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Why Factoring?

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
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Why Factoring?

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
2 Q[x ] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y ] is a UFD but not a PID
5 Z[x ] is a UFD but not a PID

Over UFDs, it makes sense to talk about greatest common divisor and
they are very useful in symbolic computation and algebraic geometry.

1 Factoring polynomials
2 Irreducible components of hypersurfaces
3 Multiplicity of roots, factors and components
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Square Roots over Fp

Input: Let p ∈ N be an odd prime and a ∈ Fp

Output: factors of x2 − a over Fp[x ]

1 If x2 − a factors, it will factor as (x − α)(x + α) for some α ∈ Fp

2 By Fermat’s little theorem, bp − b ≡ 0 mod p for any b ∈ Fp, so

xp − x =
�

b∈Fp

(x − b)

3 So both x − α, x + α divide xp − x
4 xp − x = x · f1(x) · f2(x), where

f1(x) = x (p−1)/2 − 1 and f2(x) = x (p−1)/2 + 1

5 If α is root of f1 and −α is root of f2, then gcd(f1, x
2 − a) = x − α

and we can factor!
6 Two issues: will this split always happen? And can we avoid

computing that GCD?
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Square roots over Fp

α is a root of f1 and −α is a root of f2 iff

α(p−1)/2 ≡ 1 and (−α)(p−1)/2 ≡ −1
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If p ≡ 3 mod 4 we know that f1, f2 split the roots of x2 − a and thus
we are good!

How do we make this work in general?
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Square roots over Fp

α is a root of f1 and −α is a root of f2 iff

α(p−1)/2 ≡ 1 and (−α)(p−1)/2 ≡ −1

If p ≡ 3 mod 4 we know that f1, f2 split the roots of x2 − a and thus
we are good!

How do we make this work in general?

Factoring g(x) = x2 − a equivalent to factoring

h(x) = (x − d)2 − c2a

g(x) = (x − α)(x + α) if, and only if,

h(x) = (x − d − cα)(x − d + cα)

So, if g factors, we can try to find “good” (c , d) so that f1(x), f2(x)
“split” the factors of h
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Square roots over Fp

What if we pick c, d ∈ Fp at random? What is the probability that
f1(x) has only one of the roots of h as a factor?
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Square roots over Fp

What if we pick c, d ∈ Fp at random? What is the probability that
f1(x) has only one of the roots of h as a factor?

If a1 �= a2 and b1 �= b2 over Fp:

Pr
c,d

[c · a1 + d = b1 and c · a2 + d = b2] =
1

p2
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Pr
c,d
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Square roots over Fp

What if we pick c, d ∈ Fp at random? What is the probability that
f1(x) has only one of the roots of h as a factor?

If a1 �= a2 and b1 �= b2 over Fp:

Pr
c,d

[c · a1 + d = b1 and c · a2 + d = b2] =
1

p2

On the other hand:

Pr
b1
[b1 is root of x (p−1)/2] =

1

2

Pr
b2
[b2 is not root of x (p−1)/2] =

1

2

Thus, with probability ≈ 1/2, uniform random choice of c , d gives us
that f1(x) splits h(x)
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Square Root Algorithm

1 Pick random c , d ∈ Fp and compute h(x)
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Square Root Algorithm

1 Pick random c , d ∈ Fp and compute h(x)

2 Compute �(x) ≡ f1(x) mod h(x)

3 Compute r(x) = gcd(h(x), �(x))

4 If r(x) = 1 or r(x) = h(x), go back to step 1
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Square Root Algorithm

1 Pick random c , d ∈ Fp and compute h(x)

2 Compute �(x) ≡ f1(x) mod h(x)

3 Compute r(x) = gcd(h(x), �(x))

4 If r(x) = 1 or r(x) = h(x), go back to step 1

5 Otherwise we found a root of h(x)
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Example

f (x) = 6x3 − 42x2 + 72x − 60 and g(x) = 2x2 − 6x − 20
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Warm-up: computing square roots over finite fields

Extending the Algorithm: Cantor-Zassenhaus Algorithm
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Challenges to generalize previous algorithm

We can extend the previous algorithm to factor any polynomial over
Fpk , but we need to deal with the following issues
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Challenges to generalize previous algorithm

We can extend the previous algorithm to factor any polynomial over
Fpk , but we need to deal with the following issues

Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible
polynomials of higher degree.

Cannot factor polynomials which have square factors

The trick to “split” a polynomial through a high degree polynomial
needs to be generalized to work for higher-degree irreducible factors.

Algorithm only works over odd prime fields.

From now on, let q = pk be a power of a prime.
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Reducing to the Square-Free case

Over finite fields, we can define the derivative of a polynomial in a
formal way (and has similar properties to the usual derivative). If
f (x) = f0 + f1x + · · · fdxd then

f �(x) = f1 + 2 · f2x + · · · d · fd · xd−1
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Reducing to the Square-Free case

Over finite fields, we can define the derivative of a polynomial in a
formal way (and has similar properties to the usual derivative). If
f (x) = f0 + f1x + · · · fdxd then

f �(x) = f1 + 2 · f2x + · · · d · fd · xd−1

The property that we will need is the one on square factors:

If f = g2 · h for some polynomials g , h ∈ Fpk [x ], then

g | gcd(f , f �)
So we can get a square-free polynomial simply by dividing by the
GCD:

f

gcd(f , f �)

Need to be careful: what if gcd(f , f �) = f ?

This can happen iff f � = 0

f � = 0 iff the only non-zero monomials of f are powers of p

Example: x3 + 2x6 = (x + 2x)3 over Z3[x ]
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Getting irreducible factors of higher degree

To be able to find irreducible factors of high degree, need to find
analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

1Will prove the moreover part later.
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To be able to find irreducible factors of high degree, need to find
analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

Lemma: xq
d − x is a multiple of any degree d irreducible polynomial

over Fq[x ]. Moreover, if g(x) is irreducible and divides xq
d − x , then

deg(g) = d .1

1 Let g(x) be an irreducible polynomial of degree d over Fq[x ]

1Will prove the moreover part later.
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analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

Lemma: xq
d − x is a multiple of any degree d irreducible polynomial

over Fq[x ]. Moreover, if g(x) is irreducible and divides xq
d − x , then

deg(g) = d .1

1 Let g(x) be an irreducible polynomial of degree d over Fq[x ]
2 Let K = Fq[x ]/(g(x)). K is a field which contains all polynomials of

degree ≤ d − 1
3 Practice problem: prove this.

1Will prove the moreover part later.
44 / 66



Getting irreducible factors of higher degree

To be able to find irreducible factors of high degree, need to find
analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

Lemma: xq
d − x is a multiple of any degree d irreducible polynomial

over Fq[x ]. Moreover, if g(x) is irreducible and divides xq
d − x , then

deg(g) = d .1

1 Let g(x) be an irreducible polynomial of degree d over Fq[x ]
2 Let K = Fq[x ]/(g(x)). K is a field which contains all polynomials of

degree ≤ d − 1
3 Practice problem: prove this.
4 Thus, for all α ∈ K, we have α|K| − α = 0

1Will prove the moreover part later.
45 / 66



Getting irreducible factors of higher degree

To be able to find irreducible factors of high degree, need to find
analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

Lemma: xq
d − x is a multiple of any degree d irreducible polynomial

over Fq[x ]. Moreover, if g(x) is irreducible and divides xq
d − x , then

deg(g) = d .1

1 Let g(x) be an irreducible polynomial of degree d over Fq[x ]
2 Let K = Fq[x ]/(g(x)). K is a field which contains all polynomials of

degree ≤ d − 1
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4 Thus, for all α ∈ K, we have α|K| − α = 0
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Getting irreducible factors of higher degree

To be able to find irreducible factors of high degree, need to find
analogue of xq − x for higher degree irreducibles

xq − x =
�

a∈Fp

(x − a)

Lemma: xq
d − x is a multiple of any degree d irreducible polynomial

over Fq[x ]. Moreover, if g(x) is irreducible and divides xq
d − x , then

deg(g) = d .1

1 Let g(x) be an irreducible polynomial of degree d over Fq[x ]
2 Let K = Fq[x ]/(g(x)). K is a field which contains all polynomials of

degree ≤ d − 1
3 Practice problem: prove this.
4 Thus, for all α ∈ K, we have α|K| − α = 0
5 Since x ∈ K, we have that x |K| − x ≡ 0 mod g(x)
6 |K| = qd , since each polynomial of degree ≤ d − 1 is a distinct element

1Will prove the moreover part later.
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Algorithm to get degree d irreducible factors
Now we can factor g(x) = g1(x)g2(x) · · · g�(x) where each gt(x) is a
product of factors of degree exactly t

1 Iterate the following for i = 1, 2, . . . , �
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Algorithm to get degree d irreducible factors
Now we can factor g(x) = g1(x)g2(x) · · · g�(x) where each gt(x) is a
product of factors of degree exactly t

1 Iterate the following for i = 1, 2, . . . , �
2 While g(x) not a unit

Compute gi (x) = gcd(gi (x), x
qi − x)

To complete our full factorization algorithm, we need to generalize the
factor splitting trick.

Now can assume that g(x) is a product of irreducible factors of same
degree d

So we need to find a polynomial which is multiple of some of the
factors of g , but not all.

Here we simply use the polynomials

f1(x) = x (q
d−1)/2 − 1 and f2(x) = x (q

d−1)/2 + 1
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Algorithm to get degree d irreducible factors
Now we can factor g(x) = g1(x)g2(x) · · · g�(x) where each gt(x) is a
product of factors of degree exactly t

1 Iterate the following for i = 1, 2, . . . , �
2 While g(x) not a unit

Compute gi (x) = gcd(gi (x), x
qi − x)

To complete our full factorization algorithm, we need to generalize the
factor splitting trick.

Now can assume that g(x) is a product of irreducible factors of same
degree d

So we need to find a polynomial which is multiple of some of the
factors of g , but not all.

Here we simply use the polynomials

f1(x) = x (q
d−1)/2 − 1 and f2(x) = x (q

d−1)/2 + 1

But how do we perform the random step?
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Splitting Trick
In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x2 − a into h(x) = (x − d)2 − c2a. How
do we generalize this for higher degree irreducible polynomials?
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do we generalize this for higher degree irreducible polynomials?
We want a map that with high probability contains one of our
irreducible factors of degree d
We also saw that for any T (x), the polynomial T (x)q
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Splitting Trick
In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x2 − a into h(x) = (x − d)2 − c2a. How
do we generalize this for higher degree irreducible polynomials?
We want a map that with high probability contains one of our
irreducible factors of degree d
We also saw that for any T (x), the polynomial T (x)q

d − T (x) is a
multiple of any irreducible factor of degree d and

T (x)q
d − T (x) = T (x) · f1(T (x)) · f2(T (x))

Lemma: let h(x) ∈ Fq[x ] be irreducible and of degree d , and let
D > d . Then:
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T (x)

[h(x) | f1(T (x))] ≈ 1
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Splitting Trick
In the warm-up part, we needed to get a random transformation of
the roots, by making g(x) = x2 − a into h(x) = (x − d)2 − c2a. How
do we generalize this for higher degree irreducible polynomials?
We want a map that with high probability contains one of our
irreducible factors of degree d
We also saw that for any T (x), the polynomial T (x)q

d − T (x) is a
multiple of any irreducible factor of degree d and

T (x)q
d − T (x) = T (x) · f1(T (x)) · f2(T (x))

Lemma: let h(x) ∈ Fq[x ] be irreducible and of degree d , and let
D > d . Then:

Pr
T (x)

[h(x) | f1(T (x))] ≈ 1

2

Lemma: For any T1,T2 ∈ Fq[x ] of degree < d , and irreducible
polynomials f1, f2 ∈ Fq[x ] of degree d

Pr
T (x)

[T (x) ≡ T1 mod f1(x) and T (x) ≡ T2 mod f2(x)] ≈
1

q2

where T (x) ∈ Fq[x ] is of degree ≤ 2d − 1. 59 / 66



Algorithm

Input: primitive polynomials f , g ∈ Z[x ]
Output: h = gcd(f , g)
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Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f ), LT (g)), and set B ∈ N
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Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f ), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
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Algorithm

Input: primitive polynomials f , g ∈ Z[x ]
Output: h = gcd(f , g)

Algorithm:
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2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x ] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p
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Algorithm

Input: primitive polynomials f , g ∈ Z[x ]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f ), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x ] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p

5 If
�f ∗�1 · �q�1 ≤ B and �g∗�1 · �q�1 ≤ B

Return q.
Otherwise go back to step 2.
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Algorithm

Input: primitive polynomials f , g ∈ Z[x ]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f ), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x ] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p

5 If
�f ∗�1 · �q�1 ≤ B and �g∗�1 · �q�1 ≤ B

Return q.
Otherwise go back to step 2.

Correctness follows by previous slides, and probability the our random
prime does not work is ≤ 1/2.
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