Lecture 6: Chinese Remainder Theorem \& Algorithm

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

January 27, 2021

Overview

- Background on Rings and Quotients
- Chinese Remainder Theorem
- Variants on Chinese Remaindering
- Conclusion
- Acknowledgements
- Background on Rings and Quotients
- Chinese Remainder Theorem
- Variants on Chinese Remaindering
- Conclusion
- Acknowledgements

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring

$$
\begin{gathered}
0+0=0 \\
r \in R \quad r \cdot 0=0
\end{gathered}
$$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal generated by $(1)=R$
$\left(g_{1}, \ldots, g_{m}\right):=$ ideal generated by elements

$$
g \cdots g_{m}
$$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
$2 k, k \in \mathbb{Z} \Rightarrow 2 k \in(2)$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
(a) In $\mathbb{Q}[x]$ the set of all polynomials whose constant coefficient is zero is the ideal (x) generated by x

$$
\begin{aligned}
& \text { the ideal }(x) \text { generated by } x \\
& \left.\frac{\{p(x) \in \mathbb{Q}[x] \mid p(0)=0}{\text { evaluation et print }}=\frac{(x)}{\text { generation }} \begin{array}{l}
p(0)=p_{0}=0 \\
p(2)=p_{1} x+\cdots+ \\
x^{2} \mid p(x)
\end{array}\right)
\end{aligned}
$$

Ring Basics

- Given a ring R, an ideal $I \subset R$ is a subset of the ring R such that:
(1) I is closed under addition

$$
a, b \in I \Rightarrow a+b \in I
$$

(2) I is closed under multiplication by elements of R

$$
a \in I, s \in R \Rightarrow s \cdot a \in I
$$

- Examples:
(1) (0) is ideal generated by the 0 element of the ring
(2) R is an ideal
(3) ring of integers \mathbb{Z} then the set of all even numbers is the ideal generated by 2 , denoted (2)
(9) In $\mathbb{Q}[x]$ the set of all polynomials whose constant coefficient is zero is the ideal (x) generated by x
(5) In $\mathbb{Q}[x, y]$ the set of all polynomials whose constant coefficient is zero is the ideal (x, y) generated by x and y

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

T_{2} integus module (2)

$$
\begin{aligned}
& 3,5 \quad 3 \sim 5 \\
& 5-3=2 \in(2) \\
& \text { odd } \sim 1 \\
& \text { even } \sim 0
\end{aligned}
$$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo I

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I

$$
\mathbb{Z}_{2}:=\mathbb{Z} / \frac{2 \pi}{(2)}
$$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo I

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the set of integers modulo $6, \mathbb{Z}_{6}$
\mathbb{Z}_{6} not fielel because
2 and 3 are zero divisses $2 \cdot 3=0 \Rightarrow 2,3$ do not
have inverse in $7_{6} \Rightarrow n_{2} t$ field

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the set of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either \underline{a} or \underline{b} are a unit.
diviner 1
2 isoceducible
6 reducible $6=2 \cdot 3$

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the set of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either a or b are a unit.
- An ideal $I \subset R$ is prime if for any $a, b \in R$, if $a b \in I$ then $\underline{a \in I}$ or $b \in I$ over \mathbb{Z} prince and irreducible csinciels

Quotient Rings

- Given a ring R, and an ideal $I \subset R$, we can form equivalence classes of elements of R modulo $/$

$$
a \sim b \Leftrightarrow a-b \in I
$$

- If we only consider these equivalence classes, we have the quotient ring R / I
- Examples:
(1) $R=\mathbb{Z}$ and $I=(2)$ gives the field \mathbb{Z}_{2}
(2) $R=\mathbb{Z}$ and $I=(6)$ gives the set of integers modulo $6, \mathbb{Z}_{6}$
- An element $q \in R$ is irreducible if q is not a unit and $q=a \cdot b \Rightarrow$ either a or b are a unit.
- An ideal $I \subset R$ is prime if for any $a, b \in R$, if $a b \in I$ then $a \in I$ or $b \in I$

- Two ideals $I, J \subset R$ are coprime if $I+J=R$
a, b copnime $\Leftrightarrow \operatorname{gcd}(a, b)=1$
over \mathbb{C} Extenelid Euclidian Algorithm $\operatorname{gcd}(a, b)=s a+z b$

$$
\begin{aligned}
& I=(a) \quad J=(b) \\
& I+J \Rightarrow \operatorname{gcd}(a, b)
\end{aligned}
$$

sa tb

$$
1 \in I+J \Rightarrow I+J=R .
$$

Unique Factorization Domains

 domain: ring R with ne zero divisor.- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of PIDs and UFDs
$\{$ (1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)
(3) any Euclidean domain is a PID (and hence UFD)

Unique Factorization Domains

- An integral domain R is a unique factorization domain (UFD) if
(1) every element in R is expressed as a product of finitely many irreducible elements
(2) Every irreducible element $p \in R$ yields a prime ideal (p)
- A very special kind of UFD, which we have seen a lot, is a principal ideal domain (PID): R is a PID if every ideal of R is principal (generated by one element)
- Examples of RIDs and UFDs
(1) \mathbb{Z} is a PID (and hence UFD)
(2) $\mathbb{Q}[x]$ is a PID (and hence UFD)
(3) any Euclidean domain is a PID (and hence UFD)
(9) $\mathbb{Q}[x, y]$ is a UFD but not a PID

Gauss' lemma: R is UFD $\Leftrightarrow R[x]$ is UFD

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$

$$
\phi\left(I_{R}\right)=\mathcal{I}_{S}
$$

(3) $\phi(a b)=\phi(a) \cdot \phi(b)$

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I

$$
a \longmapsto \bar{a}
$$

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I
- Two rings R, S are isomorphic, denoted $R \simeq S$ if there are two homomorphisms $\phi: R \rightarrow S$ and $\psi: S \rightarrow R$ such that

$$
\phi \circ \psi: S \rightarrow S \quad \text { and } \quad \psi \circ \phi: R \rightarrow R
$$

are the identity homomorphisms.

$$
\psi \circ \phi=i d_{R}
$$

$$
\begin{aligned}
& \phi \circ \psi=i d_{s} \\
& \phi \circ \psi(a)=a
\end{aligned}
$$

Ring Homomorphisms

- A homomorphism between rings R, S is a map $\phi: R \rightarrow S$ preserving the ring structure
(1) $\phi(1)=1$
(2) $\phi(a+b)=\phi(a)+\phi(b)$
(3) $\phi(a b)=\phi(a) \cdot \phi(b)$
- Natural homomorphism between a ring R and its quotient R / I
- Two rings R, S are isomorphic, denoted $R \simeq S$ if there are two homomorphisms $\phi: R \rightarrow S$ and $\psi: S \rightarrow R$ such that

$$
\phi \circ \psi: S \rightarrow S \quad \text { and } \quad \psi \circ \phi: R \rightarrow R
$$

are the identity homomorphisms.

- Example:

$$
\mathbb{Z}_{6} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3}
$$

This
particular case

- Background on Rings and Quotients
- Chinese Remainder Theorem
- Variants on Chinese Remaindering
- Conclusion
- Acknowledgements

Chinese Remainder Theorem

- Setup: let R be Euclidean Domain and $m_{1}, \ldots, m_{s} \in R$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.

Chinese Remainder Theorem

- Setup: let R be Euclidean Domain and $m_{1}, \ldots, m_{s} \in R$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
R /(m) \simeq R /\left(m_{1}\right) \times \cdots \times R /\left(m_{s}\right)
$$

Chinese Remainder Theorem

- Setup: let R be Euclidean Domain and $m_{1}, \ldots, m_{s} \in R$ be pairwise coprime, ie. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
R /(m) \simeq R /\left(m_{1}\right) \times \cdots \times R /\left(m_{s}\right)
$$

- Example when $R=\mathbb{Z}: m=15, m_{1}=3, m_{2}=5$

$$
\mathbb{Z}_{15} \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{5}
$$

with homomorphisms:

$$
a \bmod 15 \rightarrow(a \bmod 3, a \bmod 5)
$$

and
$(a, a) \longmapsto 6 \cdot a-5 \cdot a=a \bmod 15$
$(x, y) \longmapsto 6 \cdot y-5 x \longmapsto\left(-5 x_{A}, y\right)=(x, y)_{\text {oc }}$

Chinese Remainder Theorem

- Setup: let R be Euclidean Domain and $m_{1}, \ldots, m_{s} \in R$ be pairwise coprime, ie. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
R /(m) \simeq R /\left(m_{1}\right) \times \cdots \times R /\left(m_{s}\right)
$$

- Example when $R=\mathbb{Z}: m=15, m_{1}=3, m_{2}=5$
with homomorphisms: $\underset{\text { big small rings }}{ }$

$$
a \bmod 15 \rightarrow(a \bmod 3, a \bmod 5)
$$

and

$$
(x \bmod 3, y \bmod 5) \rightarrow 6 \cdot y-5 \cdot x \bmod 15
$$

- Because it is an isomorphism, can perform computations with either representation!
working over small rings com save computetis hal resources!

Chinese Remainder Theorem

- Setup: let R be Euclidean Domain and $m_{1}, \ldots, m_{s} \in R$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
R /(m) \simeq R /\left(m_{1}\right) \times \cdots \times R /\left(m_{s}\right)
$$

- Example when $R=\mathbb{Z}: m=15, m_{1}=3, m_{2}=5$

$$
\mathbb{Z}_{15} \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{5}
$$

with homomorphisms:

$$
a \bmod 15 \rightarrow(a \bmod 3, a \bmod 5)
$$

and

$$
(x \bmod 3, y \bmod 5) \rightarrow 6 \cdot y-5 \cdot x \bmod 15
$$

- Because it is an isomorphism, can perform computations with either representation!
- How to prove this theorem? And why is it useful to have this isomorphism?

Chinese Remainder Theorem - Proof for $R=\mathbb{Z}$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

Chinese Remainder Theorem - Proof for $R=\mathbb{Z}$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

Chinese Remainder Theorem - Proof for $R=\mathbb{Z}$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

- One homomorphism is easy:

$$
a \bmod m \rightarrow\left(a \bmod m_{1}, \ldots, a \bmod m_{s}\right)
$$

Chinese Remainder Theorem - Proof for $R=\mathbb{Z}$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

- One homomorphism is easy:

$$
a \bmod m \rightarrow\left(a \bmod m_{1}, \ldots, a \bmod m_{s}\right)
$$

- How can we compute the other homomorphism?
(1) Idea is similar to Lagrange interpolation!

Chinese Remainder Theorem - Proof for $R=\mathbb{Z}$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

- One homomorphism is easy:

$$
a \bmod m \rightarrow\left(a \bmod m_{1}, \ldots, a \bmod m_{s}\right)
$$

- How can we compute the other homomorphism?
(1) Idea is similar to Lagrange interpolation!
(2) Find elements $L_{i} \in \mathbb{Z}_{m}$ such that

$$
L_{i} \equiv \delta_{i j} \bmod m_{j}
$$

$\left\{\begin{array}{l}1 \bmod m_{i} \\ 0 \bmod m_{j} j \neq i\end{array}\right.$

Chinese Remainder Theorem - Proof for $R=\mathbb{Z} \leftrightarrow[x]$

- Setup: $m_{1}, \ldots, m_{s} \in \mathbb{Z}$ be pairwise coprime, i.e. $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j$. Let $m=m_{1} \cdots m_{s}$.
- Chinese Remainder Theorem

$$
\mathbb{Z} /(m) \simeq \mathbb{Z} /\left(m_{1}\right) \times \cdots \times \mathbb{Z} /\left(m_{s}\right)
$$

- One homomorphism is easy:

$$
a \bmod m \rightarrow\left(a \bmod m_{1}, \ldots, a \bmod m_{s}\right)
$$

- How can we compute the other homomorphism?
(1) Idea is similar to Lagrange interpolation!
(2) Find elements $L_{i} \in \mathbb{Z}_{m}$ such that

$$
L_{i} \equiv \delta_{i j} \bmod m_{j}
$$

(3) Then we have
$\left(u_{1} \bmod m_{1}, \ldots, u_{s} \bmod m_{s}\right) \rightarrow u_{1} L_{1}+\cdots+u_{s} L_{s} \bmod m$
is the other homomorphism

Finding the interpolators L_{i}

- This part follows from the fact that m_{i} 's are pairwise coprime.

Finding the interpolators L_{i}

- This part follows from the fact that m_{i} 's are pairwise coprime.
$\bullet \underline{\operatorname{gcd}\left(m_{i}, m / m_{i}\right)}=1 \Rightarrow \exists \begin{aligned} & \exists \underline{s_{i}, t_{i} \in \mathbb{Z} \text { s.t. }} \\ & \end{aligned}$
$\prod m_{j} \quad m_{i}$ and m / m_{i} also $j \neq i$ pairwise corrine

$$
\frac{\prod_{j \neq i}\left(x-\alpha_{j}\right)}{\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)}
$$

Finding the interpolators L_{i}

- This part follows from the fact that m_{i} 's are pairwise coprime.
- $\operatorname{gcd}\left(m_{i}, m / m_{i}\right)=1 \Rightarrow \exists s_{i}, t_{i} \in \mathbb{Z}$ st.

$$
s_{i} \cdot m_{i}+t_{i} \cdot m / m_{i}=1
$$

- Taking $L_{i}=t_{i} \cdot m / m_{i}$ solves this part.

$$
\begin{aligned}
& L_{i}=t_{i} \cdot m / m_{i}=t_{i} \cdot \prod_{j \neq i} m_{j} \\
& m_{j} \mid L_{i} \Rightarrow L_{i} \equiv 0 \bmod m_{j} \quad(j \neq i) \\
& L_{i}=t_{i} \cdot \frac{m}{m_{i}}=1-s_{i} m_{i} \equiv 1 \bmod m_{i}
\end{aligned}
$$

Finding the interpolators L_{i}

- This part follows from the fact that m_{i} 's are pairwise coprime.
- $\operatorname{gcd}\left(m_{i}, m / m_{i}\right)=1 \Rightarrow \exists s_{i}, t_{i} \in \mathbb{Z}$ s.t.

$$
s_{i} \cdot m_{i}+t_{i} \cdot m / m_{i}=1
$$

- Taking $L_{i}=t_{i} \cdot m / m_{i}$ solves this part.
- This is what we did in our earlier example!

$$
\begin{gathered}
\mathbb{L}_{15} \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{5} \\
\operatorname{gcd}(3,5)=1 \\
2 \cdot 3+(-1) \cdot 5=1 \\
L_{1}=-5 \quad 6 y-5 x
\end{gathered}
$$

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
division $\omega /$ remainder

$$
\begin{aligned}
& c \cdot \sum_{i=1}^{s} \log m \cdot \log m_{i}= \\
&= c \log m \sum_{i=1}^{\infty} \log m_{i} \\
& \log \left(\prod_{i=1}^{n} m_{i}\right)=\log m \\
&= c \log _{\sigma}^{2} m=O\left(\log ^{2} m\right)
\end{aligned}
$$

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
- Computing second homomorphism:
- input: $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$
- output: $a \in \mathbb{Z}_{m}$ such that $a=u_{i} \bmod m_{i}$

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
- Computing second homomorphism:
- input: $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$
- output: $a \in \mathbb{Z}_{m}$ such that $a=u_{i} \bmod m_{i}$
- By previous slide, enough to compute L_{i} 's

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
- Computing second homomorphism:
- input: $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$
- output: $a \in \mathbb{Z}_{m}$ such that $a=u_{i} \bmod m_{i}$
- By previous slide, enough to compute L_{i} 's
- First, need to compute m (as we are only given m_{i} 's as input). We assume here $m_{i} \geq 2$

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
- Computing second homomorphism:
- input: $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$
- output: $a \in \mathbb{Z}_{m}$ such that $a=u_{i} \bmod m_{i}$
- By previous slide, enough to compute L_{i} 's
- First, need to compute m (as we are only given m_{i} 's as input). We assume here $m_{i} \geq 2-\bigcirc\left(\log m_{1} \cdot \log m_{2}\right)$
- Computing $m_{1} m_{2}$, then $m_{1} m_{2} m_{3}$, until we compute m, we have:

$$
c \cdot \sum_{i=2}^{s} \overbrace{\text { computes } \cdot m_{1}}^{\log \left(m_{1} \cdots m_{i-1}\right)} \cdot \log m_{i} \leq \underline{c} \cdot \underline{\log m} \cdot \log (m) \cdot \underbrace{s}_{\log \left(\prod_{i=2}^{\left.\sum_{i=2} m_{i}\right)} \leq \log (m)\right.} \log m_{i} \leq c \cdot(\log m)^{2}
$$

Complexity of Computing Homomorphisms

- To compute the first homomorphism, we simply need to compute a $\bmod m_{i}$ for each m_{i}, which takes $O\left(\log m \cdot \log m_{i}\right)$
- Computing second homomorphism:
- input: $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{s}}$
- output: $a \in \mathbb{Z}_{m}$ such that $a=u_{i} \bmod m_{i}$
- By previous slide, enough to compute L_{i} 's
- First, need to compute m (as we are only given m_{i} 's as input). We assume here $m_{i} \geq 2$
- Computing $m_{1} m_{2}$, then $m_{1} m_{2} m_{3}$, until we compute m, we have:
$c \cdot \sum_{i=2}^{s} \log \left(m_{1} \cdots m_{i-1}\right) \cdot \log m_{i} \leq c \cdot \log (m) \cdot \sum_{i=2}^{s} \log m_{i} \leq c \cdot(\log m)^{2}$
- Now we can compute each element m / m_{i} by our division algorithm in $O\left(\log (m) \log \left(m_{i}\right)\right)$ time

$$
O\left(\log m_{i} \cdot \log \left(m / m_{i}\right)\right)
$$

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolators L_{i} 's

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolator L_{i} 's
- We know that $L_{i}=t_{i} \cdot m / m_{i}$, where

$$
s_{i} m_{i}+t_{i} m / m_{i}=1
$$

Extended Euclidean
Algorithm

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolators L_{i} 's
- We know that $L_{i}=t_{i} \cdot m / m_{i}$, where

$$
s_{i} m_{i}+t_{i} m / m_{i}=1
$$

- Thus, we need the extended Euclidean algorithm to compute $\left(s_{i}, t_{i}\right)$

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolators L_{i} 's
- We know that $L_{i}=t_{i} \cdot m / m_{i}$, where

$$
s_{i} m_{i}+t_{i} m / m_{i}=1
$$

- Thus, we need the extended Euclidean algorithm to compute $\left(s_{i}, t_{i}\right)$
- From previous class, cost is $O\left(\log \left(m / m_{i}\right) \cdot \log \left(m_{i}\right)\right)$

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolators L_{i} 's
- We know that $L_{i}=t_{i} \cdot m / m_{i}$, where

$$
s_{i} m_{i}+t_{i} m / m_{i}=1
$$

- Thus, we need the extended Euclidean algorithm to compute $\left(s_{i}, t_{i}\right)$
- From previous class, cost is $O\left(\log \left(m / m_{i}\right) \cdot \log \left(m_{i}\right)\right)$
- Gives total running time of $O\left(\log ^{2} m\right)$

$$
\left(u_{1}, \ldots, u_{s}\right) \stackrel{u_{1} L_{1}+\cdots u_{\Delta} L_{\Delta}}{\substack{ \\m o d}}
$$

Complexity of Computing Homomorphisms

- Now we have computed $m, m / m_{1}, \ldots, m / m_{s}$ in time $O\left(\log ^{2} m\right)$ ops
- What is left is to compute the interpolators L_{i} 's
- We know that $L_{i}=t_{i} \cdot m / m_{i}$, where

$$
s_{i} m_{i}+t_{i} m / m_{i}=1
$$

- Thus, we need the extended Euclidean algorithm to compute $\left(s_{i}, t_{i}\right)$
- From previous class, cost is $O\left(\log \left(m / m_{i}\right) \cdot \log \left(m_{i}\right)\right)$
- Gives total running time of $O\left(\log ^{2} m\right)$

Both homomorphisms can be computed with $O\left(\log ^{2} m\right)$ operations.

- Background on Rings and Quotients
- Chinese Remainder Theorem
- Variants on Chinese Remaindering
- Conclusion
- Acknowledgements

Mixed Radix Representation

- Setup: $0 \leq a<m=m_{1} \cdots m_{s}$, where the $m_{i} \geq 2$ are integers which are not necessarily coprime

Mixed Radix Representation

- Setup: $0 \leq a<m=m_{1} \cdots m_{s}$, where the $m_{i} \geq 2$ are integers which are not necessarily coprime
- Theorem: Can write a uniquely as

$$
\begin{aligned}
& a=a_{0}+a_{1} \cdot m_{1}+a_{2} \cdot m_{1} m_{2}+\cdots+a_{s-1} \cdot m_{1} m_{1} \cdots m_{s-1} \\
& \left(a_{0}, a_{1}, a_{2} \cdots, a_{s-1}\right) \\
& a_{0} \in \overbrace{m_{1}} \\
& a_{1} \in \mathbb{C m}_{2} \\
& a_{i} \in \mathbb{C m}_{i+1}
\end{aligned}
$$

Mixed Radix Representation

- Setup: $0 \leq a<m=m_{1} \cdots m_{s}$, where the $m_{i} \geq 2$ are integers which are not necessarily coprime
- Theorem: Can write a uniquely as

$$
a=a_{0}+a_{1} \cdot m_{1}+a_{2} \cdot m_{1} m_{2}+\cdots+a_{s-1} \cdot m_{1} m_{1} \cdots m_{s-1}
$$

- Proof by induction
(1) Base case: $s=1$

$$
a=a_{0} \quad \operatorname{mad} m_{1}
$$

Mixed Radix Representation

$$
\begin{aligned}
a=\left(0,0,-1 a_{s-2},\right. & b \\
& b_{a_{s-1}}
\end{aligned}
$$

- Setup: $0 \leq a<m=m_{1} \cdots m_{s}$, where the $m_{i} \geq 2$ are integers which are not necessarily coprime
- Theorem: Can write a uniquely as

$$
a=a_{0}+a_{1} \cdot m_{1}+a_{2} \cdot m_{1} m_{2}+\cdots+a_{s-1} \cdot m_{1} m_{1} \cdots m_{s-1}
$$

- Proof by induction
(1) Base case: $s=1$
(2) Assuming we know for $s-1$ numbers m_{1}, \ldots, m_{s-1}

$$
a=a^{\prime} \text { mod } m_{1} m_{2} \cdots m_{s-1} \quad a=\frac{b}{t} \cdot \frac{m_{1} \cdots m_{0-1}}{a^{\prime}}
$$

induction hypothesis a^{\prime} uniquely $\left(a_{0}, \cdots, a_{n-2}\right)$ $0 \leqslant a<m \Rightarrow b \in \mathbb{C}_{\mathrm{m}}$ and b unique ace

Incremental Chinese Remaindering

- Setup: here we are back to the setup that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (the CRT setup)

- Incremental Chinese remaindering computes

Coprime
$\left(a \bmod m_{1}\right),\left(a \bmod m_{1} m_{2}\right), \cdots,\left(a \bmod m_{1} m_{2} \cdots m_{s-1}\right)$

Incremental Chinese Remaindering

- Setup: here we are back to the setup that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (the CRT setup)
- Incremental Chinese remaindering computes
$\left(a \bmod m_{1}\right),\left(a \bmod m_{1} m_{2}\right), \cdots,\left(a \bmod m_{1} m_{2} \cdots m_{s-1}\right)$
- Why would we want to do that?
- in some applications, we sometimes do not know in advance how big the output integer will be

Incremental Chinese Remaindering

- Setup: here we are back to the setup that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (the CRT setup)
- Incremental Chinese remaindering computes
$\left(a \bmod m_{1}\right),\left(a \bmod m_{1} m_{2}\right), \cdots,\left(a \bmod m_{1} m_{2} \cdots m_{s-1}\right)$
- Why would we want to do that?
- in some applications, we sometimes do not know in advance how big the output integer will be
- thus, we compute the result modulo many primes (which we have to decide "on the fly")

Incremental Chinese Remaindering

- Setup: here we are back to the setup that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (the CRT setup)
- Incremental Chinese remaindering computes
$\left(a \bmod m_{1}\right),\left(a \bmod m_{1} m_{2}\right), \cdots,\left(a \bmod m_{1} m_{2} \cdots m_{s-1}\right)$
- Why would we want to do that?
- in some applications, we sometimes do not know in advance how big the output integer will be
- thus, we compute the result modulo many primes (which we have to decide "on the fly")
- if we get same number modulo $p_{1} p_{2} \cdots p_{k}$ for some value of k, we "guess" that we have the right result.
$a<P_{1} p_{2} p_{3}$
$a \equiv a \bmod p_{1} p_{2} p_{3} p_{4}$

Incremental Chinese Remaindering

- Setup: here we are back to the setup that $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (the CRT setup)
- Incremental Chinese remaindering computes
$\left(a \bmod m_{1}\right),\left(a \bmod m_{1} m_{2}\right), \cdots,\left(a \bmod m_{1} m_{2} \cdots m_{s-1}\right)$
- Why would we want to do that?
- in some applications, we sometimes do not know in advance how big the output integer will be
- thus, we compute the result modulo many primes (which we have to decide "on the fly")
- if we get same number modulo $p_{1} p_{2} \cdots p_{k}$ for some value of k, we "guess" that we have the right result.
- Good for randomized algorithms
- Background on Rings and Quotients
- Chinese Remainder Theorem
- Variants on Chinese Remaindering
- Conclusion
- Acknowledgements

Conclusion

In today's lecture, we learned

- Properties of Rings and its quotients
- Chinese Remainder Theorem (CRT)
- Analysis of computation of homomorphisms in CRT
- Mixed radix representation (alternative to CRT)
- Iterative CRT and how one could use it to develop randomized algorithms with lower bit complexity

Acknowledgement

- Based largely on Arne's notes

$$
\begin{gathered}
\text { https://cs.uwaterloo.ca/~r5olivei/courses/ } \\
\text { 2021-winter-cs487/lec6-ref.pdf }
\end{gathered}
$$

