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Why Factoring? C‘é‘ %) x-Y

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)
@ QI[x] is a PID (and hence UFD)
© any Euclidean domain is a PID (and hence UFD)
@ Q[x,y] is a UFD but not a PID

© Z[x] is a UFD but not a PID

@ Over UFDs, it makes sense to talk about greatest common divisor and
they are very useful in symbolic computation and algebraic geometry.

(@) Factoring polynomials
(@) Irreducible components of hypersurfaces
© Multiplicity of roots, factors and components
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® Warm-up: computing square roots over finite fields



P -
Square Roots over [F, % =x* *(" V ot W‘*’\";‘

-g(x :-\)(u‘t-\) /} A (nH:f
@ Input: Let p € N be an odd prime and a € [F,, \l/

o Output: factors of x? — a over Fp[x] % - X _(va. x'-o-

@ If x?> — a factors, it will factor as (x — a)(x + «) for some o € F,,
@ By Fermat's little theorem, b» — b =0 mod p for any b € [Fp, so

)(l—\('=-1("'l) xP—x = H(x—b) =% = x (00
2(-0)»-\) T beF, === N Ey=7,

@ So both x — «, x + a divide xP — x X-2= x+l vvw:)

QO xP—x=x- fi(x) - @_(X), where »x (- = n-%

fl(x) = X(P—l)/2 —1 and fz(X) — X(p—l)/2 +1

@ If ais root of f1 and —a is root of f2, then gcd(fl,x —a)=x—«

and we can factor! eka((l) deg(x*-2s p
@ Two issues: will this split always happen? And can we avoid
computing that GCD? Nw Bp

Aunning  Hme psty(Senp)
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@ « is a root of f; and —« is a root of f> iff
oPV2=1 and (—a)PV?2=_-1 mad F
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Square roots over [F),

@ « is a root of f; and —« is a root of f> iff

oPV2=1 and (—a)PV?2=_-1

e If p=3 mod 4 we know that fi, f> split the roots of x*> — a and thus
we are good!

@ How do we make this work in general?
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Square roots over [F),

@ « is a root of f; and —« is a root of f> iff
oPV2=1 and (—a)PV?2=_-1

e If p=3 mod 4 we know that fi, f> split the roots of x*> — a and thus
we are good!
@ How do we make this work in general?

2

e Factoring g(x) = x* — a equivalent to factoring

h(x) = (x — d)? — ca
o g(x) = (x —a)(x + «) if, and only if,

h(x) = (x = d — ca)(x — d + ca)
%(oc)—-o :z.
h (<) = (e 0
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Square roots over [F),

@ o is a root of f; and —a is a root of £ iff
oPV2=1 and (—a)PV?2=_-1

If p=3 mod 4 we know that f, f» split the roots of x*> — a and thus
we are good!

How do we make this work in general?

2 _ a equivalent to factoring

Factoring g(x) = x
h(x) = (x — d)? — c%a

o g(x) = (x — @)(x + ) if, and only if,

h(x) = (x — d — ca)(x — d + cq)

So, if g factors, we can try to find “good” (c, d) so that fi(x), f2(x)
“split” the factors of h
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@ What if we pick ¢, d € F, at random? What is the probability that
fi(x) has only one of the roots of h as a factor?



Square roots over [F),

@ What if we pick c¢,d € F, at random? What is the probability that
fi(x) has only one of the roots of h as a factor?

o If a1 # a» and by # by over Fp;:

oy

Pr[c.al+d:b1 and C‘32+d:b2]:i2
c,d P
( Q\:‘:&‘]
/

c-a+d crard  Rnedy
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Square roots over [F),

@ What if we pick c¢,d € F, at random? What is the probability that
fi(x) has only one of the roots of h as a factor?

o If a1 # a» and by # by over Fp;:

Pr[c- a1+ d = by and c-az—i-d:bz]:i2
c,d P
he 2= yteehr in [F?
@ On the other hand: an R

1
Pr[by is root of x(P71)/2] = =
bl —— 2

1
Izzr[bz is not root of X(P_l)/z] =5

hao (Z%T\pg\b
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Square roots over [F),

@ What if we pick ¢, d € F, at random? What is the probability that
fi(x) has only one of the roots of h as a factor?

o If a1 # a> and by # by over Fp: h) = (‘x-—_‘la (- b")

1 ¢
PF[C'31+d=b1andc-ag—i—d:bz]:—2 q{"
cgard L2 P gk
@ On the other hand: L w2
R 1 [

i (p—1)/21 = =
Izlr[bl is root of x ] 5

1
1
i t of {P_l)/2 E—
Fl;r[bz is not root of x ] 5

@ Thus, with probability ~ 1/2, uniform random choice of ¢, d gives us
that f1(x) splits h(x)

——




Square Root Algorithm

@ Pick random ¢,d € F, and compute h(x)

h(w) = (x-d- e)(x-dece)



Square Root Algorithm

@ Pick random ¢,d € F, and compute h(x)
@ Compute /(x) = fi(x) mod h(x)

acd (£ h) =gl (fomth ")

X,r% senest OO @@%?)



Square Root Algorithm

@ Pick random ¢, d € [F, and compute h(x)
@ Compute 4(x) = fi(x) mod h(x)
© Compute r(x) = ged(h(x), £(x))
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@ Pick random ¢, d € [F, and compute h(x)

@ Compute ¢(x) = fi(x) mod h(x)
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Q If r(x) =1 or r(x) = h(x), go back to step 1



Square Root Algorithm

@ Pick random ¢, d € [F, and compute h(x)

@ Compute ¢(x) = fi(x) mod h(x)

© Compute r(x) = ged(h(x), £(x))

Q If r(x) =1 or r(x) = h(x), go back to step 1
@ Otherwise we found a root of h(x)

deg(’ﬂ=5«— N
=> X P ot o -
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@ Extending the Algorithm: Cantor-Zassenhaus Algorithm



Challenges to generalize previous algorithm
Want : ,@pc’ccrt L) € H‘:{_ LX——_X

@ We can extend the previous algorithm to factor any polynomial over
F,x, but we need to deal with the following issues
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@ We can extend the previous algorithm to factor any polynomial over
F,x, but we need to deal with the following issues

@ Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible
polynomials of higher degree.

@ Cannot factor polynomials which have square factors
1
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@ We can extend the previous algorithm to factor any polynomial over
F,x, but we need to deal with the following issues

Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible
polynomials of higher degree.

Cannot factor polynomials which have square factors

The trick to “split” a polynomial through a high degree polynomial
needs to be generalized to work for higher-degree irreducible factors.
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Challenges to generalize previous algorithm

@ We can extend the previous algorithm to factor any polynomial over
F,x, but we need to deal with the following issues

Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible
polynomials of higher degree.

Cannot factor polynomials which have square factors

The trick to “split” a polynomial through a high degree polynomial
needs to be generalized to work for higher-degree irreducible factors.

Algorithm only works over odd prime fields.

From now on, let g = p¥ be a power of a prime.



Reducing to the Square-Free case

@ Over finite fields, we can define the derivative of a polynomial in a
formal way (and has similar properties to the usual derivative). If
f(x) = fo + fix + - - +fzx9 then

Fi(X)=A+2 fax+--+d-fy-x971
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Reducing to the Square-Free case

@ Over finite fields, we can define the derivative of a polynomial in a
formal way (and has similar properties to the usual derivative). If
f(x) = fo+ Ax+ - fyx? then

flX)=A+2 fax+---d-fy-x?1

@ The property that we will need is the one on square factors:
If f = g2 - h for some polynomials g, h € F o [x], then
- EA—

g | ged(f, f')
|
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@ The property that we will need is the one on square factors:
If f = g2 - h for some polynomials g, h € F o [x], then

g | ged(f, )

@ So we can get a square-free polynomial simply by dividing by the
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Reducing to the Square-Free case

@ Over finite fields, we can define the derivative of a polynomial in a
formal way (and has similar properties to the usual derivative). If
f(x) = fo+ fix + - fzx9 then

flX)=A+2 fax+---d-fy-x?1

@ The property that we will need is the one on square factors:
If f = g2 - h for some polynomials g, h € F o [x], then

g | ged(f,f')

@ So we can get a square-free polynomial simply by dividing by the

GCD:
f

ged(7, 1) ffq
Need to be careful: what if ged(f, ') = f?
This can happen iff f/ =0
f’ = 0 iff the only non-zero monomials of f are powers of p
Example: x3 4 2x% = (x + 2x)3 over Z3[x] ﬂ:’«\—_—




Getting irreducible factors of higher degree

@ To be able to find irreducible factors of high degree, need to find
analogue of x9 — x for higher degree irreducibles

x9—x= H(X—a)

p O,,Q,Q uuudhc hl
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Getting irreducible factors of higher degree

@ To be able to find irreducible factors of high degree, need to find
analogue of x9 — x for higher degree irreducibles

x9—x = H(X—a)

acl,

o Lemma: x9° — x is a multiple of any degree d irreducible polynomial
over Fq[x]. Moreover, if g(x) is irreducible and divides x9" — x, then

deg(g) = d.*
@ Let g(x) be an irreducible polynomial of degree d over Fy[x]

LWill prove the moreover part later.
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acl,

o Lemma: x%° — x is a multiple of any degree d irreducible polynomial
over Fq[x]. Moreover, if g(x) is irreducible and divides x9" — x, then

deg(g) = d.!

@ Let g(x) be an irreducible polynomial of degree d over Fy[x]
Q Let K=T,[x]/(g(x)). K is a field which contains all polynomials of
degree < d —1

@ Practice problem: prove this.
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Getting irreducible factors of higher degree

@ To be able to find irreducible factors of high degree, need to find
analogue of x9 — x for higher degree irreducibles

x? —x = H(X—a)

acl,

o Lemma: x9° — x is a multiple of any degree d irreducible polynomial
over Fq[x]. Moreover, if g(x) is irreducible and divides x9" — x, then

deg(g) = d.!
@ Let g(x) be an irreducible polynomial of degree d over Fy[x]
Q Let K=T,[x]/(g(x)). K is a field which contains all polynomials of
degree < d —1
© Practice problem: prove this.
@ Thus, for all @ € K, we have a/Xl —q =0 K[
@ Since x € K, we have that x/®I — x =0 mod g(x) % l X -X

—_—

LWill prove the moreover part later.



Getting irreducible factors of higher degree

@ To be able to find irreducible factors of high degree, need to find
analogue of x9 — x for higher degree irreducibles

x9—x = H(X—a)
aEFPi+ (III—"‘I‘ eq \

o Lemma: x9° — x is a multiple of any degree d irreducible polynomlal
over Fq[x]. Moreover, if g(x) is irreducible and divides x9" — x, then
deg(g) = d.!

@ Let g(x) be an irreducible polynomial of degree d over Fy[x]

Q Let K=T,[x]/(g(x)). K is a field which contains all polynomials of
degree < d —1 - 5 a1

(8] Prgctice_groblem: prove this. i' LR

@ Thus, for all @ € K, we have a/Xl —q =0

@ Since x € K, we have that x/®I — x =0 mod g(x)

@ |K| = g, since each polynomial of degree < d — 1 is a distinct element

d-'l

LWill prove the moreover part later.



Algorithm to get degree d irreducible factors
Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a

——

product of factors of degree exactly t Y

e

@ lterate the following for i = 1,2,....,¢

(3 )(xm?) G e e )

g‘Cx) %Z—C—X>




Algorithm to get degree d irreducible factors

Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a
product of factors of degree exactly t

@ lterate the following for i = 1,2,....,¢
@ While g(x) not a unit
o Compute gi(x) = ged(gr(x), x9 — x)

mt\b\\ﬁ/’ oy !
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Algorithm to get degree d irreducible factors

Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a
product of factors of degree exactly t

@ lterate the following for i = 1,2,....,¢
@ While g(x) not a unit
e Compute g;(x) = gcd(g,-(x)7xqi - Xx)
To complete our full factorization algorithm, we need to generalize the
factor splitting trick.

we Cam anNvme 'G‘B\&."(
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To complete our full factorization algorithm, we need to generalize the
factor splitting trick.

@ Now can assume that g(x) is a product of irreducible factors of same
degree d
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Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a
product of factors of degree exactly t

@ lterate the following for i = 1,2,....,¢
@ While g(x) not a unit
e Compute g;(x) = gcd(g,-(x),xqi - Xx)
To complete our full factorization algorithm, we need to generalize the
factor splitting trick.
@ Now can assume that g(x) is a product of irreducible factors of same
degree d
@ So we need to find a polynomial which is multiple of some of the
factors of g, but not all.



Algorithm to get degree d irreducible factors

Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a
product of factors of degree exactly t

@ lterate the following for i = 1,2,....,¢
@ While g(x) not a unit
e Compute g;(x) = gcd(g,-(x),xqi - Xx)
To complete our full factorization algorithm, we need to generalize the
factor splitting trick.
@ Now can assume that g(x) is a product of irreducible factors of same
degree d
@ So we need to find a polynomial which is multiple of some of the
factors of g, but not all.
@ Here we simply use the polynomials

fl(x):x(qi_l)/2—1 and  H(x) = (‘;—1)/2+1
q - 3L
1' 2 \ L £ L



Algorithm to get degree d irreducible factors

Now we can factor g(x) = g1(x)g2(x) - - - ge(x) where each g¢(x) is a
product of factors of degree exactly t

@ lterate the following for i = 1,2,....,¢
@ While g(x) not a unit
e Compute g;(x) = gcd(g,-(x),xqi - Xx)
To complete our full factorization algorithm, we need to generalize the
factor splitting trick.

@ Now can assume that g(x) is a product of irreducible factors of same
degree d

@ So we need to find a polynomial which is multiple of some of the
factors of g, but not all.

@ Here we simply use the polynomials
f(x) = x@1/2 _1 and h(x) = x(@=1/2 4 1

@ But how do we perform the random step?



Splitting Trick
@ In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x? — a into h(x) = (x — d)? — c?a. How
do we generalize this for higher degree irreducible polynomials?
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@ In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x?> — a into h(x) = (x — d)? — c?a. How
do we generalize this for higher degree irreducible polynomials?
@ We want a map that with high probability contains one of our
irreducible factors of degree d



Splitting Trick

@ In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x?> — a into h(x) = (x — d)? — c?a. How
do we generalize this for higher degree irreducible polynomials?

@ We want a map that with high probability contains one of our
irreducible factors of degree d

e We also saw that for any T(x), the polynomial T(X)qd — T(x)is a
multiple of any irreducible factor of degree d and

()" = T(x) = T(x)- A(T(x)) - H(T(x))

ol (o gL :
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Splitting Trick
@ In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x? — a into h(x) = (x — d)? — c?a. How
do we generalize this for higher degree irreducible polynomials?
@ We want a map that with high probability contains one of our
irreducible factors of degree d
@ We also saw that for any T(x), the polynomial T(x)qd — T(x)is a
multiple of any irreducible factor of degree d and
T()™ = T(x) = T(x) - £(T(9) - B(T(x))
e Lemma: let h(x) € Fq[x] be irreducible and of degree d, and let
D > d. Then:
Aglitting —_ Tp(r)[h(x) | (T (x))] =

nip
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Splitting Trick

@ In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x?> — a into h(x) = (x — d)? — c?a. How
do we generalize this for higher degree irreducible polynomials?

@ We want a map that with high probability contains one of our
irreducible factors of degree d

@ We also saw that for any T(x), the polynomial T(X)qd — T(x)is a
multiple of any irreducible factor of degree d and

T() = T(x) = T(x) - A(T(x)) - H(T(x))

e Lemma: let h(x) € Fq[x] be irreducible and of degree d, and let
D > d. Then:

1
Pr{hG) | A(TEN] =~ 5

e Lemma: For any Ty, T, € Fy[x] of degree < d, and irreducible
polynomials fi, f, € Fg[x] of degree d
fpcton of 1
7_P(r)[T(X) = T1 mod fl(x)%:;nd T(x) = T2 mod fK(x)] ~ =
x &

q2
whare T(v) c TR [v] ic Af Aeocree < 924 1



Algorithm

> Input g P Sy e Bt O) (L € Eqlx)
o Outputiy~grd(£g)
{wieduchs  fetow

3
- %L"' Aquo.ru-.a@La @M‘f a{ -
& %/q;cd(gtg‘)

. = i : o of §
&t GO = '(T.(w:(maz%ﬂ:«. )

bé P <%,xq-x) =: g
- Jowdom T(x) € FII o\<d;,3(_T3‘;I< Zd
%d- ~@chru (u-H\p ) 55 %Ca\ C%O‘f' TG) > \E)«-ch»
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e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f,g)
@ Algorithm:
© Compute b = ged(LT(f),LT(g)), and set B € N
@ Pick random prime p € [2B,4B]
o ComPUte p(X) = ngZP[X](f7g)
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Return g.
Otherwise go back to step 2.



Algorithm

e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f,g)
@ Algorithm:
© Compute b = ged(LT(f),LT(g)), and set B € N
@ Pick random prime p € [2B,4B]
o ComPUte p(X) = ngZP[X](f7g)
@ Compute q,1*, g* € Z|x]| with height < p/2 satisfying:

g=bp modp, f*-q=b-f modp, g*-gq=b-g modp
QIf
£l llgll: < B and [lg"[l1-llqlls < B

Return g.
Otherwise go back to step 2.
@ Correctness follows by previous slides, and probability the our random
prime does not work is < 1/2.
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