb{F}_{q}[x] /(f(x))$ such that

$$
g(x) \equiv \alpha_{i} \bmod f_{i}(x)
$$

Existence

- Chinese Remainder Theorem: since $f(x)=f_{1}(x) \cdot f_{2}(x)$

$$
\mathbb{F}_{q}[x] /(f(x)) \simeq \mathbb{F}_{q}[x] /\left(f_{1}(x)\right) \times \mathbb{F}_{q}[x] /\left(f_{2}(x)\right)
$$

- If $g(x) \equiv \alpha_{1} \bmod f_{1}(x)$ and $g(x) \equiv \alpha_{2} \bmod f_{2}(x)$, where $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{q}$, then

$$
g(x)^{q}-g(x) \equiv \alpha_{i}^{q}-\alpha_{i} \equiv 0 \bmod f_{i}(x)
$$

so $g(x)^{q}-g(x) \equiv 0 \bmod f(x)$

- CRT tells us that there is unique $g(x) \in \mathbb{F}_{q}[x] /(f(x))$ such that

$$
g(x) \equiv \alpha_{i} \bmod f_{i}(x)
$$

- Need to show that we have a non-constant $g(x)$ satisfying it!
- Only q elements of $\mathbb{F}_{q}[x] /(f(x))$ are constants - these correspond to

$$
\alpha \longleftrightarrow \longrightarrow \underline{(\alpha, \alpha)} \in \underline{\mathbb{F}_{q}[x] /\left(f_{1}(x)\right)} \times \underline{\mathbb{F}_{q}[x] /\left(f_{2}(x)\right)}
$$

- So all we need is to take $\alpha_{1} \neq \alpha_{2}$

$$
\left(\alpha_{1}, \alpha_{2}\right) \longleftrightarrow g(x)^{b}
$$

Constructing $g(x)$

- Lemma: the space of all polynomials $g(x)$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

is a linear space

Constructing $g(x)$

$$
q=p^{m}
$$

- Lemma: the space of all polynomials $g(x)$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

is a linear space

- Proof

$$
\left(g_{1}(x)+g_{2}(x)\right)^{q}=g_{1}(x)^{q}+g_{2}(x)^{q} \equiv g_{1}(x)+g_{2}(x) \bmod f(x)
$$

11

$$
g_{1}(x)^{q}+\underbrace{\left.\sum_{i=1}^{p-1} \frac{p(q)}{\frac{p}{i}} \boldsymbol{i}\right) \cdot g_{1}^{q-i} z_{2}^{i}}_{=0 \text { ore } \mathbb{F}_{z}}+g_{2}(x)^{q}
$$

Constructing $g(x)$

- Lemma: the space of all polynomials $g(x)$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

is a linear space

- Proof

$$
\left(g_{1}(x)+g_{2}(x)\right)^{q}=g_{1}(x)^{q}+g_{2}(x)^{q} \equiv g_{1}(x)+g_{2}(x) \bmod f(x)
$$

- Since we have a linear space, we might as well construct a basis for this linear space. If $g(x)=\underline{g_{0}}+\underline{g_{1}} x+\cdots+\underline{g_{\ell}} x^{\ell}$ then

$$
g(x)^{q}=g\left(x^{q}\right)=g_{0}+g_{1} x^{q}+\cdots+g_{\ell} x^{\ell q}
$$

Constructing $g(x)$

- Lemma: the space of all polynomials $g(x)$ such that

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

is a linear space

- Proof

$$
\left(g_{1}(x)+g_{2}(x)\right)^{q}=g_{1}(x)^{q}+g_{2}(x)^{q} \equiv g_{1}(x)+g_{2}(x) \bmod f(x)
$$

- Since we have a linear space, we might as well construct a basis for this linear space. If $g(x)=g_{0}+g_{1} x+\cdots+g_{\ell} x^{\ell}$ then

$$
g(x)^{q}=g\left(x^{q}\right)=g_{0}+g_{1} x^{q}+\cdots+g_{\ell} x^{\ell q}
$$

- Find coefficients $\underline{\beta_{i j}}$ such that

$$
x^{i q} \equiv \underline{\beta_{i 0}}+\underline{\beta_{i 1}} x+\cdots+\underline{\beta_{i(d-1)}} x^{d-1}
$$

$x^{i 9} \bmod f(x)$

Constructing $g(x)$

- Lemma: the space of all polynomials $g(x)$ such that

$$
\underline{g(x)^{q} \equiv g(x) \bmod f(x)}
$$

is a linear space

- Proof

$$
\left(g_{1}(x)+g_{2}(x)\right)^{q}=g_{1}(x)^{q}+g_{2}(x)^{q} \equiv g_{1}(x)+g_{2}(x) \bmod f(x)
$$

- Since we have a linear space, we might as well construct a basis for this linear space. If $g(x)=g_{0}+g_{1} x+\cdots+g_{\ell} x^{\ell}$ then

$$
g(x)^{q}=g\left(x^{q}\right)=g_{0}+g_{1} x^{q}+\cdots+g_{\ell} x^{\ell q}
$$

- Find coefficients $\beta_{i j}$ such that

$$
x^{i q} \equiv \beta_{i 0}+\beta_{i 1} x+\cdots+\beta_{i(d-1)} x^{d-1}
$$

- Solve linear system:
$g\left(x^{\boldsymbol{d}}\right)=g(x)^{q}=\sum_{i=1}^{\ell} g_{i} \cdot\left(\sum_{\sum_{j=0}^{d-1} \beta_{i j} x^{j}}\right)=\sum_{i=0}^{\ell} g_{i} x^{i}=g(x)$

$$
\begin{aligned}
& \text { Constructing g(x)-Example } \quad \mathbb{Z}_{5}[x] \\
& \begin{aligned}
& f(x)=\left(x^{2}+x+1\right)\left(x^{2}-2\right) \quad q=5 \\
&= x^{4}+x^{3}-x^{2}-2 x-2 \\
& g(x)=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3} \\
& g\left(x^{5}\right)=g_{0}+g_{1} x^{5} \quad(\alpha x+\beta)^{5} \equiv(\alpha x+\beta) \bmod \\
& \quad \alpha=0 \quad \beta \in \pi_{5} \\
& x^{5}=x^{5}-x f=-x^{4}+x^{3}+2 x+2 \\
& g_{0}+g_{1}\left(-x^{4}+x^{3}+2 x+2\right) \equiv g_{0}+g_{1} x \\
& \Leftrightarrow\left(2 g_{1}\right)+g_{1} x+g_{1} x^{3}-g_{1} x^{4}=0 \\
& \Leftrightarrow g_{1}=0
\end{aligned}
\end{aligned}
$$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$
(3) Compute a $g(x) \in \mathbb{F}_{q}[x]$ such that $0<\operatorname{deg}(g)<d$ and

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$
(3) Compute a $g(x) \in \mathbb{F}_{q}[x]$ such that $0<\operatorname{deg}(g)<d$ and

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

(3) For all $\alpha \in \mathbb{F}_{q}$, compute

$$
r_{\alpha}(x):=\operatorname{gcd}(g(x)-\alpha, f(x))
$$

for some $\alpha \in \mathbb{F}_{q} \operatorname{gcd}(g(x)-\alpha, f(x)) \neq 1$

Berlekamp's Factoring Algorithm (1967)

- Input: polynomial $f \in \mathbb{F}_{q}[x]$
- Output: non-trivial factor of $f(x)$
- Algorithm:
(1) Get square-free part of $f(x)$ by computing $\frac{f}{\operatorname{gcd}\left(f, f^{\prime}\right)}$
(2) If

$$
h_{d}(x):=\prod_{\operatorname{deg}\left(f_{i}\right)=d} f_{i}(x)
$$

obtain $h_{d}(x)$ for each $1 \leq d \leq \operatorname{deg}(f)$ by taking $\operatorname{gcd}\left(f(x), x^{q^{d}}-x\right)$
(3) Compute a $g(x) \in \mathbb{F}_{q}[x]$ such that $0<\operatorname{deg}(g)<d$ and

$$
g(x)^{q} \equiv g(x) \bmod f(x)
$$

(c) For all $\alpha \in \mathbb{F}_{q}$, compute

$$
r_{\alpha}(x):=\operatorname{gcd}(g(x)-\alpha, f(x))
$$

(0) If $r_{\alpha}(x) \neq 1$, return $r_{\alpha}(x)$.

$$
\begin{aligned}
& \mathbb{Z}_{5}[x] \\
& f(x)=\left(x^{2}+x+1\right)^{2}\left(x^{2}-2\right)^{2} \\
& \operatorname{gcd}\left(f, f^{\prime}\right)=\left(x^{2}+x+1\right)\left(x^{2}-2\right) \\
& f:=f / \text { zetfort } s q u \text { on }- \text { free } \\
& f=\left(x^{2}+x+1\right)\left(x^{2}-2\right) \\
& h_{1}=\operatorname{gcol}\left(f_{1} x^{5}-x\right)=1 \\
& h_{2}=\operatorname{gcd}\left(\rho, x^{s^{2}}-x\right)=f \\
& \rightarrow f \text { has only des } 2 \text { irveluribith fectors }
\end{aligned}
$$

$$
f(x)=\left(x^{2}+x+1\right)\left(x^{2}-2\right)
$$

pich random polynomial

$$
\begin{aligned}
& T(x) \quad 2<\operatorname{deg}(T)<4 \\
& T(x)=x^{3}+3 x^{2}+x+1
\end{aligned}
$$

compuk $T(x)^{\frac{5^{2}-1}{2}}-1=T(x)^{12}-1$
$\bmod f(x) \rightarrow g(x)$
$\operatorname{gcd}\left(f(x) \underset{T(x)^{12}-1}{(g(x)) \neq 1}\right.$

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Finite Fields and Field Extensions

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly

Finite Fields and Field Extensions

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_{q}[x]$
(1) For every $q=p^{k}$ and every integer $d>0$, there is irreducible polynomial of degree d in $\mathbb{F}_{q}[x]$
(2) The probability of monic polynomial of degree d to be irreducible is equal to $1 / d$

Finite Fields and Field Extensions

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_{q}[x]$
(1) For every $q=p^{k}$ and every integer $d>0$, there is irreducible polynomial of degree d in $\mathbb{F}_{q}[x]$
(2) The probability of monic polynomial of degree d to be irreducible is equal to $1 / d$
- Which irreducible polynomials divide $x^{q^{d}}-x$

Finite Fields and Field Extensions

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_{q}[x]$
(1) For every $q=p^{k}$ and every integer $d>0$, there is irreducible polynomial of degree d in $\mathbb{F}_{q}[x]$
(2) The probability of monic polynomial of degree d to be irreducible is equal to $1 / d$
- Which irreducible polynomials divide $x^{q^{d}}-x$
- For that, we need properties of finite fields and field extensions

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?
- Let $f(x)=x^{2}+1$ over $\mathbb{Z}_{3}[x]$. Let's prove that this is irreducible polynomial:

$$
f(0)=1, f(1)=2, f(2)=2
$$

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?
- Let $f(x)=x^{2}+1$ over $\mathbb{Z}_{3}[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring $\left(\mathbb{Z}_{3}[x] /(f(x))\right.$. This has only 9 elements! Moreover, it is a field!

$$
\begin{aligned}
& \alpha x+\beta \text { in } \mathbb{T} L_{3}[x] /(f(x))_{\text {inverse }}^{\text {hod }} s(x) \\
& \Leftrightarrow \Delta(\alpha x+\beta) \equiv 1 \bmod f(x) \quad \text { birueda } \\
& \Leftrightarrow \Delta(\alpha x+\beta)=1+f(\lambda) \cdot t(\lambda) \\
& \begin{array}{l}
s(\alpha x+\beta)=1+f(\lambda) \cdot t(\lambda) \\
s(x) \cdot(\alpha x+\beta)-f(x) t(x)=1 \Leftrightarrow
\end{array} \\
& \Leftrightarrow s(x) \cdot(\alpha x+\beta)-f(x) t(x)=1 \Leftrightarrow g(\alpha(\alpha x+\beta, 1)=1 \\
& \text { bic }
\end{aligned}
$$

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?
- Let $f(x)=x^{2}+1$ over $\mathbb{Z}_{3}[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring $\mathbb{Z}_{3}[x] /(f(x))$. This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^{k} elements for some prime p
- The characteristic of a field \mathbb{F} is the minimum positive element $n \in \mathbb{N}$ such that $n \cdot 1=0$ over \mathbb{F} (if no such n exists, we say \mathbb{F} has characteristic zero)
$\operatorname{char}(\mathbb{Q})=0$
$\operatorname{char}\left(F_{P}\right)=P$
$\operatorname{char}\left(\mathbb{Z} L_{3}\right)=3$
$\operatorname{char}\left(\mathbb{F q}_{q}\right)=3$

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?
- Let $f(x)=x^{2}+1$ over $\mathbb{Z}_{3}[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring $\mathbb{Z}_{3}[x] /(f(x))$. This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^{k} elements for some prime p
- The characteristic of a field \mathbb{F} is the minimum positive element $n \in \mathbb{N}$ such that $n \cdot 1=0$ over \mathbb{F} (if no such n exists, we say \mathbb{F} has characteristic zero)
- If \mathbb{K} is a field with subfield $\mathbb{F} \subset \mathbb{K}$, we say that \mathbb{K} is a field extension of \mathbb{F} and we can see \mathbb{K} as a vector space over \mathbb{F}

Field Extensions

- We know that \mathbb{Z}_{3} is a field. How do we know that there exists field with $9=3^{2}$ elements? Can we construct one?
- Let $f(x)=x^{2}+1$ over $\mathbb{Z}_{3}[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring $\mathbb{Z}_{3}[x] /(f(x))$. This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^{k} elements for some prime p
- The characteristic of a field \mathbb{F} is the minimum positive element $n \in \mathbb{N}$ such that $n \cdot 1=0$ over \mathbb{F} (if no such n exists, we say \mathbb{F} has characteristic zero)
- If \mathbb{K} is a field with subfield $\mathbb{F} \subset \mathbb{K}$, we say that \mathbb{K} is a field extension of \mathbb{F} and we can see \mathbb{K} as a vector space over \mathbb{F}
- Example: $\mathbb{K}=\mathbb{F}_{9}$ and $\mathbb{F}=\mathbb{F}_{3}$

$$
a x+b \leftrightarrow(a, b)
$$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}

$$
\begin{gathered}
\mathbb{Z}_{3} \quad \rho(x)=x^{2}+1 \\
\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /(f(x)) \quad \mathbb{F}_{q}[y] \\
y^{2}+1=(y-x)(y+x) \\
=y^{2}-x^{2}=y^{2}+1
\end{gathered}
$$

\mathbb{F}_{q} splits $x^{2}+1$.

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
(1) If $f(x)$ does not split over \mathbb{F}, f must have irreducible factor of degree >1. Call it $f_{1}(x)$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
(1) If $f(x)$ does not split over \mathbb{F}, f must have irreducible factor of degree >1. Call it $f_{1}(x)$
(2) Let $\mathbb{K}_{1}=\mathbb{F}[x] /\left(f_{1}(x)\right)$. The element $x \in \mathbb{K}_{1}$ is a root of $f_{1}(y) \in \mathbb{K}_{1}[y]$. Thus, $f_{1}(y)$ factors over $\mathbb{K}_{1}[y]$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
(1) If $f(x)$ does not split over \mathbb{F}, f must have irreducible factor of degree >1. Call it $f_{1}(x)$
(2) Let $\mathbb{K}_{1}=\mathbb{F}[x] /\left(f_{1}(x)\right)$. The element $x \in \mathbb{K}_{1}$ is a root of $f_{1}(y) \in \mathbb{K}_{1}[y]$. Thus, $f_{1}(y)$ factors over $\mathbb{K}_{1}[y]$
(3) In particular, f also has extra linear factor over \mathbb{K}_{1}

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
(1) If $f(x)$ does not split over \mathbb{F}, f must have irreducible factor of degree >1. Call it $f_{1}(x)$
(2) Let $\mathbb{K}_{1}=\mathbb{F}[x] /\left(f_{1}(x)\right)$. The element $x \in \mathbb{K}_{1}$ is a root of $f_{1}(y) \in \mathbb{K}_{1}[y]$. Thus, $f_{1}(y)$ factors over $\mathbb{K}_{1}[y]$
(3) In particular, f also has extra linear factor over \mathbb{K}_{1}
(1) Can iterate this construction until f only has linear factors

$$
\operatorname{deg}(f)=d \rightarrow \& \begin{aligned}
& \text { hes } \leq d \\
& \text { factors }
\end{aligned}
$$

Splitting Fields

- Given a polynomial $f(x) \in \mathbb{F}[x]$ a field extension \mathbb{K} of \mathbb{F} is a splitting field of $f(x)$ if $f(x)$ splits into linear factors over \mathbb{K}
- Example: $\mathbb{F}_{9}=\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$ is a splitting field of $x^{2}+1$
- Roots are x and $-x$
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
(1) If $f(x)$ does not split over \mathbb{F}, f must have irreducible factor of degree >1. Call it $f_{1}(x)$
(2) Let $\mathbb{K}_{1}=\mathbb{F}[x] /\left(f_{1}(x)\right)$. The element $x \in \mathbb{K}_{1}$ is a root of $f_{1}(y) \in \mathbb{K}_{1}[y]$. Thus, $f_{1}(y)$ factors over $\mathbb{K}_{1}[y]$
(3) In particular, f also has extra linear factor over \mathbb{K}_{1}
(1) Can iterate this construction until f only has linear factors
- For a polynomial $f(x) \in \mathbb{F}[x]$, we usually call a field \mathbb{K} the splitting field of f if \mathbb{K} is the "smallest" field that fully splits f into linear factors

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$
- Let

$$
S=\left\{\alpha \in \mathbb{K} \mid \underline{\alpha^{q^{d}}-\alpha}=0\right\}
$$

we claim that S is our desired extension field.

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$
- Let

$$
S=\left\{\alpha \in \mathbb{K} \mid \alpha^{q^{d}}-\alpha=0\right\}
$$

we claim that S is our desired extension field.

$$
\begin{aligned}
(\alpha+\beta)^{q^{d}} & =\alpha^{q^{d}}+\beta^{q^{d}}+\beta \\
& =\alpha^{q^{d}}+\beta^{q^{d}}=\alpha+\beta
\end{aligned}
$$

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$
- Let

$$
S=\left\{\alpha \in \mathbb{K} \mid \alpha^{q^{d}}-\alpha=0\right\}
$$

we claim that S is our desired extension field.

- S is a field
- $|S|=q^{d}$
(1) Note that $x^{q^{d}}-x$ has no repeated root $\left(\right.$ since $\left.\operatorname{gcd}\left(f, f^{\prime}\right)=1\right)$

$$
\frac{d}{d x}\left(x^{q^{d}}-x\right)=\frac{q^{d} \cdot x^{g^{d}-1}-1=-1}{0}
$$

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$
- Let

$$
S=\left\{\alpha \in \mathbb{K} \mid \alpha^{q^{d}}-\alpha=0\right\}
$$

we claim that S is our desired extension field.

- S is a field
- $|S|=q^{d}$
(1) Note that $x^{q^{d}}-x$ has no repeated root $\left(\right.$ since $\left.\operatorname{gcd}\left(f, f^{\prime}\right)=1\right)$
(2) S can have at most q^{d} roots over \mathbb{K}, since it has degree q^{d}

Existence of Extension Fields of size q^{d} Extending \mathbb{F}_{q}

- We will use the splitting field of $f(x)=x^{q^{d}}-x$ over \mathbb{F}_{q} to construct an extension field of \mathbb{F}_{q} of size q^{d}
- Let \mathbb{K} be the splitting field of $x^{q^{d}}-x$
- Let

$$
S=\left\{\alpha \in \mathbb{K} \mid \alpha^{q^{d}}-\alpha=0\right\}
$$

we claim that S is our desired extension field.

- S is a field
- $|S|=q^{d}$
(1) Note that $x^{q^{d}}-x$ has no repeated root $\left(\right.$ since $\left.\operatorname{gcd}\left(f, f^{\prime}\right)=1\right)$
(2) S can have at most q^{d} roots over \mathbb{K}, since it has degree q^{d}
(3) Since we know that all roots of $f(x)$ are in \mathbb{K}, we have that $|S|=q^{d}$

Number of Monic Irreducible Polynomials of Degree d

- There are at least $\frac{q^{d}-1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_{q}

Number of Monic Irreducible Polynomials of Degree d

- There are at least $\frac{q^{d}-1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_{q}
- Take a field extension of \mathbb{F}_{q} with exactly q^{d} elements. Call it \mathbb{K}

Number of Monic Irreducible Polynomials of Degree d $\sum_{i=0}^{d-1} \beta_{i} \alpha^{i}=0$

$$
\underbrace{1, \alpha, \alpha^{2}, \underbrace{3}, \cdots, \alpha^{\alpha-1}}
$$

if they are Lincolly independent them $e_{i}=\sum^{d-1} \gamma_{i j} \alpha^{j}$

- There are at least $\frac{q^{d}-1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_{q}
- Take a field extension of \mathbb{F}_{q} with exactly q^{d} elements. Call it \mathbb{K}
- We can consider the smallest degree polynomial in $\left.\left.\begin{array}{l}\text { 明 }\end{array}\right] x\right]$ that vanishes

Number of Monic Irreducible Polynomials of Degree d $|\underline{K}|=q^{d} \quad \alpha \longleftrightarrow\left(s, a_{d-2}, \ldots, a_{0}\right)=p_{\alpha} \quad d-1$ ρ_{α} has at most d roots over H

- There are at least $\frac{q^{d}-1}{d}$ nonic irreducible polynomials of degree $\leq d$ over \mathbb{F}_{q}
- Take a field extension of \mathbb{F}_{q} with exactly q^{d} elements. Call it \mathbb{K}
- We can consider the smallest degree polynomial in 谳 x] that vanishes on $\alpha \in \mathbb{K}$
- Has degree d since \mathbb{K} is a vector space of dimension d over \mathbb{F} smallest deus poly nomial $f \in \mathbb{F}_{0}[x]$ hos dey $<d$ and it is irreducible suppose mot:

$$
f(\alpha)=0 \Longleftrightarrow g(\alpha)=0 \text { or } h(\alpha)=0
$$

Properties of $x^{q^{d}}-x$
Lemme: $f(x)$ irreducible $\mathbb{F}_{q}[x]$ $f(x) \mid x^{q^{d}}-x$ iff $\operatorname{deg}(f) \mid d$.

Lemma: $x^{q^{d}}-x=\prod_{\substack{f i n u d u d x h i \\ \text { deg }(f) / d}} f(x)$
Madhu's notes.

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)
- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned

- Berlekamp's Factoring Algorithm
- Properties of irreducible polynomials over finite fields
(1) Field Extensions
(2) Splitting fields
(3) Irreducible polynomials of degree d
(4) Properties of $x^{q^{d}}-x$ and how they help us in previous tasks

Acknowledgement

Based entirely on

- Lecture 6 from Madhu's notes http://people.csail.mit.edu/madhu/FT98/

