
Lecture 7: Resultants & Modular GCD algorithm

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 31, 2021

1 / 76

Overview

Resultants & Discriminants

Modular GCD algorithm in Z[x]

Conclusion

Acknowledgements

2 / 76

Resultants & Discriminants

Modular GCD algorithm in Z[x]

Conclusion

Acknowledgements

3 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

4 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

5 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)

6 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)
2 Q[x] is a PID (and hence UFD)

7 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)
2 Q[x] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)

8 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)
2 Q[x] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y] is a UFD but not a PID

9 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)
2 Q[x] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y] is a UFD but not a PID
5 Z[x] is a UFD but not a PID

10 / 76

Unique Factorization Domains
An integral domain R is a unique factorization domain (UFD) if

1 every element in R is expressed as a product of finitely many
irreducible elements

2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)
Examples of PIDs and UFDs

1 Z is a PID (and hence UFD)
2 Q[x] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y] is a UFD but not a PID
5 Z[x] is a UFD but not a PID

Over UFDs, it makes sense to talk about greatest common divisor and
they are very useful in symbolic computation and algebraic geometry.

1 Factoring polynomials
2 Irreducible components of hypersurfaces
3 Multiplicity of roots, factors and components

11 / 76

Normal forms in UFDs
Given a UFD R, let us define some “normal forms:”

1 lu : R → R “selects a unit to be special”
2 normal : R → R takes any element to its “special associate”

a = lu(a) · normal(a)

12 / 76

Normal forms in UFDs
Given a UFD R, let us define some “normal forms:”

1 lu : R → R “selects a unit to be special”
2 normal : R → R takes any element to its “special associate”

a = lu(a) · normal(a)

Examples:
1 Over Z, the units are {1,−1}

lu(a) = sign(a)

2 Normal form over Z would be:

normal(a) = |a|

13 / 76

Normal forms in UFDs
Given a UFD R, let us define some “normal forms:”

1 lu : R → R “selects a unit to be special”
2 normal : R → R takes any element to its “special associate”

a = lu(a) · normal(a)

Examples:
1 Over Z, the units are {1,−1}

lu(a) = sign(a)

2 Normal form over Z would be:

normal(a) = |a|
3 Over F[x], the units are F \ {0}

lu(p(x)) = LC (p)

4 Normal form over F[x] would be the monic polynomials

normal(p(x)) =
1

LC (p)
· p(x)

14 / 76

Normal forms in UFDs

Given a UFD R, and f (x) = f0 + f1x + · · · fdxd ∈ R[x], define
1 content : R[x] → R

content(f) = gcd(f0, . . . , fd)

2 the primitive part pp : R[x] → R[x]

pp(f) =
f

content(f)

15 / 76

Normal forms in UFDs

Given a UFD R, and f (x) = f0 + f1x + · · · fdxd ∈ R[x], define
1 content : R[x] → R

content(f) = gcd(f0, . . . , fd)

2 the primitive part pp : R[x] → R[x]

pp(f) =
f

content(f)

Example: Over Z[x], f (x) = 6x3 − 3x2 + 9

16 / 76

Normal forms in UFDs

Given a UFD R, and f (x) = f0 + f1x + · · · fdxd ∈ R[x], define
1 content : R[x] → R

content(f) = gcd(f0, . . . , fd)

2 the primitive part pp : R[x] → R[x]

pp(f) =
f

content(f)

Example: Over Z[x], f (x) = 6x3 − 3x2 + 9

R[x] is a UFD, F is the field of fractions of R, and

g(x) = (a0/b) + (a1/b) · x + · · ·+ (ad/b) · xd ∈ F[x]

content(g) =
gcd(a0, . . . , ad)

b
and pp(g) =

g

content(g)

17 / 76

Gauss’ Lemma

Gauss’ Lemma: let R be a UFD with field of fractions F. Then the
following hold:

1 For f , g ∈ R[x]

content(fg) = content(f) · content(g) and pp(fg) = pp(f) · pp(g)

2 R[x] is a UFD, and the unique factorization (up to units and ordering)
of f ∈ R[x] is:

f (x) = (p1 · · · pk) · (pp(f1) · · · pp(f�))

where
content(f) = p1 · · · pk in R

and
pp(f) = f1 · · · f� over F[x]

18 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

19 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

20 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)

21 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)
2 Let h = gcd(content(f), content(g)) via algorithm for R

22 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)
2 Let h = gcd(content(f), content(g)) via algorithm for R

3 Compute the monic GCD between
pp(f)

LC (f)
and

pp(f)

LC (f)
over F[x] – call

it q(x) ∈ F[x]

23 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)
2 Let h = gcd(content(f), content(g)) via algorithm for R

3 Compute the monic GCD between
pp(f)

LC (f)
and

pp(f)

LC (f)
over F[x] – call

it q(x) ∈ F[x]
4 Compute b = gcd(LC (f), LC (g)) via algorithm for R

24 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)
2 Let h = gcd(content(f), content(g)) via algorithm for R

3 Compute the monic GCD between
pp(f)

LC (f)
and

pp(f)

LC (f)
over F[x] – call

it q(x) ∈ F[x]
4 Compute b = gcd(LC (f), LC (g)) via algorithm for R
5 Let p = pp(b · q) ∈ R[x]

25 / 76

GCD via field of fractions

We can now compute the GCD over R[x] as via it’s field of fractions
F[x], which we know is an Euclidean Domain

Assume we can compute the GCD of two elements in R

Input: f , g ∈ R[x]

Output: gcd(f , g) ∈ R[x]

Algorithm:
1 Compute content(f), content(g), pp(f), pp(g)
2 Let h = gcd(content(f), content(g)) via algorithm for R

3 Compute the monic GCD between
pp(f)

LC (f)
and

pp(f)

LC (f)
over F[x] – call

it q(x) ∈ F[x]
4 Compute b = gcd(LC (f), LC (g)) via algorithm for R
5 Let p = pp(b · q) ∈ R[x]
6 Return h · p ∈ R[x]

26 / 76

Example

f (x) = 6x3 − 42x2 + 72x − 60 and g(x) = 2x2 − 6x − 20

27 / 76

Deeper Look at GCD
One disadvantage of the previous algorithm: bit complexity of
intermediate numbers can be high

Can we develop another algorithm that works over the ring itself?

28 / 76

Deeper Look at GCD
One disadvantage of the previous algorithm: bit complexity of
intermediate numbers can be high

Can we develop another algorithm that works over the ring itself?

Before we do that, let’s look at the GCD over F[x] (an Euclidean
domain) from an algebraic perspective:

gcd(f (x), g(x)) = 1 ⇔
∃ s(x), t(x) ∈ F[x] s.t. s(x) · f (x) + t(x) · g(x) = 1

29 / 76

Deeper Look at GCD
One disadvantage of the previous algorithm: bit complexity of
intermediate numbers can be high

Can we develop another algorithm that works over the ring itself?

Before we do that, let’s look at the GCD over F[x] (an Euclidean
domain) from an algebraic perspective:

gcd(f (x), g(x)) = 1 ⇔
∃ s(x), t(x) ∈ F[x] s.t. s(x) · f (x) + t(x) · g(x) = 1

We can also assume w.l.o.g. that deg(s) < deg(g) and
deg(t) < deg(f).
Viewing the equation s(x) · f (x) + t(x) · g(x) = 1 as a linear system,
we have:

s0 · f0 + t0 · g0 = 1 constant coefficient

k�

i=0

si · fk−i + ti · gk−i = 0 coefficient of degree k

30 / 76

Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f) = 3, deg(g) = 2):

f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2

·

s0
s1
t0
t1
t2

=

1
0
0
0
0

31 / 76

Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f) = 3, deg(g) = 2):

f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2

·

s0
s1
t0
t1
t2

=

1
0
0
0
0

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Sylx(f , g)

32 / 76

Sylvester Matrix & Resultant
In matrix form (for simplicity deg(f) = 3, deg(g) = 2):

f0 0 g0 0 0
f1 f0 g1 g0 0
f2 f1 g2 g1 g0
f3 f2 0 g2 g1
0 f3 0 0 g2

·

s0
s1
t0
t1
t2

=

1
0
0
0
0

Definition (Sylvester Matrix)

The matrix arising from the linear system is called Sylvester Matrix. It is
denoted by

Sylx(f , g)

Definition (Resultant)

The Resultant of f , g is the determinant of the Sylvester Matrix:

Resx(f , g) = det(Sylx(f , g))

33 / 76

Sylvester Matrix - General Case

34 / 76

Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry1

An important property is that the resultant is a polynomial over the
coefficients of f , g

1As we will frequently see later in the course
35 / 76

Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry1

An important property is that the resultant is a polynomial over the
coefficients of f , g

From previous slides, another property is:

Resx(f , g) �= 0 ⇔ gcd(f , g) = 1 over F[x]

1As we will frequently see later in the course
36 / 76

Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry1

An important property is that the resultant is a polynomial over the
coefficients of f , g

From previous slides, another property is:

Resx(f , g) �= 0 ⇔ gcd(f , g) = 1 over F[x]

The resultant can be defined over R[x], since we didn’t use any
divisions!

1As we will frequently see later in the course
37 / 76

Resultants - Properties

Resultant between two polynomials f , g is an algebraic invariant, and
it is very important in computational algebra and algebraic geometry1

An important property is that the resultant is a polynomial over the
coefficients of f , g

From previous slides, another property is:

Resx(f , g) �= 0 ⇔ gcd(f , g) = 1 over F[x]

The resultant can be defined over R[x], since we didn’t use any
divisions!

Extending the property above, we have:

Resx(f , g) �= 0 ⇔ gcd(f , g) ∈ R \ {0} over R[x]

In particular, f , g have no common polynomial factors over R[x]!

1As we will frequently see later in the course
38 / 76

Discriminant

A particular case which you have seen before is the discriminant.

39 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

40 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

41 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)

42 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0

43 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0

The discriminant of f (x) ∈ R[x] is given by

discx(f) := Resx(f , f
�)

44 / 76

Discriminant

A particular case which you have seen before is the discriminant.

From calculus, we know that f (x) ∈ R[x] has a double root α ∈ R iff
α is a root of f (x) and of f �(x)

That is, the polynomials f (x) and f �(x) have a common root.

This implies that x − α | gcd(f , f �)
By the properties of the resultant, we have

Resx(f , f
�) = 0

The discriminant of f (x) ∈ R[x] is given by

discx(f) := Resx(f , f
�)

Why is it called discriminant? If f (x) = ax2 + bx + c , we get

discx(f) = −a · (b2 − 4ac)

Does this look familiar? :)

45 / 76

Resultants & Discriminants

Modular GCD algorithm in Z[x]

Conclusion

Acknowledgements

46 / 76

Using Resultant to Compute GCD

Now that we know about the resultant of two polynomials, we can
use it to devise modular algorithms in Z[x]

47 / 76

Using Resultant to Compute GCD

Now that we know about the resultant of two polynomials, we can
use it to devise modular algorithms in Z[x]
We know how to compute GCDs over Euclidean domains F[x].

48 / 76

Using Resultant to Compute GCD

Now that we know about the resultant of two polynomials, we can
use it to devise modular algorithms in Z[x]
We know how to compute GCDs over Euclidean domains F[x].
Idea: we can compute the GCD of f , g modulo a special prime p and
from this GCD (over Zp[x]) to obtain gcd(f , g) over Z[x]

49 / 76

Using Resultant to Compute GCD

Now that we know about the resultant of two polynomials, we can
use it to devise modular algorithms in Z[x]
We know how to compute GCDs over Euclidean domains F[x].
Idea: we can compute the GCD of f , g modulo a special prime p and
from this GCD (over Zp[x]) to obtain gcd(f , g) over Z[x]
Will any prime do?

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

Let’s see how our idea will work out...

50 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

51 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

52 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

53 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

p = 7 degree is good

54 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

p = 7 degree is good

What makes a prime bad?

55 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

p = 7 degree is good

What makes a prime bad?

3 is bad because it decreases the degree of both f , g

56 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

p = 7 degree is good

What makes a prime bad?

3 is bad because it decreases the degree of both f , g

Let’s take a look at Resx(f /h, g/h)

57 / 76

Example

f (x) = 3x3 − x2 + 3x − 1 and g(x) = 3x2 + 5x − 2

h(x) := gcd(f , g) = 3x − 1

p = 3 degree too small

p = 5 degree too large

p = 7 degree is good

What makes a prime bad?

3 is bad because it decreases the degree of both f , g

Let’s take a look at Resx(f /h, g/h)

Are these the only bad primes? YES!
If p is a prime which does not divide b = gcd(LC (f), LC (g)), then:

1 LC (h) | b
2 deg(gcdZp [x](f , g)) ≥ deg(h)
3 p does not divide Resx(f , g) ⇔ deg(gcdZp [x](f , g)) = deg(h)

58 / 76

Proof

If p is a prime which does not divide b = gcd(LC (f), LC (g)), then:
1 LC (h) | b

59 / 76

Proof

If p is a prime which does not divide b = gcd(LC (f), LC (g)), then:
1 LC (h) | b
2 deg(gcdZp [x](f , g)) ≥ deg(h)

60 / 76

Proof

If p is a prime which does not divide b = gcd(LC (f), LC (g)), then:
1 LC (h) | b
2 deg(gcdZp [x](f , g)) ≥ deg(h)
3 p does not divide Resx(f , g) ⇔ deg(gcdZp [x](f , g)) = deg(h)

61 / 76

What is the size of output?
Now that we have seen that the resultant is closely related to GCD
and its modular versions, let’s see how we can use it to bound the
complexity of the GCD

62 / 76

What is the size of output?
Now that we have seen that the resultant is closely related to GCD
and its modular versions, let’s see how we can use it to bound the
complexity of the GCD
Given a polynomial f (x) ∈ Z[x], f (x) = f0 + f1x + · · ·+ fdx

d , we
consider two norms:

1 The height of f is the magnitude of its largest coefficient:

�f �∞ = max
0≤k≤d

|fk |

2 The �1 norm of f (x) is:

�f �1 =
d�

k=0

|fd |

63 / 76

What is the size of output?
Now that we have seen that the resultant is closely related to GCD
and its modular versions, let’s see how we can use it to bound the
complexity of the GCD
Given a polynomial f (x) ∈ Z[x], f (x) = f0 + f1x + · · ·+ fdx

d , we
consider two norms:

1 The height of f is the magnitude of its largest coefficient:

�f �∞ = max
0≤k≤d

|fk |

2 The �1 norm of f (x) is:

�f �1 =
d�

k=0

|fd |

Proposition (Coefficient Bound on Factors)

Given f (x), g(x), h(x) ∈ Z[x] such that f = gh and deg(f) = d, we have:

1 �h�∞ ≤ (d + 1)1/2 · 2d · �f �∞
2 �h�∞ · �g�∞ ≤ �h�1 · �g�1 ≤ (d + 1)1/2 · 2d · �f �∞

64 / 76

Bounding Bad Primes

Let A = max(�f �∞, �g�∞) and d = deg(f) ≥ deg(g)

Bad primes are the ones which divide gcd(LT (f), LT (g)) or divide
Resx(f /h, g/h). How to bound their complexity?

65 / 76

Bounding Bad Primes

Let A = max(�f �∞, �g�∞) and d = deg(f) ≥ deg(g)

Bad primes are the ones which divide gcd(LT (f), LT (g)) or divide
Resx(f /h, g/h). How to bound their complexity?

We already know that LC (f) ≤ �f �∞ ≤ A and LC (g) ≤ �g�∞ ≤ A.
How to bound the absolute value of Resx(f /h, g/h)?

66 / 76

Bounding Bad Primes

Let A = max(�f �∞, �g�∞) and d = deg(f) ≥ deg(g)

Bad primes are the ones which divide gcd(LT (f), LT (g)) or divide
Resx(f /h, g/h). How to bound their complexity?

We already know that LC (f) ≤ �f �∞ ≤ A and LC (g) ≤ �g�∞ ≤ A.
How to bound the absolute value of Resx(f /h, g/h)?

We know that Resx(f /h, g/h) is the determinant of the Sylvester
matrix of f /h and g/h,

1 By lemma from previous slide, �f /h�∞, �g/h�∞ ≤ (d + 1)1/2 · 2dA

67 / 76

Bounding Bad Primes

Let A = max(�f �∞, �g�∞) and d = deg(f) ≥ deg(g)

Bad primes are the ones which divide gcd(LT (f), LT (g)) or divide
Resx(f /h, g/h). How to bound their complexity?

We already know that LC (f) ≤ �f �∞ ≤ A and LC (g) ≤ �g�∞ ≤ A.
How to bound the absolute value of Resx(f /h, g/h)?

We know that Resx(f /h, g/h) is the determinant of the Sylvester
matrix of f /h and g/h,

1 By lemma from previous slide, �f /h�∞, �g/h�∞ ≤ (d + 1)1/2 · 2dA
2 Thus, Resx(f /h, g/h) is a determinant of a “2d × 2d matrix” with

entries bounded by (d + 1)1/2 · 2dA

68 / 76

Bounding Bad Primes

Let A = max(�f �∞, �g�∞) and d = deg(f) ≥ deg(g)

Bad primes are the ones which divide gcd(LT (f), LT (g)) or divide
Resx(f /h, g/h). How to bound their complexity?

We already know that LC (f) ≤ �f �∞ ≤ A and LC (g) ≤ �g�∞ ≤ A.
How to bound the absolute value of Resx(f /h, g/h)?

We know that Resx(f /h, g/h) is the determinant of the Sylvester
matrix of f /h and g/h,

1 By lemma from previous slide, �f /h�∞, �g/h�∞ ≤ (d + 1)1/2 · 2dA
2 Thus, Resx(f /h, g/h) is a determinant of a “2d × 2d matrix” with

entries bounded by (d + 1)1/2 · 2dA
3 So can bound |Resx(f /h, g/h)| by the straightforward bound:

|Resx(f /h, g/h)| ≤ (2d)! · [(d + 1)1/2 · 2dA]2d

69 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

70 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f), LT (g)), and set B ∈ N

71 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)

72 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p

73 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p

5 If
�f ∗�1 · �q�1 ≤ B and �g∗�1 · �q�1 ≤ B

Return q.
Otherwise go back to step 2.

74 / 76

Algorithm

Input: primitive polynomials f , g ∈ Z[x]
Output: h = gcd(f , g)

Algorithm:
1 Compute b = gcd(LT (f), LT (g)), and set B ∈ N
2 Pick random prime p ∈ [2B , 4B]
3 Compute p(x) = gcdZp [x](f , g)
4 Compute q, f ∗, g∗ ∈ Z[x] with height < p/2 satisfying:

q ≡ bp mod p, f ∗ · q ≡ b · f mod p, g∗ · q ≡ b · q mod p

5 If
�f ∗�1 · �q�1 ≤ B and �g∗�1 · �q�1 ≤ B

Return q.
Otherwise go back to step 2.

Correctness follows by previous slides, and probability the our random
prime does not work is ≤ 1/2.

75 / 76

Resultants & Discriminants

Modular GCD algorithm in Z[x]

Conclusion

Acknowledgements

76 / 76

Conclusion

In today’s lecture, we learned

Resultants, Discriminants and their properties
1 Capture whether two polynomials have common factor
2 Capture complexity of coefficients in gcd(f , g)
3 Capture whether polynomial has multiple factors
4 Much more to be seen!

How to use the resultant to design and analyze a modular gcd
algorithm

77 / 76

Acknowledgement

Based largely on

Arne’s notes

https://cs.uwaterloo.ca/~r5olivei/courses/

2021-winter-cs487/lec7-ref.pdf

Lectures 3 and 4 from Madhu’s notes
http://people.csail.mit.edu/madhu/FT98/

78 / 76

