Lecture 6: Chinese Remainder Theorem & Algorithm

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

January 27, 2021

Overview

Background on Rings and Quotients

Chinese Remainder Theorem

Variants on Chinese Remaindering

Conclusion

Acknowledgements

@ Background on Rings and Quotients

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+becl
© / is closed under multiplication by elements of R

ael,seR=s-acl

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+becl
© / is closed under multiplication by elements of R
ael,seR=s-acl

@ Examples:
© (0) is ideal generated by the 0 element of the ring

O+0 = O
neR oo =°

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+bel
@ |/ is closed under multiplication by elements of R
ael,seR=s-acl

@ Examples:
© (0) is ideal generated by the 0 element of the ring

@ Risanideal Oymaaked by Qg,) =R

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition
abel=at+bel

© / is closed under multiplication by elements of R

ael,seR=s-acl

@ Examples:

© (0) is ideal generated by the 0 element of the ring

@ R is an ideal

© ring of integers Z then the set of all even numbers is the ideal
generated by 2, denoted (2)

2k , ke = 2w e (2

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+bel
@ |/ is closed under multiplication by elements of R
ael,seR=s-acl

@ Examples:

© (0) is ideal generated by the 0 element of the ring

@ R is an ideal

© ring of integers Z then the set of all even numbers is the ideal
generated by 2, denoted (2)

@ In Q[x] the set of all polynomials whose constant coefficient is zero is

the ideal (x) generated by x ?(o) a r)° =0
fpercabd | o = GO Tl

evo luetiom ot @Ay %lﬂ\llld.lv\o x | pw pur

Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+bel
@ [is closed under multiplication by elements of R
ael,seR=s-acl

@ Examples:

© (0) is ideal generated by the 0 element of the ring

@ R is an ideal

© ring of integers Z then the set of all even numbers is the ideal
generated by 2, denoted (2)

@ In Q[x] the set of all polynomials whose constant coefficient is zero is
the ideal (x) generated by x

O In Q[x, y] the set of all polynomials whose constant coefficient is zero
is the ideal (x,y) generated by x and y

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

74 in Yegen msolufe A,

3,5 2 ~s
5-3:-2 ¢ (&)
oddd ~ L 74_1:%0'\5)*'.)

2

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1

74 2 7 74/%1
(2>

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:
@ R =7 and | = (2) gives the field Z;

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:

@ R =7 and | = (2) gives the field Z;
@ R =7 and | = (6) gives the set of integers modulo 6, Zg

Z¢ nst Qidd beecowst
2 oandl 3> otk 2els Hivinso

22 =0 =5 23 de net
heve iavewe 1N Zle.= nst Liedel

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:

@ R =7 and | = (2) gives the field Z;
@ R =7 and | = (6) gives the set of integers modulo 6, Zg

@ An element g € R is irreducible if g is not a unitand g =a- b =
either a or b are a unit
- = ' diviree 4

2 irotelaci b
& rnedmchu G =173

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:
@ R =7 and | = (2) gives the field Z;
@ R =7 and | = (6) gives the set of integers modulo 6, Zg
@ An element g € R is irreducible if g isnot a unitand g=a-b =
either a or b are a unit.

@ Anideal I C R is prime if for any a,b € R, if ab€ | then a€ | or

bel
— gvern 4 LA omd e hia

Csi«\cieQ,k

Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /

a~bsa—-bel

@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:
@ R =7 and | = (2) gives the field Z;
@ R =7 and | = (6) gives the set of integers modulo 6, Zg
@ An element g € R is irreducible if g is not a unitand g =a- b =
either a or b are a unit.
@ Anideal I C R is prime if for any a,b € R, if ab€ | then a€ | or
bel

@ Two ideals I,J C R are coprime if | + J =R

a 1.‘? Co @rim & gc&(a‘b) =1

over Z E x demels ol Euclidliom

Lot vhw %ca((ot,b) = Sorth
-J—-'—:(.") J =(»)

T+ 2 gco\(a\lg)

pel-B tb

4 e £+3J => T+J =R .

Unique Factorization Domains
demain! ning R with w3 zexs diio=x .

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)
@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)

Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)
@ QI[x] is a PID (and hence UFD)

Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)
@ QI[x] is a PID (and hence UFD)
© any Euclidean domain is a PID (and hence UFD)

Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)

@ QI[x] is a PID (and hence UFD)

© any Euclidean domain is a PID (and hence UFD)
@ Q[x,y] is a UFD but not a PID

Gowns " Lemma : R vp» UED&D RIxJ i UFD

Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure (:f
0 ¢(1)=1) =
@ o(a+ b) = 6(a) + o(b) Pie) °
© ¢(ab) = ¢(a) - ¢(b)

,E " add L R | Seyem

vl Commauly
% | [
= add
Yund {.
=

Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure

Q 4(1)=1
Q o(a+ b) = ¢(a) + ¢(b)
Q ¢(ab) = ¢(a) - #(b)

e Natural homomorphism between a ring R and its quotient R//

o —> o

Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure

Q ¢(1)=1
Q o(a+ b) = ¢(a) + ¢(b)
Q ¢(ab) = ¢(a) - #(b)

e Natural homomorphism between a ring R and its quotient R//

@ Two rings R, S are isomorphic, denoted R ~ S if there are two
homomorphisms ¢ : R — S and ¢ : § — R such that

pop:S—S and Yoop:R—=R
are the identity homomorphisms. ¢ () (./J = id <

Yo = ld@ ¢oql(_o\) = O

Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure

Q ¢(1)=1
Q o(a+ b) = ¢(a) + ¢(b)
Q ¢(ab) = ¢(a) - #(b)

e Natural homomorphism between a ring R and its quotient R//

@ Two rings R, S are isomorphic, denoted R ~ S if there are two
homomorphisms ¢ : R — S and ¢ : § — R such that

potp:S—S and Yodp:R—R

are the identity homomorphisms.

o Example:
Z@ ~ Zz X Z3

Thin s QM‘H(N&M Cank GC, i
Chinne TRemadinelz 2hwn

@ Chinese Remainder Theorem

Chinese Remainder Theorem

@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.

Chinese Remainder Theorem

@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
@ Chinese Remainder Theorem

R/(m) >~ R/(m1) x --- x R/(ms)

Chinese Remainder Theorem

@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
@ Chinese Remainder Theorem

R/(m) = R/(my) x --- x R/(mj)
o Example when R=7Z: m=15 m =3, my =5

Z15 2’Z3 X Z5

with homomorphisms:

a mod1l5—(a mod3, a mod)5)

and
o w1

>

(a,a) —s 6-0-5-a = . m«d (s

("‘3) — 6-3-5;& —) G-Sx, %j —‘—(’X“a)

(x mod3, y mod5)—6-y—5-x mod1b

Chinese Remainder Theorem
@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
@ Chinese Remainder Theorem
R/(m) ~ R/(my) x - x R/(ms)
o Example when R=7Z: m=15 m =3, m =5
Z15 ~ Zg X Z5
— —_— .
with homomorphisms: big Aamall ningy
a mod 15— (a mod3, a modb)

and
(x mod3, y mod5)—6-y—5-x mod15

@ Because it is an isomorphism, can perform computations with either
representation!

Wethivg gvet Aol Ny Con AV Computatis
Rall reeneunce,!

Chinese Remainder Theorem

Setup: let R be Euclidean Domain and my,..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
Chinese Remainder Theorem
R/(m) =~ R/(my) x - x R/(ms)
Example when R=7: m=15 m =3,m =5
Z15 ~ Z3 X Z5
with homomorphisms:
a mod 15— (a mod3, a modb)

and
(x mod3, y mod5)—6-y—5-x mod 15

Because it is an isomorphism, can perform computations with either
representation!

How to prove this theorem? And why is it useful to have this
isomorphism? modular algorithms!

Chinese Remainder Theorem - Proof for R = 7Z

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z)(m) =~ Z/(my) x - - X Z/(ms)

Chinese Remainder Theorem - Proof for R = 7Z

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z)(m) =~ Z/(my) x - - X Z/(ms)

Chinese Remainder Theorem - Proof for R = 7Z

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:

a mod m— (a mod my, ..., a mod my)

Chinese Remainder Theorem - Proof for R = 7Z

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:

a mod m— (a mod my, ..., a mod my)

@ How can we compute the other homomorphism?
@ Idea is similar to Lagrange interpolation!

Chinese Remainder Theorem - Proof for R = 7Z

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:

a mod m— (a mod my, ..., a mod my)

@ How can we compute the other homomorphism?
@ Idea is similar to Lagrange interpolation!
@ Find elements L; € Z, such that
-

Li =0; mod mj

{ vnsd Y
O wed Wy #1

Chinese Remainder Theorem - Proof for R = 7Z ®Z’<3

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:

a mod m— (a mod my, ..., a mod my)

@ How can we compute the other homomorphism?
@ Idea is similar to Lagrange interpolation!
@ Find elements L; € Z, such that

Li =0; mod mj
© Then we have
(uy mod my, ..., us mod mg) = Ly + -+ usls mod m

is the other homomorphism

Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.

A S —

\[s,--m,--l—t,--m/m,-zl
7 M; ond Y/q. alos
JF i ()odﬂw(/x

Cortint
T~ %)
S#¢ .

T Geos)

e

Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.
s,--m,--l—t,--m/m,-zl

e Taking L; = t; - m/m; solves this part.

Li= ¢¢- Ven; = T 10 my
54

Y0, | Li = (=0 wmdwy (§2i)

(__\'= t an =4 - »m = 4 wmsd mj

Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.
s,--m,--l—t,--m/m,-zl

e Taking L; = t; - m/m; solves this part.

@ This is what we did in our earlier example!

-7[—(5 ~ 7[_3 X 745
%C_&('b ,€7= i
Q-3+ COs =4

Ly = =3 Gy -5

L, = G

Complexity of Computing Homomorphisms
@ To compute the first homomorphism, we simply need to compute a

mod m; for each m;, which takes O(log m - log m;)
—— —

divinen w/

R AevnaiweU
D Rsgrm - Legm; -

Q\ wmi) < Qg
C x.Q/Q%.LYY\ = @ (L\%MBE ¥ 9ao

Complexity of Computing Homomorphisms

@ To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)
@ Computing second homomorphism:
o input: (u1,...,Us) € Ly X -+ X Lpy, _
e output: a € Z,, such that a = u; mod m; \ G LI;B

Complexity of Computing Homomorphisms

@ To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)
@ Computing second homomorphism:
o input: (u1,...,Us) € Ly X -+ X Lpy,
e output: a € Z,, such that a = u; mod m;

@ By previous slide, enough to compute L;'s

Complexity of Computing Homomorphisms

@ To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)
@ Computing second homomorphism:
o input: (u1,...,Us) € Ly X -+ X Lpy,
e output: a € Z,, such that a = u; mod m;
@ By previous slide, enough to compute L;'s

o First, need to compute m (as we are only given m;'s as input). We
assume here m; > 2

Complexity of Computing Homomorphisms

@ To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)

Computing second homomorphism:
o input: (u1,...,Us) € Zmy X -+ X L,
e output: a € Z,, such that a = u; mod m;

By previous slide, enough to compute L;’s

First, need to compute m (as we are only given m;'s as input). We

assume here m; >2 O (aQ,ng\. © Qoy ™Ma)

e Computing mymy, then mymoms, until we compute m, we have:
< ™ s
c- Zlog -mj_1) - log m; < c - log(-zzlogm,-gc-(logm)2
_’—\/s =

OUV"‘(’*L“(& 2 A TR AL _Q%(_\- m) QBg"“)
O (Regm) sprrakiom.

Complexity of Computing Homomorphisms

To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)
Computing second homomorphism:

o input: (uy,...,Us) € Ly X+ X L,
e output: a € Z,, such that a = u; mod m;

By previous slide, enough to compute L;’s

First, need to compute m (as we are only given m;'s as input). We
assume here m; > 2

Computing mymy, then mymoms, until we compute m, we have:

c- Zlog(ml <-mj_1) - logm; < c-log(m Zlog m; < ¢ - (log m)?
j i=2

Now we can compute each elemenmy our division algorithm in

O(log(m) log(m;)) time — ™
(-i() _g(—)t O(“Q’% m; - .,QGS(_ /M;))

Complexity of Computing Homomorphisms

o Now we have computed m, m/my, ..., m/m; in time O(log? m) ops

Complexity of Computing Homomorphisms

o Now we have computed m, m/my, ..., m/mg in time O(log? m) ops

@ What is left is to compute the interpolators L;'s

Complexity of Computing Homomorphisms

o Now we have computed m, m/my, ..., m/m; in time O(log? m) ops
@ What is left is to compute the interpolators L;'s

e We know that L; = t; - m/mj, where

sim; + t,-m/m,- =1

Extended Eucidaom
A.Qgerti%m

Complexity of Computing Homomorphisms

o Now we have computed m, m/my, ..., m/mg in time O(log? m) ops
@ What is left is to compute the interpolators L;'s

e We know that L; = t; - m/mj, where
sim; + t,-m/m,- =1

@ Thus, we need the extended Euclidean algorithm to compute (s;, t;)

Complexity of Computing Homomorphisms

Now we have computed m, m/my, ..., m/ms in time O(log? m) ops

What is left is to compute the interpolators L;'s

We know that L; = t; - m/mj, where

simj; + t,-m/m,- =1

—

Thus, we need the extended Euclidean algorithm to compute (s;, t;)

From previous class, cost is O(log(m/m;) - log(m;))

Complexity of Computing Homomorphisms

Now we have computed m, m/my, ..., m/ms in time O(log? m) ops

What is left is to compute the interpolators L;'s

We know that L; = t; - m/mj, where

simj; + t,-m/m,- =1

Thus, we need the extended Euclidean algorithm to compute (s;, t;)

From previous class, cost is O(log(m/m;) - log(m;))

Gives total running time of O(log? m)

Cuagy-wy) > @ Lt - Uslos
e m

Complexity of Computing Homomorphisms

Now we have computed m, m/my, ..., m/ms in time O(log? m) ops

What is left is to compute the interpolators L;'s

We know that L; = t; - m/mj, where

simj; + t,-m/m,- =1

Thus, we need the extended Euclidean algorithm to compute (s;, t;)

From previous class, cost is O(log(m/m;) - log(m;))

Gives total running time of O(log? m)

Both homomorphisms can be computed with O(Iog2 m) operations.

@ Variants on Chinese Remaindering

Mixed Radix Representation

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

Mixed Radix Representation

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as
a—

a=a+a-m+a-mm+---+as_1-mmy---ms_1
Lo“‘o;o*l(O'L[== avs-l)
o & 7Lm|
O~ & 7£—m-,_

O ¢ 7"mm

Mixed Radix Representation

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as

a=a +a-m~+a-mm+---+as_1-mm---ms_1

@ Proof by induction

@ Basecase: s=1 o = Qg med AT

Mixed Radix Representation

a = Coto,-] G~p-1) b)
L?ao-t

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as
a=a +a-m~+a-mm+---+as_1-mm---ms_1

@ Proof by induction

© Basecase: s=1
@ Assuming we know for s — 1 numbers my,..., ms_1

= (L‘ ‘(Y\sd wm (Mo --- Ma—([>% =_h- M- W,y
+ ol

ey

-‘néucu"\ "'L‘S?°““’"° o.' M;M Co.o, -~ 1 Xn- 7-7
6oL <M =y b & XLy ond D Mgt

Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT

setup) - N~
Coppime

@ Incremental Chinese remaindering computes

(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT
setup)

@ Incremental Chinese remaindering computes
(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

o Why would we want to do that?
@ in some applications, we sometimes do not know in advance how big
the output integer will be

Incremental Chinese Remaindering
ﬂ"\‘u
o> Pipgy we need “rim
@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT

setup)
@ Incremental Chinese remaindering computes

(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

o Why would we want to do that?
@ in some applications, we sometimes do not know in advance how big

the output integer will be
o thus, we compute the result modulo many primes (which we have to

decide “on the fly")

Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT
setup)

@ Incremental Chinese remaindering computes
(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

@ Why would we want to do that?
@ in some applications, we sometimes do not know in advance how big
the output integer will be
o thus, we compute the result modulo many primes (which we have to
decide “on the fly")
o if we get same number modulo pyps - - - px for some value of k, we

“guess” that we have the right result.
o< Q‘?’-?B % O med (7(«1?1%

Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT
setup)

@ Incremental Chinese remaindering computes
(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

@ Why would we want to do that?

@ in some applications, we sometimes do not know in advance how big
the output integer will be

o thus, we compute the result modulo many primes (which we have to
decide “on the fly")

o if we get same number modulo pyps - - - px for some value of k, we
“guess” that we have the right result.

e Good for randomized algorithms

@ Conclusion

Conclusion

In today's lecture, we learned

@ Properties of Rings and its quotients

@ Chinese Remainder Theorem (CRT)

@ Analysis of computation of homomorphisms in CRT
e Mixed radix representation (alternative to CRT)

°

Iterative CRT and how one could use it to develop randomized
algorithms with lower bit complexity

Acknowledgement

o Based largely on Arne's notes

https://cs.uwaterloo.ca/~rbolivei/courses/
2021-winter-cs487/lec6-ref .pdf

