Lecture 9: Univariate Polynomial Factoring over Finite Fields

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

February 8, 2021

Overview

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)

- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Square roots over \mathbb{F}_p $\chi^2 - \alpha = (k - \kappa)(\kappa + \kappa)$

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$\alpha^{(p-1)/2} \equiv 1 \quad \text{and} \quad (-\alpha)^{(p-1)/2} \equiv -1$$

$$\int_{\mathbf{r}} (\mathbf{x}) = \mathbf{x}^{\frac{p-1}{2}} - \mathbf{i} \qquad \qquad \int_{\mathbf{r}} (\mathbf{x}) = \mathbf{x}^{\frac{p-1}{2}} \mathbf{i} \mathbf{i}$$

イロト イヨト イミト イミト ニモー のくで

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$lpha^{(p-1)/2}\equiv 1$$
 and $(-lpha)^{(p-1)/2}\equiv -1$

• If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 - a$ and thus we are good!

100 E (E) (E) (E) (E) (D)

• How do we make this work in general?

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$lpha^{(p-1)/2}\equiv 1$$
 and $(-lpha)^{(p-1)/2}\equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x - d)^2 - c^2 a$$

100 E (E) (E) (E) (E) (D)

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$\alpha^{(p-1)/2} \equiv 1$$
 and $(-\alpha)^{(p-1)/2} \equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x - d)^2 - c^2 a$$

• $g(x) = (x - \alpha)(x + \alpha)$ if, and only if,

$$h(x) = (x - d - c\alpha)(x - d + c\alpha)$$

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$lpha^{(p-1)/2}\equiv 1$$
 and $(-lpha)^{(p-1)/2}\equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x - d)^2 - c^2 a$$

• $g(x) = (x - \alpha)(x + \alpha)$ if, and only if,

$$h(x) = (x - d - c\alpha)(x - d + c\alpha)$$

• So, if g factors, we can try to find "good" (c, d) so that $f_1(x), f_2(x)$ "split" the factors of h

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

- What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?
- If $a_1 \neq a_2$ and $b_1 \neq b_2$ over \mathbb{F}_p :

$$\Pr_{c,d}[c \cdot a_1 + d = b_1 \text{ and } c \cdot a_2 + d = b_2] = \frac{1}{p^2}$$

A D > A B > A B > A B > B 900

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

• If
$$a_1 \neq a_2$$
 and $b_1 \neq b_2$ over \mathbb{F}_p :

$$\Pr_{c,d}[c \cdot a_1 + d = b_1 \text{ and } c \cdot a_2 + d = b_2] = \frac{1}{p^2}$$

On the other hand:

$$\Pr_{b_1}[b_1 \text{ is root of } x^{(p-1)/2}] = \frac{1}{2}$$
$$\Pr_{b_2}[b_2 \text{ is not root of } x^{(p-1)/2}] = \frac{1}{2}$$

A D > A B > A B > A B > B 900

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

• If
$$a_1 \neq a_2$$
 and $b_1 \neq b_2$ over \mathbb{F}_p :

$$\Pr_{c,d}[c \cdot a_1 + d = b_1 \text{ and } c \cdot a_2 + d = b_2] = \frac{1}{p^2}$$

On the other hand:

$$\Pr_{b_1}[b_1 \text{ is root of } x^{(p-1)/2}] = \frac{1}{2}$$

$$\Pr_{b_2}[b_2 \text{ is not root of } x^{(p-1)/2}] = \frac{1}{2}$$

 Thus, with probability ≈ 1/2, uniform random choice of c, d gives us that f₁(x) splits h(x)

• Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

- 2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$
- Sompute $r(x) = \gcd(h(x), \ell(x))$

- **1** Pick random $c, d \in \mathbb{F}_p$ and compute h(x)
- 2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$
- Sompute $r(x) = \gcd(h(x), \ell(x))$
- If r(x) = 1 or r(x) = h(x), go back to step 1

A D > A B > A B > A B > B 900

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

3 Compute
$$\ell(x) \equiv f_1(x) \mod h(x)$$

- Sompute $r(x) = \gcd(h(x), \ell(x))$
- If r(x) = 1 or r(x) = h(x), go back to step 1

A D > A B > A B > A B > B 900

• Otherwise we found a root of h(x)

• Input: polynomial $f \in \mathbb{F}_q[x]$ with (unknown) factorization

$$f(x) = f_1(x)^{e_1} \cdots f_k(x)^{e_k}$$

イロト イヨト イミト イミト ニモー のくで

• **Output:** irreducible factors $f_1(x), \ldots, f_k(x)$

• Input: polynomial $f \in \mathbb{F}_q[x]$ with (unknown) factorization

$$f(x) = f_1(x)^{e_1} \cdots f_k(x)^{e_k}$$

(中)(書)(書)(書)(書)(書)の(で)

- **Output:** irreducible factors $f_1(x), \ldots, f_k(x)$
- Algorithm:

• Get square-free part of f(x) by computing $\frac{f}{\gcd(f, f')}$

• Input: polynomial $f \in \mathbb{F}_q[x]$ with (unknown) factorization

$$f(x) = f_1(x)^{e_1} \cdots f_k(x)^{e_k}$$

- **Output:** irreducible factors $f_1(x), \ldots, f_k(x)$
- Algorithm:

Get square-free part of f(x) by computing $\frac{f}{\gcd(f, f')}$ If $\underbrace{h_d(x) := \prod_{\deg(f_i)=d} f_i(x)}_{\deg(f_i)=d} f_i(x)
 \underbrace{f_i(x)}_{\deg g}
 \underbrace{f_i(x)}_{\operatorname{deg} g}
 \underbrace{f_i(x)}$

• Input: polynomial $f \in \mathbb{F}_q[x]$ with (unknown) factorization

$$f(x) = f_1(x)^{e_1} \cdots f_k(x)^{e_k}$$

- **Output:** irreducible factors $f_1(x), \ldots, f_k(x)$
- Algorithm:

Get square-free part of f(x) by computing f/gcd(f, f')
 If

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$ **③** Take a random $T(x) \in \mathbb{F}_q[x]$ such that $d < \deg(T) < 2 \cdot d$ and output

$$a(x) := \gcd(h_d, T(x)^{(q^d-1)/2} - 1)$$

if it is not equal to $h_d(x)$

ヘロト 人間 トイヨト イヨト ヨー のべで

• Input: polynomial $f \in \mathbb{F}_q[x]$ with (unknown) factorization

$$f(x) = f_1(x)^{e_1} \cdots f_k(x)^{e_k}$$

- **Output:** irreducible factors $f_1(x), \ldots, f_k(x)$
- Algorithm:

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$ **③** Take a random $T(x) \in \mathbb{F}_q[x]$ such that $d < \deg(T) < 2 \cdot d$ and output

$$a(x) := \gcd(h_d, T(x)^{(q^d-1)/2} - 1)$$

if it is not equal to $h_d(x)$

Recurse on $h_d(x)/a(x)$

イロト (語) (注) (注) (注) モー もくろく

• Review from last lecture: Cantor-Zassenhaus

• Today's algorithm: Berlekamp's algorithm (1967)

くロン (語)とく ほどく ほう 一部一

200

- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_q where $q = p^m$ for some prime p
- As in the previous lecture, we can assume that input polynomial f(x) is square-free and its factors have same degree

100 E (E) (E) (E) (E) (D)

• For simplicity, let's just stick to the case $f(x) = f_1(x) \cdot f_2(x)$ both irreducible factors f_1, f_2 having same degree

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_q where $q = p^m$ for some prime p
- As in the previous lecture, we can assume that input polynomial f(x) is square-free and its factors have same degree
- For simplicity, let's just stick to the case $f(x) = f_1(x) \cdot f_2(x)$ both irreducible factors f_1, f_2 having same degree
- Key idea: find a polynomial $g(x) \in \mathbb{F}_q[x]$ such that

 $g(x)^{q} \equiv g(x) \mod f(x) \text{ and } \underbrace{0 < \deg(g) < \deg(f)}_{Q = Q}$ $(e^{Q} = Q = Q \text{ in } F_{Q} \text{ for any } x \in F_{Q}$ $(e^{Q} = Q = Q)$ $(e^{Q} = Q = Q \text{ for } Q = f$

Berlekamp's Algorithm: Main Idea

- We will be working over \mathbb{F}_q where $q = p^m$ for some prime p
- As in the previous lecture, we can assume that input polynomial f(x) is square-free and its factors have same degree
- For simplicity, let's just stick to the case $f(x) = f_1(x) \cdot f_2(x)$ both irreducible factors f_1, f_2 having same degree
- Key idea: find a polynomial $g(x) \in \mathbb{F}_q[x]$ such that

 $g(x)^q \equiv g(x) \mod f(x)$ and $0 < \deg(g) < \deg(f)$

A D > A B > A B > A B > B 900

- Questions:
 - Why is it useful?
 - Ooes such a polynomial always exist?
 - If is exists, how do we find it?

• Let us look at $z^q - z$ once again:

$$z^{q} - z = \prod_{\alpha \in \mathbb{F}_{q}} (z - \alpha)$$

(ロ) (語) (注) (注) (注) 注 の(で)

• Let us look at $z^q - z$ once again:

$$z^q - z = \prod_{lpha \in \mathbb{F}_q} (z - lpha)$$

• If $g(x)^q - g(x) \equiv 0 \mod f(x)$, then we know that

$$f(x)$$
 divides $\prod_{\alpha \in \mathbb{F}_q} (g(x) - \alpha) = \Im^{(x)} - \Im^{(x)}$

イロト イヨト イミト イミト ニモー のくで

• Let us look at $z^q - z$ once again:

$$z^{q} - z = \prod_{\alpha \in \mathbb{F}_{q}} (z - \alpha)$$

• If $g(x)^q - g(x) \equiv 0 \mod f(x)$, then we know that

$$f(x)$$
 divides $\prod_{\alpha \in \mathbb{F}_q} (\underline{g(x)} - \alpha)$

イロト イヨト イミト イミト ニモー のくで

• If $0 < \deg(g) < \deg(f)$, then there exists $\alpha \in \mathbb{F}_q$ such that $\gcd(g(x) - \alpha, f(x)) \neq 1$

get a factor of f(x).

• Let us look at $z^q - z$ once again:

$$z^{q} - z = \prod_{\alpha \in \mathbb{F}_{q}} (z - \alpha)$$

• If $g(x)^q - g(x) \equiv 0 \mod f(x)$, then we know that

$$f(x)$$
 divides $\prod_{lpha \in \mathbb{F}_q} (g(x) - lpha)$

• If $0 < \deg(g) < \deg(f)$, then there exists $\alpha \in \mathbb{F}_q$ such that

$$gcd(g(x) - \alpha, f(x)) \neq 1$$

get a factor of f(x).

• Degree condition of g is very important:

- If g(x) was a constant, then $g^q g = 0$
- If $\deg(d) = \deg(f)$, then g(x) = f(x) would satisfy our condition, but that is not useful

• Chinese Remainder Theorem: since $f(x) = f_1(x) \cdot f_2(x)$

 $\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(f_1(x)) \times \mathbb{F}_q[x]/(f_2(x))$

1 D 1 (B 1 (2) (2) (2) (2) (0)

• Chinese Remainder Theorem: since $f(x) = f_1(x) \cdot f_2(x)$

$$\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(f_1(x)) imes \mathbb{F}_q[x]/(f_2(x))$$

• If $g(x) \equiv \alpha_1 \mod f_1(x)$ and $g(x) \equiv \alpha_2 \mod f_2(x)$, where $\alpha_1, \alpha_2 \in \mathbb{F}_q$, then

$$g(x)^{q} - g(x) \equiv \alpha_{i}^{q} - \alpha_{i} \equiv 0 \mod f_{i}(x) \quad i \in \{1, 2\}$$

A D > A B > A B > A B > B 900

so $g(x)^q - g(x) \equiv 0 \mod f(x)$

• Chinese Remainder Theorem: since $f(x) = f_1(x) \cdot f_2(x)$

$$\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(f_1(x)) \times \mathbb{F}_q[x]/(f_2(x))$$

• If $g(x) \equiv \alpha_1 \mod f_1(x)$ and $g(x) \equiv \alpha_2 \mod f_2(x)$, where $\alpha_1, \alpha_2 \in \mathbb{F}_q$, then

$$g(x)^q - g(x) \equiv \alpha_i^q - \alpha_i \equiv 0 \mod f_i(x)$$

so $g(x)^q - g(x) \equiv 0 \mod f(x)$

• CRT tells us that there is unique $g(x) \in \mathbb{F}_q[x]/(f(x))$ such that

$$g(x) \equiv \alpha_i \bmod f_i(x)$$

100 E (E) (E) (E) (E) (D)

• Chinese Remainder Theorem: since $f(x) = f_1(x) \cdot f_2(x)$

$$\mathbb{F}_q[x]/(f(x)) \simeq \mathbb{F}_q[x]/(f_1(x)) \times \mathbb{F}_q[x]/(f_2(x))$$

• If $g(x) \equiv \alpha_1 \mod f_1(x)$ and $g(x) \equiv \alpha_2 \mod f_2(x)$, where $\alpha_1, \alpha_2 \in \mathbb{F}_q$, then

$$g(x)^q - g(x) \equiv \alpha_i^q - \alpha_i \equiv 0 \mod f_i(x)$$

so $g(x)^q - g(x) \equiv 0 \mod f(x)$

• CRT tells us that there is unique $g(x) \in \mathbb{F}_q[x]/(f(x))$ such that

$$g(x) \equiv \alpha_i \bmod f_i(x)$$

- Need to show that we have a non-constant g(x) satisfying it!
 - Only q elements of $\mathbb{F}_q[x]/(f(x))$ are constants these correspond to

 $(\alpha, \alpha) \in \mathbb{F}_q[x]/(f_1(x)) \times \mathbb{F}_q[x]/(f_2(x))$

• So all we need is to take $\alpha_1 \neq \alpha_2$ (\checkmark , \checkmark) \checkmark 3(2)

Constructing g(x)

• Lemma: the space of all polynomials g(x) such that

$$g(x)^q \equiv g(x) \mod f(x)$$

イロト イヨト イミト イミト ニモー のくで

is a linear space

Constructing g(x)

• Lemma: the space of all polynomials g(x) such that

$$g(x)^q \equiv g(x) \mod f(x)$$

q = pr

is a *linear space*

Proof

$$(g_{1}(x) + g_{2}(x))^{q} = g_{1}(x)^{q} + g_{2}(x)^{q} \equiv g_{1}(x) + g_{2}(x) \mod f(x)$$

(1)

(1)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(1)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(1)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

(x)^q + P + g_{2}(x)^q = g_{1}(x) + g_{2}(x) \mod f(x)

Constructing g(x)

• Lemma: the space of all polynomials g(x) such that

$$g(x)^q \equiv g(x) \mod f(x)$$

is a linear space

Proof

$$(g_1(x) + g_2(x))^q = g_1(x)^q + g_2(x)^q \equiv g_1(x) + g_2(x) \mod f(x)$$

A D > A B > A B > A B > B 900

Since we have a linear space, we might as well construct a basis for this linear space. If g(x) = g₀ + g₁x + ··· + g_ℓx^ℓ then g(x)^q = g(x^q) = g₀ + g₁x^q + ··· + g_ℓx^{ℓq}
Constructing g(x)

• Lemma: the space of all polynomials g(x) such that

$$g(x)^q \equiv g(x) \mod f(x)$$

is a linear space

Proof

$$(g_1(x) + g_2(x))^q = g_1(x)^q + g_2(x)^q \equiv g_1(x) + g_2(x) \mod f(x)$$

• Since we have a linear space, we might as well construct a basis for this linear space. If $g(x) = g_0 + g_1 x + \cdots + g_\ell x^\ell$ then

$$g(x)^q = g(x^q) = g_0 + g_1 x^q + \cdots + g_\ell x^{\ell q}$$

• Find coefficients <u>*B_{ii}*</u> such that

$$x^{iq} \equiv \underline{\beta}_{i0} + \underline{\beta}_{i1}x + \dots + \underline{\beta}_{i(d-1)}x^{d-1}$$

(D) (B) (E) (E) (E) (E) (O)

x^{iq} mod f(x)

Constructing g(x)

• Lemma: the space of all polynomials g(x) such that

$$g(x)^q \equiv g(x) \mod f(x)$$

is a *linear space*

Proof

$$(g_1(x) + g_2(x))^q = g_1(x)^q + g_2(x)^q \equiv g_1(x) + g_2(x) \mod f(x)$$

• Since we have a linear space, we might as well construct a basis for this linear space. If $g(x) = g_0 + g_1 x + \cdots + g_\ell x^\ell$ then

$$g(x)^q = g(x^q) = g_0 + g_1 x^q + \cdots + g_\ell x^{\ell q}$$

• Find coefficients β_{ij} such that

$$x^{iq} \equiv \beta_{i0} + \beta_{i1}x + \dots + \beta_{i(d-1)}x^{d-1}$$

Solve linear system:

$$g(x^{i}) = g(x)^{q} = \sum_{i=1}^{\ell} g_{i} \cdot \left(\sum_{j=0}^{d-1} \underline{\beta}_{ij} x^{j} \right) = \sum_{i=0}^{\ell} g_{i} x^{i} = g(x)$$

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)
- Algorithm:

Get square-free part of f(x) by computing $\frac{f}{\gcd(f, f')}$

(D) (B) (E) (E) (E) (E) (O)

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)
- Algorithm:

Get square-free part of f(x) by computing f/gcd(f, f')
 If

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)
- Algorithm:

• Get square-free part of f(x) by computing $\frac{f}{\operatorname{gcd}(f, f')}$

(a) If $h_d(x) := \prod_{i=1}^{d} f_i(x)$

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$ Sompute a $g(x) \in \mathbb{F}_q[x]$ such that $0 < \deg(g) \le d$ and

 $g(x)^q \equiv g(x) \mod f(x)$

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)
- Algorithm:

Get square-free part of f(x) by computing f/(gcd(f, f'))
 If

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$ Sompute a $g(x) \in \mathbb{F}_q[x]$ such that $0 < \deg(g) < d$ and

$$g(x)^q \equiv g(x) \mod f(x)$$

• For all $\alpha \in \mathbb{F}_q$, compute

$$r_{\alpha}(x) := \gcd(g(x) - \alpha, f(x))$$

- Input: polynomial $f \in \mathbb{F}_q[x]$
- **Output:** non-trivial factor of f(x)
- Algorithm:

Get square-free part of f(x) by computing f/(gcd(f, f'))
 If

$$h_d(x) := \prod_{\deg(f_i)=d} f_i(x)$$

obtain $h_d(x)$ for each $1 \le d \le \deg(f)$ by taking $\gcd(f(x), x^{q^d} - x)$ Sompute a $g(x) \in \mathbb{F}_q[x]$ such that $0 < \deg(g) < d$ and

$$g(x)^q \equiv g(x) \mod f(x)$$

④ For all $\alpha \in \mathbb{F}_q$, compute

$$r_{\alpha}(x) := \gcd(g(x) - \alpha, f(x))$$

• If $r_{\alpha}(x) \neq 1$, return $r_{\alpha}(x)$.

イロン イヨン イミン イミン ミモニ のべや

Z-(X) $f(x) = (x^2 + x + 1)^2 (x^2 - 2)^2$ $gcd(l,l') = (k^2 + x + l)(x^2 - 2)$ f! = l'ged(1) square - free $f = (\chi^2 + \chi + I) (\chi^2 - 2)$ $h_{l} = gcol(f_{l} \times^{s} - x) = \bot$ $h_{2} = gcol(f_{l} \times^{s^{2}} - x) = f$ - f has only also 2 includicible factors

$$f(x) = (x^{2}+X+I)(x^{2}-2)$$

$$Pich \ Aandom \ polynomial$$

$$T(x) \ 2 \leq deg(T) \leq 4$$

$$T(x) = x^{3} + 3x^{2} + x + 1$$

$$compuk \ T(x)^{\frac{5^{2}-1}{2}} - 1 = T(x)^{12} - 1$$

$$mod \ f(x) \rightarrow g(x)$$

$$gcd((f(x) + g(x)) \neq 1$$

$$T(x)^{12} - 1$$

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)

지수는 지원에서 지원에 지원이 있는 것이다.

- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

• Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_q[x]$
 - For every q = p^k and every integer d > 0, there is *irreducible* polynomial of degree d in F_q[x]
 - The probability of *monic* polynomial of degree d to be *irreducible* is equal to 1/d

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_q[x]$
 - For every q = p^k and every integer d > 0, there is *irreducible* polynomial of degree d in F_q[x]
 - The probability of *monic* polynomial of degree d to be *irreducible* is equal to 1/d

A D > A B > A B > A B > B 900

• Which irreducible polynomials divide $x^{q^d} - x$

- Now that we saw two algorithms to factor univariate polynomials over finite fields, let's see in more depth properties of polynomials over finite fields that we went over quickly
- Explore irreducible polynomials of degree d over $\mathbb{F}_q[x]$
 - For every q = p^k and every integer d > 0, there is *irreducible* polynomial of degree d in F_q[x]
 - The probability of *monic* polynomial of degree d to be *irreducible* is equal to 1/d

- Which irreducible polynomials divide $x^{q^d} x$
- For that, we need properties of finite fields and field extensions

• We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?

イロト イヨト イミト イミト ニモー のくで

- We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?
- Let $f(x) = x^2 + 1$ over $\mathbb{Z}_3[x]$. Let's prove that this is irreducible polynomial:

$$f(0) = 1$$
, $f(1) = 2$, $f(2) = 2$

イロト イヨト イミト イミト ニモー のくで

- We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?
- Let $f(x) = x^2 + 1$ over $\mathbb{Z}_3[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring $\mathbb{Z}_3[x]/(f(x))$. This has only 9 elements! Moreover, it is a field!

$$\alpha'' + \beta \quad in \quad 7L_{3}[x]/(f(x)) \quad hab \quad J(x)$$

$$(f(x)) \quad hab \quad J(x)$$

$$(x) \quad f(x) \quad f(x) \quad f(x)$$

$$(\alpha' + \beta) = 1 \quad med \quad f(x) \quad f(x) \quad f(x)$$

$$(\alpha' + \beta) = 1 + f(x) \cdot t(x) \quad f(x)$$

$$(\alpha' + \beta) = 1 + f(x) \cdot t(x) \quad f(x)$$

- We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?
- Let $f(x) = x^2 + 1$ over $\mathbb{Z}_3[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring Z₃[x]/(f(x)). This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^k elements for some prime p
- The *characteristic* of a field 𝔽 is the minimum positive element n ∈ 𝔊 such that n · 1 = 0 over 𝔅 (if no such n exists, we say 𝔅 has characteristic zero)

char (Hz)=P

q=p

100 E (E) (E) (E) (E) (D)

$$cher(\mathbb{Q})=0$$

 $char(72_3)=3$
 $char(Fq)=3$

- We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?
- Let $f(x) = x^2 + 1$ over $\mathbb{Z}_3[x]$. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring Z₃[x]/(f(x)). This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^k elements for some prime p
- The *characteristic* of a field 𝔽 is the minimum positive element n ∈ 𝔊 such that n · 1 = 0 over 𝔅 (if no such n exists, we say 𝔅 has characteristic zero)
- If K is a field with subfield F ⊂ K, we say that K is a *field extension* of F and we can see K as a *vector space* over F

100 E (E) (E) (E) (E) (D)

- We know that \mathbb{Z}_3 is a field. How do we know that there exists field with $9 = 3^2$ elements? Can we construct one?
- Let f(x) = x² + 1 over Z₃[x]. Let's prove that this is irreducible polynomial:
- Now, let's look at the ring Z₃[x]/(f(x)). This has only 9 elements! Moreover, it is a field!
- This is how we can construct fields with p^k elements for some prime p
- The *characteristic* of a field 𝔽 is the minimum positive element n ∈ 𝔊 such that n · 1 = 0 over 𝔅 (if no such n exists, we say 𝔅 has characteristic zero)
- If K is a field with subfield F ⊂ K, we say that K is a *field extension* of F and we can see K as a *vector space* over F
- Example: $\mathbb{K} = \mathbb{F}_9$ and $\mathbb{F} = \mathbb{F}_3$

$$ax + b \leftrightarrow (a, b)$$

Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K

 $f(x) = \chi^2 + 1$ The $H_q = Z_3[\times]$ Fa [y] $\mathcal{Y}^{2}+\mathcal{I} = (\mathcal{Y}-\mathbf{x})(\mathcal{Y}+\mathbf{K})$ $= y^{2} - x^{2} = y^{2} + 1$ Fig splits X2+1. A D > A B > A B > A B > B 900

Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K

100 E (E) (E) (E) (E) (D)

• Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1

Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K

100 E (E) (E) (E) (E) (D)

- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and −x

- Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K
- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and -x
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
 - If f(x) does not split over 𝔽, f must have irreducible factor of degree
 > 1. Call it f₁(x)

A D > A B > A B > A B > B 900

- Given a polynomial f(x) ∈ 𝔽[x] a field extension 𝔣 of 𝔽 is a *splitting* field of f(x) if f(x) *splits into linear factors* over 𝗏
- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and −x
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
 - If f(x) does not split over \mathbb{F} , f must have irreducible factor of degree > 1. Call it $f_1(x)$
 - ② Let $\mathbb{K}_1 = \mathbb{F}[x]/(f_1(x))$. The element $x \in \mathbb{K}_1$ is a *root* of $f_1(y) \in \mathbb{K}_1[y]$. Thus, $f_1(y)$ factors over $\mathbb{K}_1[y]$

A D > A B > A B > A B > B 900

- Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K
- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and −x
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
 - If f(x) does not split over \mathbb{F} , f must have irreducible factor of degree > 1. Call it $f_1(x)$
 - ② Let $\mathbb{K}_1 = \mathbb{F}[x]/(f_1(x))$. The element $x \in \mathbb{K}_1$ is a *root* of $f_1(y) \in \mathbb{K}_1[y]$. Thus, $f_1(y)$ factors over $\mathbb{K}_1[y]$

A D > A B > A B > A B > B 900

 ${f 0}$ In particular, f also has extra linear factor over ${\Bbb K}_1$

- Given a polynomial f(x) ∈ 𝔽[x] a field extension 𝔣 of 𝔽 is a splitting field of f(x) if f(x) splits into linear factors over 𝔅
- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and −x
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
 - If f(x) does not split over \mathbb{F} , f must have irreducible factor of degree > 1. Call it $f_1(x)$
 - ② Let $\mathbb{K}_1 = \mathbb{F}[x]/(f_1(x))$. The element $x \in \mathbb{K}_1$ is a *root* of $f_1(y) \in \mathbb{K}_1[y]$. Thus, $f_1(y)$ factors over $\mathbb{K}_1[y]$
 - ${igsidentify}$ In particular, f also has extra linear factor over ${\Bbb K}_1$
 - Can iterate this construction until f only has linear factors

- Given a polynomial f(x) ∈ F[x] a field extension K of F is a splitting field of f(x) if f(x) splits into linear factors over K
- Example: $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ is a splitting field of x^2+1
- Roots are x and -x
- Every polynomial $f(x) \in \mathbb{F}[x]$ has a splitting field.
 - If f(x) does not split over \mathbb{F} , f must have irreducible factor of degree > 1. Call it $f_1(x)$
 - ② Let $\mathbb{K}_1 = \mathbb{F}[x]/(f_1(x))$. The element $x \in \mathbb{K}_1$ is a *root* of $f_1(y) \in \mathbb{K}_1[y]$. Thus, $f_1(y)$ factors over $\mathbb{K}_1[y]$
 - ${igsident}$ In particular, f also has extra linear factor over ${\Bbb K}_1$
 - Can iterate this construction until f only has linear factors
- For a polynomial f(x) ∈ 𝔽[x], we usually call a field 𝕂 the splitting field of f if 𝕂 is the "smallest" field that fully splits f into linear factors

• We will use the splitting field of $f(x) = x^{q^d} - x$ over \mathbb{F}_q to construct an extension field of \mathbb{F}_q of size q^d

A D > A B > A B > A B > B 900

• We will use the splitting field of $f(x) = x^{q^d} - x$ over \mathbb{F}_q to construct an extension field of \mathbb{F}_q of size q^d

A D > A B > A B > A B > B 900

• Let \mathbb{K} be the splitting field of $x^{q^d} - x$

- We will use the splitting field of f(x) = x^{q^d} − x over 𝔽_q to construct an extension field of 𝔽_q of size q^d
- Let \mathbb{K} be the splitting field of $x^{q^d} x$

Let

$$S = \{ \alpha \in \mathbb{K} \mid \alpha^{q^d} - \alpha = 0 \}$$

100 E (E) (E) (E) (E) (D)

we claim that S is our desired extension field.

- We will use the splitting field of f(x) = x^{q^d} − x over 𝔽_q to construct an extension field of 𝔽_q of size q^d
- Let \mathbb{K} be the splitting field of $x^{q^d} x$

Let

$$S = \{ \alpha \in \mathbb{K} \mid \alpha^{q^d} - \alpha = \mathbf{0} \}$$

we claim that S is our desired extension field.

• S is a field $(\alpha + \beta)^{q} = \alpha^{q} + \beta^{q} + p(\alpha)$ $= \alpha^{q} + \beta^{q} = \alpha + \beta$

- We will use the splitting field of f(x) = x^{q^d} − x over 𝔽_q to construct an extension field of 𝔽_q of size q^d
- Let \mathbb{K} be the splitting field of $x^{q^d} x$

Let

$$S = \{ \alpha \in \mathbb{K} \mid \alpha^{q^d} - \alpha = \mathbf{0} \}$$

we claim that S is our desired extension field.

S is a field

• $|S| = q^d$

• Note that $x^{q^d} - x$ has no repeated root (since gcd(f, f') = 1) $\frac{q}{dx} \left(x^{q^d} - x \right) = q^{d} \cdot x^{q^d - 1} - 1 = -1$

- We will use the splitting field of f(x) = x^{q^d} − x over 𝔽_q to construct an extension field of 𝔽_q of size q^d
- Let ${\mathbb K}$ be the splitting field of $x^{q^d}-x$

Let

$$S = \{ \alpha \in \mathbb{K} \mid \alpha^{q^d} - \alpha = \mathbf{0} \}$$

we claim that S is our desired extension field.

- S is a field
- $|S| = q^d$
 - Note that $x^{q^d} x$ has no repeated root (since gcd(f, f') = 1)
 - 2 S can have at most q^d roots over \mathbb{K} , since it has degree q^d
Existence of Extension Fields of size q^d Extending \mathbb{F}_q

- We will use the splitting field of f(x) = x^{q^d} − x over 𝔽_q to construct an extension field of 𝔽_q of size q^d
- Let $\mathbb K$ be the splitting field of $x^{q^d} x$

Let

$$S = \{ \alpha \in \mathbb{K} \mid \alpha^{q^d} - \alpha = \mathbf{0} \}$$

we claim that S is our desired extension field.

- S is a field
- $|S| = q^d$
 - Note that $x^{q^d} x$ has no repeated root (since gcd(f, f') = 1)
 - **2** S can have at most q^d roots over \mathbb{K} , since it has degree q^d
 - **③** Since we know that all roots of f(x) are in \mathbb{K} , we have that $|S| = q^d$

$$\alpha \in f_{q} \propto^{q} = \alpha = \alpha^{\tilde{r}} = \cdots$$

Number of Monic Irreducible Polynomials of Degree d

• There are at least $rac{q^d-1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_q

イロン 不通 とく ほとく ほとう ほう めんで

Number of Monic Irreducible Polynomials of Degree d

- There are at least $rac{q^d-1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_q
- Take a field extension of \mathbb{F}_q with exactly q^d elements. Call it \mathbb{K}

• Take a field extension of \mathbb{F}_q with exactly q^d elements. Call it \mathbb{K}

• We can consider the smallest degree polynomial in $\mathbb{R}[x]$ that vanishes on $\alpha \in \mathbb{K}$ $\alpha \in \mathbb{K$ Number of Monic Irreducible Polynomials of Degree d $|\mathbb{H}| = q^d$ $\propto \iff (s_1 a_{4-2_1-1} a_{3}) = f a d - 1$ f a has at most d roots over \mathbb{H} $\Rightarrow \frac{q^d - 1}{d}$ There are at least $\frac{q^d - 1}{d}$ monic irreducible polynomials of degree $\leq d$ over \mathbb{F}_q

• Take a field extension of \mathbb{F}_q with exactly q^d elements. Call it \mathbb{K}

- We can consider the smallest degree polynomial in [K]x] that vanishes on α ∈ K
- Has degree \mathbf{G} d since \mathbb{K} is a vector space of dimension d over \mathbb{F} smallest deg poly nominal $\mathbf{f} \in \mathbf{F}_{0}(\mathbb{X})$ has deg < d and if is invite discible

support ant :
$$f(x) = g(x) \cdot h(x)$$

 $f(\alpha) = 0 \iff g(\alpha) = 0 \implies 0 \iff h(\alpha) = 0$

Properties of $x^{q^d} - x$

Lemma: f(x) irreducible Hq[x] f(x) | x^{qd}-x iff deg(p) | d.

(ロ) (書) (言) (言) (言) (言) (つ)

Madhu's notes.

- Review from last lecture: Cantor-Zassenhaus
- Today's algorithm: Berlekamp's algorithm (1967)

지수는 지원에서 전화 지원에 가지 않는 것이다.

200

- Properties of Irreducible Polynomials
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned

- Berlekamp's Factoring Algorithm
- Properties of irreducible polynomials over finite fields
 - Field Extensions
 - 2 Splitting fields
 - Irreducible polynomials of degree d
 - **9** Properties of $x^{q^d} x$ and how they help us in previous tasks

A D > A B > A B > A B > B 900

Acknowledgement

Based entirely on

• Lecture 6 from Madhu's notes http://people.csail.mit.edu/madhu/FT98/

イロン 不通 とく ほとく ほとう ほう めんで