Lecture 8: Univariate Polynomial Factoring over Finite Fields

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

February 3, 2021

Overview

- Why facotring?
- Warm-up: computing square roots over finite fields
- Extending the Algorithm: Cantor-Zassenhaus Algorithm

1 D 1 (B 1 (2) (2) (2) (2) (0)

• Acknowledgements

• Why facotring?

• Warm-up: computing square roots over finite fields

• Extending the Algorithm: Cantor-Zassenhaus Algorithm

지수는 지원에 가지 않는 지원이는 것이다.

200

Acknowledgements

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

(D) (B) (E) (E) (E) (E) (O)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)
 - **2** $\mathbb{Q}[x]$ is a PID (and hence UFD)

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

イロン (語) イミン (ま) ま) のへで

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)
 - **2** $\mathbb{Q}[x]$ is a PID (and hence UFD)
 - any Euclidean domain is a PID (and hence UFD)

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

(D) (B) (E) (E) (E) (E) (O)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)
 - **2** $\mathbb{Q}[x]$ is a PID (and hence UFD)
 - any Euclidean domain is a PID (and hence UFD)
 - $\mathbb{Q}[x, y]$ is a UFD but *not* a PID

• A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): *R* is a PID if <u>every</u> ideal of *R* is principal (generated by *one element*)

(D) (B) (E) (E) (E) (E) (O)

- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)
 - **2** $\mathbb{Q}[x]$ is a PID (and hence UFD)
 - any Euclidean domain is a PID (and hence UFD)

 - **(a)** $\mathbb{Z}[x]$ is a UFD but *not* a PID

- A very special kind of UFD, which we have seen a lot, is a *principal ideal domain* (PID): R is a PID if <u>every</u> ideal of R is principal (generated by *one element*)
- Examples of PIDs and UFDs
 - **1** \mathbb{Z} is a PID (and hence UFD)
 - **2** $\mathbb{Q}[x]$ is a PID (and hence UFD)
 - any Euclidean domain is a PID (and hence UFD)
 - $\mathbb{Q}[x, y]$ is a UFD but *not* a PID
 - **(a)** $\mathbb{Z}[x]$ is a UFD but *not* a PID
- Over UFDs, it <u>makes sense</u> to talk about <u>greatest common divisor</u> and they are very useful in symbolic computation and algebraic geometry.
 - Factoring polynomials
 - Irreducible components of hypersurfaces
 - Multiplicity of roots, factors and components
 \$\overline{(x)}\$
 \$\overline{(x)}\$

• Why facotring?

• Warm-up: computing square roots over finite fields

• Extending the Algorithm: Cantor-Zassenhaus Algorithm

Acknowledgements

Square Roots over \mathbb{F}_p $x^{p-x} = x(x^{p-1})$ of square xol = $x(x^{p-1})(x^{p-1}+1)$ • Input: Let $p \in \mathbb{N}$ be an odd prime and $a \in \mathbb{F}_p$ • Output: factors of $x^2 - a$ over $\mathbb{F}_p[x] = \sqrt{-\infty}$ **1** If $x^2 - a$ factors, it will factor as $(x - \alpha)(x + \alpha)$ for some $\alpha \in \mathbb{F}_p$ **2** By Fermat's little theorem, $b^p - b \equiv 0 \mod p$ for any $b \in \mathbb{F}_p$, so x' = x = x(x-1) $\chi^{3} - \chi = \chi (\chi - I)(\chi - 1)$ $x^p - x = \prod (x - b)$ over E3=762 <u>=(x-0)(x-1)</u> $b \in \mathbb{F}_p$ X-2= X+1 mod > So both $x - \alpha$, $x + \alpha$ divide $x^p - x$ x (x-1)(2+1) = x3-x • $x^p - x = x \cdot f_1(x) \cdot f_2(x)$, where $f_1(x) = x^{(p-1)/2} - 1$ and $f_2(x) = x^{(p-1)/2} + 1$ So If $\underline{\alpha}$ is root of $\underline{f_1}$ and $\underline{-\alpha}$ is root of $\underline{f_2}$, then $gcd(f_1, x^2 - a) = x - \alpha$ and we can factor! deg((1) · deg(x2-a)= p **•** Two issues: will this split always happen? And can we avoid over the logp computing that GCD? running time poly (log p)

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$\alpha^{(p-1)/2} \equiv 1 \quad \text{and} \quad (-\alpha)^{(p-1)/2} \equiv -1 \quad \text{mod} p$$

$$f_{\lambda}(\alpha) \equiv 0 \qquad \qquad f_{\lambda}(-\alpha) \equiv 0$$

イロト イヨト イミト イミト ニモー のくで

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$\alpha^{(p-1)/2}\equiv 1$$
 and $(-\alpha)^{(p-1)/2}\equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?

$$(-\alpha)^{\frac{p+1}{2}} = (-1)^{\frac{p+1}{2}} \cdot \alpha^{\frac{p+1}{2}} = -\alpha^{\frac{p+1}{2}}$$

 $p=3 \mod 4 = s \quad p=4 \ln 43 \quad \ln 7k$
 $\frac{p-1}{2} = 2 \ln + 1 \quad \text{odd}$

0-1

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$lpha^{(p-1)/2}\equiv 1$$
 and $(-lpha)^{(p-1)/2}\equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x - d)^2 - c^2 a$$

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$\alpha^{(p-1)/2} \equiv 1$$
 and $(-\alpha)^{(p-1)/2} \equiv -1$

- If $p \equiv 3 \mod 4$ we know that f_1, f_2 split the roots of $x^2 a$ and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x-d)^2 - c^2 a$$

• $g(x) = (x - \alpha)(x + \alpha)$ if, and only if,

$$h(x) = (x - \underline{d} - \underline{c}\alpha)(x - \underline{d} + \underline{c}\alpha)$$

$$g(\alpha) = 0$$

$$h(d + c\alpha) = (d + c\alpha - d)^{2} - c^{2}\alpha^{2}$$

$$= (c\alpha)^{2} - c^{2}\alpha^{2} = -2^{2}\alpha^{2} = -2^{2}\alpha^{2}$$

• α is a root of f_1 and $-\alpha$ is a root of f_2 iff

$$lpha^{(p-1)/2}\equiv 1$$
 and $(-lpha)^{(p-1)/2}\equiv -1$

- If p ≡ 3 mod 4 we know that f₁, f₂ split the roots of x² a and thus we are good!
- How do we make this work in general?
- Factoring $g(x) = x^2 a$ equivalent to factoring

$$h(x) = (x-d)^2 - c^2 a$$

• $g(x) = (x - \alpha)(x + \alpha)$ if, and only if, $h(x) = (x - d - c\alpha)(x - d + c\alpha)$

• So, if g factors, we can try to find "good" (c, d) so that $f_1(x), f_2(x)$ "split" the factors of h $f_1(p_1) = 0$

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

• If
$$a_1 \neq a_2$$
 and $b_1 \neq b_2$ over \mathbb{F}_p :

$$\Pr[c \cdot a_1 + d = b_1 \text{ and } c \cdot a_2 + d = b_2] = \frac{1}{p^2}$$

$$\boxed{a_1 \neq a_2}$$

$$c \cdot a_1 + d_1 \quad c \cdot a_2 + d_1 \text{ linearly}$$
independent
$$F_{7}^2 \downarrow \downarrow_{1} \downarrow_{2}$$

$$(a_1 + d_1) \quad (c_1) = (b_1)$$

- invertible

٥

• What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?

• If
$$a_1 \neq a_2$$
 and $b_1 \neq b_2$ over \mathbb{F}_p :

Pr[
$$c \cdot a_1 + d = b_1$$
 and $c \cdot a_2 + d = b_2$] = $\frac{1}{p^2}$
On the other hand:
Pr[b_1 is root of $x^{(p-1)/2}$] = $\frac{1}{2}$
Pr[b_2 is not root of $x^{(p-1)/2}$] = $\frac{1}{2}$
Now p_1 root s

Square roots over \mathbb{F}_p $\alpha_1 = \alpha$ $\alpha_2 = -\alpha$

- What if we pick $c, d \in \mathbb{F}_p$ at random? What is the probability that $f_1(x)$ has only one of the roots of h as a factor?
- If $a_1 \neq a_2$ and $b_1 \neq b_2$ over \mathbb{F}_p : h(x) = (x-b)(x-b_1)

$$\Pr_{c,d}[\underline{c \cdot a_1 + d} = b_1 \text{ and } \underline{c \cdot a_2 + d} = b_2] = \frac{1}{p^2} \quad \text{spin}$$

- On the other hand: $\Pr_{b_1}[b_1 \text{ is root of } x^{(p-1)/2}] = \frac{1}{2}$ $\Pr_{b_2}[b_2 \text{ is not root of } x^{(p-1)/2}] = \frac{1}{2}$
- Thus, with probability $\approx 1/2$, uniform random choice of c, d gives us that $f_1(x)$ splits h(x)

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

$$h(x) = (x - d - cx)(x - d + cx)$$

-

(ロ)(通)(注)(注)(注)(注)(注)(注)のQ(C)

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$

$$ged(f_{1}, h) = gcd(f_{1}, msdh_{1}, h)$$

 $\chi^{\frac{p!}{2}}$ mod $h(\pi)$ $O(log P)$

1 Pick random $c, d \in \mathbb{F}_p$ and compute h(x)

- 2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$
- Sompute $r(x) = \gcd(h(x), \ell(x))$

- **1** Pick random $c, d \in \mathbb{F}_p$ and compute h(x)
- 2 Compute $\ell(x) \equiv f_1(x) \mod h(x)$
- Sompute $r(x) = \gcd(h(x), \ell(x))$
- If r(x) = 1 or r(x) = h(x), go back to step 1

(D) (B) (E) (E) (E) (E) (O)

- Pick random $c, d \in \mathbb{F}_p$ and compute h(x)
- Ompute $\ell(x) \equiv f_1(x) \mod h(x)$
- Sompute $r(x) = \gcd(h(x), \ell(x))$
- If r(x) = 1 or r(x) = h(x), go back to step 1
- Solution Otherwise we found a root of h(x)

deg(n)=+ => r proper factor of h.

(D) (B) (E) (E) (E) (E) (O)

Kompton Fermet's little theorem $a^{P} = \left[(a-i) + i \right]^{P} = p^{i} + a^{i} (p-a)^{i}$ $= (a-1)^{r} + {\binom{p}{1}}{\binom{q-1}{2}} + {\binom{p}{2}}{\binom{q-1}{2}} + \cdots + {\binom{p}{p-1}}{\binom{q-1}{2}}$ $+ \underline{1} = (\underline{0} - 1)^{2} + \underline{1} = (\underline{0} - 2)^{2} + 2 = \cdots$ $= \alpha \mod p \qquad 0 = \frac{p(p-1)}{z}$ $\Rightarrow \alpha^{2} - \alpha \equiv 0 \mod p \qquad p(p-1)(p-2)$

• Why facotring?

• Warm-up: computing square roots over finite fields

• Extending the Algorithm: Cantor-Zassenhaus Algorithm

Acknowledgements

Challenges to generalize previous algorithm Want : for tor $f(x) \in \mathbb{F}_q[x]$

 $q = p^{k}$

• We can extend the previous algorithm to factor any polynomial over $\mathbb{F}_{p^k},$ but we need to deal with the following issues

(D) (B) (E) (E) (E) (E) (O)

- We can extend the previous algorithm to factor any polynomial over \mathbb{F}_{p^k} , but we need to deal with the following issues
- Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible polynomials of higher degree.

- We can extend the previous algorithm to factor any polynomial over \mathbb{F}_{p^k} , but we need to deal with the following issues
- Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible polynomials of higher degree.

• Cannot factor polynomials which have square factors

 $f(x) = (x - \alpha)^{L}$ previous algorithm: could not split l(a)

- We can extend the previous algorithm to factor any polynomial over \mathbb{F}_{p^k} , but we need to deal with the following issues
- Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible polynomials of higher degree.

- Cannot factor polynomials which have square factors
- The trick to "split" a polynomial through a high degree polynomial needs to be generalized to work for higher-degree irreducible factors.

 $-, p^{k}(=q) p odd$

• We can extend the previous algorithm to factor any polynomial over \mathbb{F}_{p^k} , but we need to deal with the following issues

• Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible polynomials of higher degree.

- Cannot factor polynomials which have square factors
- The trick to "split" a polynomial through a high degree polynomial needs to be generalized to work for higher-degree irreducible factors.
- Algorithm only works over odd prime fields.

- We can extend the previous algorithm to factor any polynomial over \mathbb{F}_{p^k} , but we need to deal with the following issues
- Our algorithm can only factor degree 1 factors

Need to find polynomials which are divisible by irreducible polynomials of higher degree.

- Cannot factor polynomials which have square factors
- The trick to "split" a polynomial through a high degree polynomial needs to be generalized to work for higher-degree irreducible factors.
- Algorithm only works over odd prime fields.
- From now on, let $q = p^k$ be a power of a prime.

Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If f(x) = f₀ + f₁x + ···+f_dx^d then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots + d \cdot f_d \cdot x^{d-1}$$

Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If f(x) = f₀ + f₁x + ··· f_dx^d then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots d \cdot f_d \cdot x^{d-1}$$

A D > A B > A B > A B > B 900

• The property that we will need is the one on square factors:

If $f = g^2 \cdot h$ for some polynomials $g, h \in \mathbb{F}_{p^k}[x]$, then $g \mid \gcd(f, f')$ $f' = 29 \cdot g' \cdot h + h' \cdot g^2$

• Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If $f(x) = f_0 + f_1 x + \cdots + f_d x^d$ then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots d \cdot f_d \cdot x^{d-1}$$

• The property that we will need is the one on square factors: If $f = g^2 \cdot h$ for some polynomials $g, h \in \mathbb{F}_{p^k}[x]$, then

 $g \mid \gcd(f, f')$

• So we can get a square-free polynomial simply by dividing by the GCD:

 $\frac{f}{\gcd(f,f')}$ is square-free contains all original factors of f this already "foctored f a little bit"

• Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If $f(x) = f_0 + f_1 x + \cdots + f_d x^d$ then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots d \cdot f_d \cdot x^{d-1}$$

• The property that we will need is the one on square factors: If $f = g^2 \cdot h$ for some polynomials $g, h \in \mathbb{F}_{p^k}[x]$, then $g \mid \gcd(f, f')$

• So we can get a square-free polynomial simply by dividing by the GCD:

$$rac{r}{\operatorname{gcd}(f,f')}$$

- Need to be careful: what if gcd(f, f') = f?
- This can happen iff f' = 0

• Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If $f(x) = f_0 + f_1 x + \cdots + f_d x^d$ then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots d \cdot f_d \cdot x^{d-1}$$

• The property that we will need is the one on square factors: If $f = g^2 \cdot h$ for some polynomials $g, h \in \mathbb{F}_{p^k}[x]$, then $g \mid \gcd(f, f')$

So we can get a square-free polynomial simply by dividing by the GCD:

$$rac{r}{\gcd(f,f')}$$

- Need to be careful: what if gcd(f, f') = f?
- This can happen iff f' = 0

• f' = 0 iff the only non-zero monomials of f are powers of p $\mathcal{Z}_{5}[x] \qquad \times^{5} + \times^{10} \longrightarrow \underbrace{5}_{5} \times \underbrace{4}_{1} + \underbrace{9}_{5} \times \underbrace{4}_{1} = \underbrace{9}_{1}$

Over finite fields, we can define the derivative of a polynomial in a formal way (and has similar properties to the usual derivative). If f(x) = f₀ + f₁x + ··· f_dx^d then

$$f'(x) = f_1 + 2 \cdot f_2 x + \cdots d \cdot f_d \cdot x^{d-1}$$

• The property that we will need is the one on square factors: If $f = g^2 \cdot h$ for some polynomials $g, h \in \mathbb{F}_{p^k}[x]$, then $g \mid \gcd(f, f')$

• So we can get a square-free polynomial simply by dividing by the GCD:

$$\frac{f}{\operatorname{gcd}(f,f')}$$

- Need to be careful: what if gcd(f, f') = f?
- This can happen iff f' = 0
- f' = 0 iff the only non-zero monomials of f are powers of p
- Example: $x^3 + 2x^6 = (x + 2x)^3$ over $\mathbb{Z}_3[x]$

 To be able to find irreducible factors of high degree, need to find analogue of x^q - x for higher degree irreducibles

$$x^{q} - x = \prod_{a \in \mathbb{F}_{p}} (x - a)$$
has all irreducible
polynomials of oleg 1
and only irreducible foctors
of degree \bot

¹Will prove the moreover part later.

 To be able to find irreducible factors of high degree, need to find analogue of x^q - x for higher degree irreducibles

$$x^q - x = \prod_{a \in \mathbb{F}_p} (x - a)$$

Lemma: x^{q^d} - x is a multiple of any degree d irreducible polynomial over 𝔽_q[x]. Moreover, if g(x) is irreducible and divides x^{q^d} - x, then deg(g) = d.¹
 Let g(x) be an irreducible polynomial of degree d over 𝔽_a[x]

¹Will prove the moreover part later.

 To be able to find irreducible factors of high degree, need to find analogue of x^q - x for higher degree irreducibles

$$x^q - x = \prod_{a \in \mathbb{F}_p} (x - a)$$

- Lemma: x^{q^d} − x is a multiple of any degree d irreducible polynomial over F_q[x]. Moreover, if g(x) is irreducible and divides x^{q^d} − x, then deg(g) = d.¹
 - Let g(x) be an irreducible polynomial of degree d over $\mathbb{F}_q[x]$
 - 2 Let K = F_q[x]/(g(x)). K is a field which contains all polynomials of degree ≤ d − 1
 - In the second second

¹Will prove the moreover part later.

 To be able to find irreducible factors of high degree, need to find analogue of x^q - x for higher degree irreducibles

$$x^q - x = \prod_{a \in \mathbb{F}_p} (x - a)$$

- Lemma: x^{q^d} − x is a multiple of any degree d irreducible polynomial over F_q[x]. Moreover, if g(x) is irreducible and divides x^{q^d} − x, then deg(g) = d.¹
 - Let g(x) be an irreducible polynomial of degree d over $\mathbb{F}_q[x]$
 - 2 Let K = F_q[x]/(g(x)). K is a field which contains all polynomials of degree ≤ d − 1
 - Oractice problem: prove this.
 - **(4)** Thus, for all $\alpha \in \mathbb{K}$, we have $\alpha^{|\mathbb{K}|} \alpha = 0$

¹Will prove the moreover part later.

• To be able to find irreducible factors of high degree, need to find analogue of $x^q - x$ for higher degree irreducibles

$$x^q - x = \prod_{a \in \mathbb{F}_p} (x - a)$$

- Lemma: $x^{q^d} x$ is a multiple of any degree d irreducible polynomial over $\mathbb{F}_{q}[x]$. Moreover, if g(x) is irreducible and divides $x^{q^{d}} - x$, then $\deg(g) = d.^1$
 - Let g(x) be an irreducible polynomial of degree d over $\mathbb{F}_{a}[x]$
 - 2 Let $\mathbb{K} = \mathbb{F}_{q}[x]/(g(x))$. \mathbb{K} is a field which contains all polynomials of degree $\leq d - 1$
 - Practice problem: prove this.
 - **(**) Thus, for all $\alpha \in \mathbb{K}$, we have $\alpha^{|\mathbb{K}|} \alpha = 0$

Since
$$x \in \mathbb{K}$$
, we have that $x^{|\mathbb{K}|} - x \equiv 0 \mod g(x)$
Since $x \in \mathbb{K}$, we have that $x^{|\mathbb{K}|} - x \equiv 0 \mod g(x)$

¹Will prove the moreover part later.

 To be able to find irreducible factors of high degree, need to find analogue of x^q - x for higher degree irreducibles

$$x^{q} - x = \prod_{a \in \mathbb{F}_{p}} (x - a)$$

$$f_{o} + f_{1} \times F - - + f_{d-1} \times^{d-1}$$

- Lemma: $x^{q^d} x$ is a multiple of any degree d irreducible polynomial over $\mathbb{F}_q[x]$. Moreover, if g(x) is irreducible and divides $x^{q^d} x$, then $\deg(g) = d$.¹
 - Let g(x) be an irreducible polynomial of degree d over $\mathbb{F}_q[x]$
 - 2 Let $\mathbb{K} = \mathbb{F}_q[x]/(g(x))$. \mathbb{K} is a field which contains all polynomials of degree $\leq d-1$
 - Section Practice problem: prove this.
 - **(4)** Thus, for all $\alpha \in \mathbb{K}$, we have $\alpha^{|\mathbb{K}|} \alpha = 0$
 - Since $x \in \mathbb{K}$, we have that $x^{|\mathbb{K}|} x \equiv 0 \mod g(x)$
 - **(** $|\mathbb{K}| = q^d$, since each polynomial of degree $\leq d-1$ is a distinct element

¹Will prove the moreover part later.

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

• Iterate the following for $i = 1, 2, \ldots, \ell$

$$\frac{(\chi-1)(\chi-2)(\chi^2+\chi+1)(\chi^2+3\chi+1)}{g_1(\chi)} = \frac{g_2(\chi)}{g_2(\chi)}$$

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit
 - Compute $g_i(x) = \gcd(g_{\mathbf{f}}(x), x^{q^i} x)$

tonly has degi fractors

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit

• Compute
$$g_i(x) = \gcd(g_i(x), x^{q^i} - x)$$

To complete our full factorization algorithm, we need to generalize the factor splitting trick.

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit
 - Compute $g_i(x) = \gcd(g_i(x), x^{q^i} x)$

To complete our full factorization algorithm, we need to generalize the factor splitting trick.

 Now can assume that g(x) is a product of irreducible factors of same degree d

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit
 - Compute $g_i(x) = \gcd(g_i(x), x^{q^i} x)$

To complete our full factorization algorithm, we need to generalize the factor splitting trick.

Now can assume that g(x) is a product of irreducible factors of same degree d

100 E (E) (E) (E) (E) (D)

• So we need to find a polynomial which is multiple of some of the factors of g, but not all.

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- () Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit
 - Compute $g_i(x) = \gcd(g_i(x), x^{q^i} x)$

To complete our full factorization algorithm, we need to generalize the factor splitting trick.

- Now can assume that g(x) is a product of irreducible factors of same degree d
- So we need to find a polynomial which is multiple of some of the factors of g, but not all.
- Here we simply use the polynomials

$$f_1(x) = x^{(q^d-1)/2} - 1$$
 and $f_2(x) = x^{(q^d-1)/2} + 1$

Now we can factor $g(x) = g_1(x)g_2(x)\cdots g_\ell(x)$ where each $g_t(x)$ is a product of factors of degree exactly t

- () Iterate the following for $i = 1, 2, \ldots, \ell$
- 2 While g(x) not a unit
 - Compute $g_i(x) = \gcd(g_i(x), x^{q^i} x)$

To complete our full factorization algorithm, we need to generalize the factor splitting trick.

- Now can assume that g(x) is a product of irreducible factors of same degree d
- So we need to find a polynomial which is multiple of some of the factors of g, but not all.
- Here we simply use the polynomials

$$f_1(x) = x^{(q^d-1)/2} - 1$$
 and $f_2(x) = x^{(q^d-1)/2} + 1$

• But how do we perform the random step?

 In the warm-up part, we needed to get a random transformation of the roots, by making g(x) = x² - a into h(x) = (x - d)² - c²a. How do we generalize this for higher degree irreducible polynomials?

 In the warm-up part, we needed to get a random transformation of the roots, by making g(x) = x² - a into h(x) = (x - d)² - c²a. How do we generalize this for higher degree irreducible polynomials?

100 E (E) (E) (E) (E) (D)

• We want a map that with high probability contains one of our irreducible factors of degree *d*

- In the warm-up part, we needed to get a random transformation of the roots, by making g(x) = x² - a into h(x) = (x - d)² - c²a. How do we generalize this for higher degree irreducible polynomials?
- We want a map that with high probability contains one of our irreducible factors of degree *d*
- We also saw that for any T(x), the polynomial $T(x)^{q^d} T(x)$ is a multiple of any irreducible factor of degree d and

$$\mathbf{G}^{(\mathbf{z})} \left[\begin{array}{c} \mathbf{\mathcal{G}}^{\mathbf{q}^{d}} - T(x) = \underline{T}(x) \cdot f_{1}(T(x)) \cdot f_{2}(T(x)) \\ \mathbf{\mathcal{G}}^{\mathbf{q}^{d}} - \mathbf{\mathcal{G}} = \mathbf{\mathcal{G}}^{\mathbf{q}^{d}} \mathbf{\mathcal{G}}^{\mathbf{q}^{d}} - \mathbf{\mathcal{G}} \right] \mathbf{\mathcal{G}}^{\mathbf{q}^{d}} \mathbf{\mathcal{G}}^{\mathbf{$$

- In the warm-up part, we needed to get a random transformation of the roots, by making g(x) = x² - a into h(x) = (x - d)² - c²a. How do we generalize this for higher degree irreducible polynomials?
- We want a map that with high probability contains one of our irreducible factors of degree *d*
- We also saw that for any T(x), the polynomial $T(x)^{q^d} T(x)$ is a multiple of any irreducible factor of degree d and

$$T(x)^{q^d} - T(x) = T(x) \cdot f_1(T(x)) \cdot f_2(T(x))$$

• Lemma: let $h(x) \in \mathbb{F}_q[x]$ be irreducible and of degree d, and let D > d. Then:

$$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ \hline \end{array} \xrightarrow{r} & & & & \\ & & & & \\ \hline \end{array} \xrightarrow{r} & & & & \\ \hline \end{array} \xrightarrow{r} & \\ \hline \xrightarrow{r} & \\ \hline \end{array} \xrightarrow{r} & \\ \hline \xrightarrow{r} & \\ \xrightarrow{r} & \\ \hline \xrightarrow{r} & \\ \xrightarrow{r} & \xrightarrow{r} & \\ \xrightarrow{r} & \\ \xrightarrow{r} & \xrightarrow{r} &$$

- In the warm-up part, we needed to get a random transformation of the roots, by making g(x) = x² - a into h(x) = (x - d)² - c²a. How do we generalize this for higher degree irreducible polynomials?
- We want a map that with high probability contains one of our irreducible factors of degree *d*
- We also saw that for any T(x), the polynomial $T(x)^{q^d} T(x)$ is a multiple of any irreducible factor of degree d and

$$T(x)^{q^d} - T(x) = T(x) \cdot f_1(T(x)) \cdot f_2(T(x))$$

2.5 • Lemma: let $h(x) \in \mathbb{F}_q[x]$ be irreducible and of degree d, and let D > d. Then: T mod $f_1 \cdot f_2 \leftarrow Pr_{T(x)}[h(x) \mid f_1(T(x))] \approx \frac{1}{2}$

• Lemma: For any $\underline{T_1, T_2 \in \mathbb{F}_q[x]}$ of degree < d, and irreducible polynomials $f_1, f_2 \in \mathbb{F}_q[x]$ of degree d $\Pr_{T(x)}[T(x) \equiv \underline{T_1} \mod f_1(x) \text{ and } T(x) \equiv \underline{T_2} \mod f_2(x)] \approx \frac{1}{q_1^2}$

where $T(x) \in \mathbb{F}_{n}[x]$ is of degree < 2d - 1

- Input: primitive polynomials $f, g \in \mathbb{Z}[x]$
- **Output:** h = gcd(f, g)
- Algorithm:

• Compute $b = \gcd(LT(f), LT(g))$, and set $B \in \mathbb{N}$

- Input: primitive polynomials $f, g \in \mathbb{Z}[x]$
- **Output:** h = gcd(f, g)
- Algorithm:
 - Compute $b = \operatorname{gcd}(LT(f), LT(g))$, and set $B \in \mathbb{N}$

(ロ) (書) (言) (言) (言) (言) (つ)

- 2 Pick random prime $p \in [2B, 4B]$
- **3** Compute $p(x) = \text{gcd}_{\mathbb{Z}_p[x]}(f, g)$

- **Input**: primitive polynomials $f, g \in \mathbb{Z}[x]$
- **Output:** $h = \gcd(f, g)$
- Algorithm:
 - Compute $b = \operatorname{gcd}(LT(f), LT(g))$, and set $B \in \mathbb{N}$
 - 2 Pick random prime $p \in [2B, 4B]$

 - Sompute p(x) = gcd_{ℤp[x]}(f,g)
 Compute q, f*, g* ∈ ℤ[x] with height < p/2 satisfying:

$$q \equiv bp \mod p, \quad f^* \cdot q \equiv b \cdot f \mod p, \quad g^* \cdot q \equiv b \cdot q \mod p$$

- Input: primitive polynomials $f, g \in \mathbb{Z}[x]$
- **Output:** $h = \gcd(f, g)$
- Algorithm:
 - Compute $b = \gcd(LT(f), LT(g))$, and set $B \in \mathbb{N}$
 - 2 Pick random prime $p \in [2B, 4B]$
 - 3 Compute $p(x) = \text{gcd}_{\mathbb{Z}_p[x]}(f,g)$
 - **Oracle Compute** $q, f^*, g^* \in \mathbb{Z}[x]$ with height < p/2 satisfying:

$$q \equiv bp \mod p, \quad f^* \cdot q \equiv b \cdot f \mod p, \quad g^* \cdot q \equiv b \cdot q \mod p$$

5 If

$$\|f^*\|_1 \cdot \|q\|_1 \le B$$
 and $\|g^*\|_1 \cdot \|q\|_1 \le B$

A D > A B > A B > A B > B 900

Return q.

Otherwise go back to step 2.

- Input: primitive polynomials $f, g \in \mathbb{Z}[x]$
- **Output:** $h = \gcd(f, g)$
- Algorithm:
 - Compute $b = \gcd(LT(f), LT(g))$, and set $B \in \mathbb{N}$
 - 2 Pick random prime $p \in [2B, 4B]$
 - 3 Compute $p(x) = \gcd_{\mathbb{Z}_p[x]}(f,g)$
 - **6** Compute $q, f^*, g^* \in \mathbb{Z}[x]$ with height < p/2 satisfying:

$$q \equiv bp \mod p, \quad f^* \cdot q \equiv b \cdot f \mod p, \quad g^* \cdot q \equiv b \cdot q \mod p$$

5 If

$$\|f^*\|_1 \cdot \|q\|_1 \le B$$
 and $\|g^*\|_1 \cdot \|q\|_1 \le B$

A D > A B > A B > A B > B 900

Return q.

Otherwise go back to step 2.

• Correctness follows by previous slides, and probability the our random prime does not work is $\leq 1/2$.

Acknowledgement

Based entirely on

 Lecture 5 from Madhu's notes http://people.csail.mit.edu/madhu/FT98/

