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Unique Factorization Domains
@ An integral domain R is a unique factorization domain (UFD) if

@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)

@ QI[x] is a PID (and hence UFD)

© any Euclidean domain is a PID (and hence UFD)
@ Q[x,y] is a UFD but not a PID

© Z[x] is a UFD but not a PID

@ Over UFDs, it makes sense to talk about greatest common divisor and

they are very useful in symbolic computation and algebraic geometry.
© Factoring polynomials
@ Irreducible components of hypersurfaces
© Multiplicity of roots, factors and components



Normal forms in UFDs

@ Given a UFD R, let us define some “normal forms:”
© lu: R — R "selects a unit to be special”
@ normal : R — R takes any element to its “special associate”

a = lu(a) - normal(a)
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Normal forms in UFDs

@ Given a UFD R, let us define some “normal forms:”
@ Ilu: R — R “selects a unit to be special”
@ normal : R — R takes any element to its “special associate”

a = lu(a) - normal(a)

@ Examples:
@ Over Z, the units are {1, -1}

lu(a) = sign(a)
@ Normal form over Z would be:
normal(a) = |3
© Over F[x], the units are(F \ {0}
lu(p(x)) = LC(p)

@ Normal form over F[x] would be the monic polynomials

normal(p(x)) = —— - p(x)



Normal forms in UFDs

o Given a UFD R, and f(x) = fy + fix + - - - fyx? € R[x], define
@ content R_[x] — 5 -7 %CJ '*’C
content(f) = ged(fo, . .., fq)

————— e

» .
@ the primitive part pp : R[x] = R[x]

f
content(f)
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Normal forms in UFDs

o Given a UFD R, and f(x) = fy + fix + - - - fyx? € R[x], define
Q content: R[x] =+ R
content(f) = ged(fy, . .., fa)
@ the primitive part pp : R[x] = R[x]

f

Pp(f) = content(f)

e Example: Over Z[x], f(x) = 6x3 —3x>+9
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Normal forms in UFDs

e Given a UFD R, and f(x) = fy + fix + - - - fyx? € R[x], define
© content: R[x] = R

content(f) = ged(fy, ..., fy)
@ the primitive part pp : R[x] = R[x]
- o
Pp(f) = content(f) Bc}’b \ v%°
e Example: Over Z[x], f(x) = 6x3 —3x>+9 o
o R[x] is a UFD, F is the field of fractions of R, and & ~

g(x) = (a0/b) + (a1/b) - x + -+ (ag/b) - x* €|F[x] |

ged(ao, - -, aq)
S\ -0 9d) d content(g)
; an pP(g) content(g)

ck e RO

v|P.

]
O~

content(g) =



Gauss' Lemma

@ Gauss' Lemma: let R be a UFD with field of fractions F. Then the
following hold:
Q For f,g € R[x]

content(fg) = content(f) - content(g) and pp(fg) = pp(f) - pp(g)

@ R[x] is a UFD, and the unique factorization (up to units and ordering)

of f € R[x] is: Comtomt
f(x) = (pr---px) - (Pp(F) - - - pP(fr))
—_—N
where Pn.‘Mi“"‘ VM{-

content(f) =py---px in R

and
pp(f) =fi---f over F[x]
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pe(f) _ 4 PR(F)

h i D
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GCD via field of fractions

We can now compute the GCD over R[x] as via it's field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R
Input: f, g € R[x]
Output: ged(f, g) € R[x]
Algorithm:
@ Compute content(f), content(g), pp(f), pp(g)
@ Let h = gcd(content(f), content(g)) via algorithm for R
© Compute the monic GCD between Pp(f) and pp(f) over F[x] — call
LC(f) LC(f)
it g(x) € Fx]
@ Compute b = gcd(LC(f), LC(g)) via algorithm for R
© Let p=pp(b-q) € R[x]
O Return h-p € R[x]



Example
o f(x) = 6x3 — 42x2 + 72x — 60 and g(x) = 2x% — 6x — 20
cotomt () = 6 comint @) -2
7¢ (£) = >>- ¥+ lax - Lo pp) = 2 3 (o
ko= gqed( combont ({) , Combmi(3) ) = 2,
Q = %cel (‘7@—1K1+ x=-10 | X=3x —l°> = X=5
Yo Txte 0 - lo = (at= - ()(-4) +0(x~3)

X ~3x—- (0 = 'fOCX-S')-%(x-t 2) +O

?:_L-Cx-s) %446(;3‘2*’(0

h= 2

¥ 9ac



Deeper Look at GCD

@ One disadvantage of the previous algorithm: bit complexity of
intermediate numbers can be high
Can we develop another algorithm that works over the ring itself?
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Deeper Look at GCD

@ One disadvantage of the previous algorithm: bit complexity of
intermediate numbers can be high
Can we develop another algorithm that works over the ring itself?
o Before we do that, let's look at the GCD over F[x] (an Euclidean
domain) from an algebraic perspective:

ged(f(x).g(x)) =1 ¥ ¢ &
3 s(x), t(x) € Flx] s.t. [s() - F(x) T £(x) - g(x) = 1
@ We can also assume w.l.o.g. that deg(s) < deg(g) and

deg(t) < deg(f).
e Viewing the equation s(x) - f(x) + t(x) - g(x) =1 as a linear system,

we have: ever IF
so-fo+th-go=1 constant coefficient
— K s
Z Si-fu_i+ti-gi=0 coefficient of degree k » o
i=0

coff- o AGCIH®) ¢ €4 ,(a(ls.k



Sylvester Matrix & Resultant
@ In matrix form (for simplicity deg(f) = 3,deg(g) = 2):
fo 0 g 0 O o\ [1\©

A{-’-{S;—I i fo &1 & O s1 0
=L fi & g | ft|=]0=
f:’» f2 0 g g1 t1 \ 0
0 3 0 0 g to 0
,‘e(ﬂ-( ‘f“(wu(ﬂ
8 0(2‘5({)

) <
o\%(/ﬂA J'd(s) awd  de3 (¥
A)= Ao & MW {2 +{iA
4 ) = 2ot ¥ ct Fdo Bt B3t

"'.1_,%6



Sylvester Matrix & Resultant
@ In matrix form (for simplicity deg(f) = 3,deg(g) = 2):

_ f, 0 0 0 s N

Al+ 4t = L 0 80 0 .

( 3 . i fo g & O s1 X
i & g & | - |to]|= J_Cl

O O O O

1

- ) fo
A!f'&% x i Hh 0 g g t
{z O 0 s 0 0 & tr

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Syl (f, g)

€192 .84 -- ) 64(043

dy-1
i . )J' . )C,dv )



Sylvester Matrix & Resultant
@ In matrix form (for simplicity deg(f) = 3,deg(g) = 2):

o 0 g 0 O ) 1
i fo g1 & O s1 0
b i & & & | |t|=]0
i b 0 & g t1 0
0 5 0 O Jop) to 0

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Syl (f, g)

Definition (Resultant)
The Resultant of f, g is the determinant of the Sylvester Matrix:

C——

Resy(f,g) = det(Syl(f,g))




Sylvester Matrix - General Case

{(ﬂzfo—e(.x(—-'* -evn)(m
%(.K):%OQO‘X -- - % %V\x

£ o .
RN
S%QXCX(g) = éﬂ ;l z-e 8:m - 8}:
P
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Resultants - Properties

@ Resultant between two polynomials f, g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry!

@ An important property is that the resultant is a polynomial over the
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Resultants - Properties

@ Resultant between two polynomials f, g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry!

@ An important property is that the resultant is a polynomial over the
coefficients of f, g

@ JFrom previous slides, another property is:
Resy(f,g) #0 < gcd(f,g) =1 over F[x]

@ The resultant can be defined over R[x], since we didn't use any
divisions!

@ [Extending the property above, we have:
Res.(f,g) #0 < gecd(f,g) € R\ {0} over R[]

In particular, f, g have no common polynomial factors over R[x]!

!As we will frequently see later in the course
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Discriminant
@ A particular case which you have seen before is the discriminant.
e From calculus, we know that f(x) € R[x] has a double root o € R iff
ais a root of f(x) and of f(x)
@ That is, the polynomials f(x)

and f’(x) have a common root.
@ This implies that x — « | ged(f, f')
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Discriminant

@ A particular case which you have seen before is the discriminant.

e From calculus, we know that f(x) € R[x] has a double root o € R iff
ais a root of f(x) and of f(x)

That is, the polynomials f(x) and f/(x) have a common root.
This implies that x — « | ged(f, f')
By the properties of the resultant, we have

Res.(f,f') =0
e The discriminant of f(x) € R|[x] is given by

discx(f) := Resy(f, )



Discriminant

@ A particular case which you have seen before is the discriminant.

e From calculus, we know that f(x) € R[x] has a double root o € R iff
ais a root of f(x) and of f(x)

@ That is, the polynomials f(x) and f’(x) have a common root.

@ This implies that x — « | ged(f, f')

@ By the properties of the resultant, we have J

"N — 5—’_"
Resy(f,f') =0 bt b dac
e The discriminant of f(x) € R|[x] is given by 2o-
discx(f) := Resy(f, )
e Why is it called discriminant? If f(x) = ax? + bx + c, we get

(nove & o

disc,(f) = —a - (b — 4ac)

S : £
Does this look familiar? :) d'm.z“({) =0 ‘e( eﬁ:r‘t’l&c"
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Using Resultant to Compute GCD

@ Now that we know about the resultant of two polynomials, we can
use it to devise modular algorithms in Z[x]

@ We know how to compute GCDs over Euclidean domains F[x].

o ldea: we can compute the GCD of f, g modulo a special prime p and
from this GCD (over Z,[x]) to obtain gecd(f, g) over Z[x]

o Will any pnme do? ' L’( “> éx _‘7 (x4 7.)

f(x)—3x —x*4+3x—1 and g(x) =3x>+5x -2

h(x) :=gcd(f,g) =3x—1

Let's see how our idea will work out...



Example
o f(x) =3x3—x%+3x —1and g(x) =3x%+ 5x — 2

h(x) :=gcd(f,g) =3x—1



Example
o f(x) =3x3>—x?+3x—1and g(x) =3x®+5x — 2
h(x) :=gcd(f,g) =3x—1

e p=3 degree too small

—,q?(x) =+ +L —%@>: +x 42
X2kl = (e)(x-2) T 4
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Example
o f(x) =3x3>—x?+3x—1and g(x) =3x®+5x — 2
h(x) :=gcd(f,g) =3x—1

e p=3 degree too small

e p=>H degree too large
{60 = 3> X" 3x -L
g = 3Rz =3 ()

%Co\zg&](fl 3) = Al

39> —x k-1 = 3™ ')iz (3,(—1) vo
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Example

o f(x) =3x3—x%+3x —1and g(x) =3x%+ 5x — 2

h(x) :=gcd(f,g) =3x—1

e p=3
e p=>5
e p="7

@ What makes a prime bad?

degree too small
degree too large

degree is good



Example
o f(x) =3x3>—x?+3x—1and g(x) =3x®+5x — 2

h(x) :=gcd(f,g) =3x—1

e p=3 degree too small
e p=>H degree too large
ep=7 degree is good
@ What makes a prime bad?

@ 3 is bad because it decreases the degree of both f, g

h= 8(.::(({( %)
LT (b) oycd (AC(() / Le_g‘ﬂ)



Example Q*_l)(-,{'_‘\) é,(_()(uz)

o f(x) =3x3>—x?+3x—1and g(x) =3x®+5x — 2

h(x) :=gcd(f,g) =3x—1

e p=3 degree too small
e p=5<— c((\/\OZiﬂ RM (0h (5/ ) degree too large
ep=7 / degree is good
° What makes a prime bad? exbra Qoctnn e gt
@ 3 is bad because it decreases the degree of both f, g

o Let's take a look at Res,(f/h,g/h)  Rao, (X-ZH ) x¢ L)

L 2 o> =95 st
d("" WAL
( wo;r:(’mﬂe S
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Example
o f(x) =3x3—x%+3x —1and g(x) =3x%+ 5x — 2

h(x) :=gcd(f,g) =3x—1

p=3 degree too small
p=>5 degree too large
p=7 degree is good

What makes a prime bad?
3 is bad because it decreases the degree of both f, g
Let's take a look at Resy(f/h,g/h)
Are these the only bad primes? YES!
If p is a prime which does not divide b = ged(LC(f),LC(g)), then:
Q LC(h)|b
© deg(gedy, (f,g)) > deg(h)
© p does not divide Resx(?g) < deg(gedy, (q(f, g)) = deg(h)
h‘nh



Proof

e If pis a prime which does not divide b = ged(LC(f),LC(g)), then:

o ctls  pA Lelh)
Lcn) | gt (celp) L)) =)

= pA La(h)



Proof
e If pis a prime which does not divide b = ged(LC(f),LC(g)), then:

Q@ LC(h)|b
Q deg(gedy,(f,8)) = deg(h)

deg(m) = desy gy()
\q 1 “f(?] =5 )’\ l 65 o/et 7Lft’<3



Proof

e If pis a prime which does not divide b = ged(LC(f),LC(g)), then:
Q LC(h)|b
@ deg(gedy, (f.g)) > deg(h)
© p does not divide Resxgﬁ,ga « deg(gedz, (. g)) = deg(h)
h

o)

e 74p x) = ,EQAx [ﬁ (S/V\) iZO

o L tg =L &> A E3=h
n

] = k] E 9a

U
£ 3 by ene cpe
I



What is the size of output?

@ Now that we have seen that the resultant is closely related to GCD
and its modular versions, let's see how we can use it to bound the
complexity of the GCD

%évovx ,e‘ ] € 7LE‘]
whot 10 Ha  complx ity
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What is the size of output?

@ Now that we have seen that the resultant is closely related to GCD
and its modular versions, let's see how we can use it to bound the
complexity of the GCD

o Given a polynomial f(x) € Z[x], f(x) = fo + fix + --- + fgx9, we
consider two norms:

@ The height of f is the magnitude of its largest coefficient:

[l = max, 1

@ The ¢; norm of f(x) is:
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What is the size of output?
@ Now that we have seen that the resultant is closely related to GCD
and its modular versions, let's see how we can use it to bound the

complexity of the GCD
o Given a polynomial f(x) € Z[x], f(x) = fo + fix + --- + fgx9, we
consider two norms:
© The height of f is the magnitude of its largest coefficient:

[flloc = max |fy]
0<k<d

@ The {1 norm of f(x) is:
d

IFll = Il

k=0

Proposition (Coefficient Bound on Factors)

Given f(x), g(x), h(x) € Z[x] such that f = gh and deg(f) = d, we have:
@ [hlloo < (d+1)Y2-27 - ||f|ls
@ |lhlloc - llglloo < [1All1 - llglly < (d +1)1/2- 27 ||flo




Bounding Bad Primes

o Let A= max(||f||oo,||&llcc) and d = deg(f) > deg(g)

@ Bad primes are the ones which divide gcd(LT(f), LT(g)) or divide
Resx(f/h,g/h). How to bound their complexity?
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o Let A= max(||f||oo,||&llcc) and d = deg(f) > deg(g)

@ Bad primes are the ones which divide ged(LT(f), LT(g)) or divide
Resx(f/h,g/h). How to bound their complexity?

e We already know that LC(f) < ||f]|loc < A and LC(g) < ||g]|co < A.
How to bound the absolute value of Res,(f/h,g/h)?
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Bounding Bad Primes

o Let A= max(||f]lc, [lg]loc) and d = deg(f) > deg(g)

@ Bad primes are the ones which divide gcd(LT(f), LT (g)) or divide
Resx(f/h,g/h). How to bound their complexity?

e We already know that LC(f) < ||f|cc < A and LC(g) < |lg]lec < A.
How to bound the absolute value of Res,(f/h,g/h)?

e We know that Res,(f/h, g/h) is the determinant of the Sylvester

matrix of f/h and g/h,
@ By lemma from previous slide, ||f/h||s, |lg/hll < (d +1)¥/2.29A
@ Thus, Res,(f/h,g/h) is a determinant of a “2d x 2d matrix" with
entries bounded by (d + 1)/2.29A

© So can bound | Res,(f/h, g/h)| by the straightforward bound:

| Resx(f/h,g/h)] < (2d)! - [(d + 1)/2 - 2/ A 20l

[T
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@ Output: h = gcd(f, g)



Algorithm

e Input: primitive polynomials 7, g € Z[x]
e Output: h = gcd(f, g)
@ Algorithm:
@ Compute b = ged(LT(f),LT(g)), and set B € N
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Algorithm

e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f, g)
@ Algorithm:

© Compute b = ged(LT(f),LT(g)), and set B € N
@ Pick random prime p € [2B,4B]

© Compute p(x) = gedy, 14(f, 8) ole 3 C@ ) = deﬁ (M)



Algorithm

e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f, g)
@ Algorithm:
© Compute b = ged(LT(f),LT(g)), and set B € N
@ Pick random prime p € [2B,4B]
o ComPUte p(X) = ngZP[X](f7g)
@ Compute q,1*, g* € Z|x]| with height < p/2 satisfying:

g=bplWmod p, f*-gq=b-f modp, g*-g=b-q modp



Algorithm 2y -1 &

e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f, g)
@ Algorithm:
© Compute b = ged(LT(f),LT(g)), and set B € N
—> @ Pick random prime p € [2B,4B]

o ComPUte p(X) = ngZP[x](f7g)
@ Compute q,1*, g* € Z|x]| with height < p/2 satisfying:

g=bp modp, f*-q=b-f modp, g*-gq=b-g modp

Q If
[*]1-llglls < B and g1 [lals < B

Return g.
Otherwise go back to step 2.



Algorithm

e Input: primitive polynomials 7, g € Z[x]
@ Output: h = gcd(f,g)
@ Algorithm:
© Compute b = ged(LT(f),LT(g)), and set B € N
@ Pick random prime p € [2B,4B]
o ComPUte p(X) = ngZP[X](f7g)
@ Compute q,1*, g* € Z|x]| with height < p/2 satisfying:

g=bp modp, f*-q=b-f modp, g*-gq=b-g modp

@If

Return g.
Otherwise go back to step 2.

1]l llgll < B and [[g"[l1-[lqlL < B

@ Correctness follows by previous slides, and probability the our random
prime does not work is < 1/2.



@ Conclusion



Conclusion

In today's lecture, we learned

@ Resultants, Discriminants and their properties

@ Capture whether two polynomials have common factor
@ Capture complexity of coefficients in ged(f, g)

© Capture whether polynomial has multiple factors

© Much more to be seen!

@ How to use the resultant to design and analyze a modular gcd
algorithm
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