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Ring Basics

o Given a ring R, an ideal | C R is a subset of the ring R such that:
@ / is closed under addition

abel=a+bel
@ [ is closed under multiplication by elements of R
ael,seR=s-acl

@ Examples:

© (0) is ideal generated by the 0 element of the ring

@ R is an ideal

© ring of integers Z then the set of all even numbers is the ideal
generated by 2, denoted (2)

@ In Q[x] the set of all polynomials whose constant coefficient is zero is
the ideal (x) generated by x

O In Q[x, y] the set of all polynomials whose constant coefficient is zero
is the ideal (x,y) generated by x and y




Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /
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Quotient Rings

@ Given a ring R, and an ideal | C R, we can form equivalence classes
of elements of R modulo /
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@ If we only consider these equivalence classes, we have the quotient
ring R/1
@ Examples:
@ R =7 and | = (2) gives the field Z;
@ R =7 and | = (6) gives the set of integers modulo 6, Zg
@ An element g € R is irreducible if g is not a unitand g =a- b =
either a or b are a unit.
@ Anideal I C R is prime if for any a,b € R, if ab€ | then a€ | or
bel

@ Two ideals I,J C R are coprime if | + J =R
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Unique Factorization Domains

e An integral domain R is a unique factorization domain (UFD) if
@ every element in R is expressed as a product of finitely many
irreducible elements
@ Every irreducible element p € R yields a prime ideal (p)

@ A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

@ Examples of PIDs and UFDs

@ Zis a PID (and hence UFD)

@ QI[x] is a PID (and hence UFD)

© any Euclidean domain is a PID (and hence UFD)
@ Q[x,y] is a UFD but not a PID
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Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure ( :f
0 ¢(1)=1 ) =
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Ring Homomorphisms

@ A homomorphism between rings R, S is a map ¢ : R — S preserving
the ring structure

Q ¢(1)=1
Q o(a+ b) = ¢(a) + ¢(b)
Q ¢(ab) = ¢(a) - #(b)

e Natural homomorphism between a ring R and its quotient R//

@ Two rings R, S are isomorphic, denoted R ~ S if there are two
homomorphisms ¢ : R — S and ¢ : § — R such that

potp:S—S and Yodp:R—R

are the identity homomorphisms.

o Example:
Z@ ~ Zz X Z3
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Chinese Remainder Theorem

@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
@ Chinese Remainder Theorem

R/(m) = R/(my) x --- x R/(mj)
o Example when R=7Z: m=15 m =3, my =5

Z15 2’Z3 X Z5

with homomorphisms:

a mod1l5—(a mod3, a mod)5)
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Chinese Remainder Theorem
@ Setup: let R be Euclidean Domain and my, ..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
@ Chinese Remainder Theorem
R/(m) ~ R/(my) x - x R/(ms)
o Example when R=7Z: m=15 m =3, m =5
Z15 ~ Zg X Z5
— —_— .
with homomorphisms:  big Aamall ningy
a mod 15— (a mod3, a modb)

and
(x mod3, y mod5)—6-y—5-x mod15

@ Because it is an isomorphism, can perform computations with either
representation!
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Chinese Remainder Theorem

Setup: let R be Euclidean Domain and my,..., ms € R be pairwise
coprime, i.e. gcd(mj, m;j) =1, for i # j. Let m=my --- ms.
Chinese Remainder Theorem
R/(m) =~ R/(my) x - x R/(ms)
Example when R=7: m=15 m =3,m =5
Z15 ~ Z3 X Z5
with homomorphisms:
a mod 15— (a mod3, a modb)

and
(x mod3, y mod5)—6-y—5-x mod 15

Because it is an isomorphism, can perform computations with either
representation!

How to prove this theorem? And why is it useful to have this
isomorphism? modular algorithms!
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e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:
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@ How can we compute the other homomorphism?
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Chinese Remainder Theorem - Proof for R = 7Z ®Z’<3

e Setup: my,...,ms € Z be pairwise coprime, i.e. ged(m;, m;) = 1, for
i#j. Letm=my - ms.
@ Chinese Remainder Theorem

Z/(m)~Z/(my) X -+ x Z/(ms)
@ One homomorphism is easy:

a mod m— (a mod my, ..., a mod my)

@ How can we compute the other homomorphism?
@ Idea is similar to Lagrange interpolation!
@ Find elements L; € Z, such that

Li =0; mod mj
© Then we have
(uy mod my, ..., us mod mg) = Ly + -+ usls mod m

is the other homomorphism
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@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.
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Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.
s,--m,--l—t,--m/m,-zl

e Taking L; = t; - m/m; solves this part.
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Finding the interpolators L;

@ This part follows from the fact that m;'s are pairwise coprime.

o gcd(mij,m/m;) =1 = 3 s;,t; €7Z s.t.
s,--m,--l—t,--m/m,-zl

e Taking L; = t; - m/m; solves this part.

@ This is what we did in our earlier example!

-7[—(5 ~ 7[_3 X 745
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Complexity of Computing Homomorphisms
@ To compute the first homomorphism, we simply need to compute a

mod m; for each m;, which takes O(log m - log m;)
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Complexity of Computing Homomorphisms

@ To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)

Computing second homomorphism:
o input: (u1,...,Us) € Zmy X -+ X L,
e output: a € Z,, such that a = u; mod m;

By previous slide, enough to compute L;’s

First, need to compute m (as we are only given m;'s as input). We

assume here m; >2 O (aQ,ng\. © Qoy ™Ma )

e Computing mymy, then mymoms, until we compute m, we have:
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Complexity of Computing Homomorphisms

To compute the first homomorphism, we simply need to compute a
mod m; for each m;, which takes O(log m - log m;)
Computing second homomorphism:

o input: (uy,...,Us) € Ly X+ X L,
e output: a € Z,, such that a = u; mod m;

By previous slide, enough to compute L;’s

First, need to compute m (as we are only given m;'s as input). We
assume here m; > 2

Computing mymy, then mymoms, until we compute m, we have:

c- Zlog(ml <-mj_1) - logm; < c-log(m Zlog m; < ¢ - (log m)?
j i=2

Now we can compute each elemenmy our division algorithm in

O(log(m) log(m;)) time — ™
(-i( ) _g(— )t O(“Q’% m; - .,QGS(_ /M;))
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Now we have computed m, m/my, ..., m/ms in time O(log? m) ops

What is left is to compute the interpolators L;'s

We know that L; = t; - m/mj, where

simj; + t,-m/m,- =1

Thus, we need the extended Euclidean algorithm to compute (s;, t;)

From previous class, cost is O(log(m/m;) - log(m;))

Gives total running time of O(log? m)
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Complexity of Computing Homomorphisms

Now we have computed m, m/my, ..., m/ms in time O(log? m) ops

What is left is to compute the interpolators L;'s

We know that L; = t; - m/mj, where

simj; + t,-m/m,- =1

Thus, we need the extended Euclidean algorithm to compute (s;, t;)

From previous class, cost is O(log(m/m;) - log(m;))

Gives total running time of O(log? m)

Both homomorphisms can be computed with O(Iog2 m) operations.
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Mixed Radix Representation

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as
a—
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Mixed Radix Representation

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as

a=a +a-m~+a-mm+---+as_1-mm---ms_1

@ Proof by induction

@ Basecase: s=1 o = Qg med AT



Mixed Radix Representation

a = Coto,- ] G~p-1 ) b)
L?ao-t

@ Setup: 0 < a< m=my---mg, where the m; > 2 are integers which
are not necessarily coprime

@ Theorem: Can write a uniquely as
a=a +a-m~+a-mm+---+as_1-mm---ms_1

@ Proof by induction

© Basecase: s=1
@ Assuming we know for s — 1 numbers my,..., ms_1

= (L‘ ‘(Y\sd wm (Mo --- Ma—( [>% =_h- M- W,y
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Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT

setup) - N~
Coppime

@ Incremental Chinese remaindering computes

(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)
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Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT
setup)

@ Incremental Chinese remaindering computes
(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

@ Why would we want to do that?
@ in some applications, we sometimes do not know in advance how big
the output integer will be
o thus, we compute the result modulo many primes (which we have to
decide “on the fly")
o if we get same number modulo pyps - - - px for some value of k, we

“guess” that we have the right result.
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Incremental Chinese Remaindering

@ Setup: here we are back to the setup that gcd(m;, mj) =1 (the CRT
setup)

@ Incremental Chinese remaindering computes
(a mod my), (a2 mod mumy), ---, (@ mod mmy---ms_q)

@ Why would we want to do that?

@ in some applications, we sometimes do not know in advance how big
the output integer will be

o thus, we compute the result modulo many primes (which we have to
decide “on the fly")

o if we get same number modulo pyps - - - px for some value of k, we
“guess” that we have the right result.

e Good for randomized algorithms



@ Conclusion



Conclusion

In today's lecture, we learned

@ Properties of Rings and its quotients

@ Chinese Remainder Theorem (CRT)

@ Analysis of computation of homomorphisms in CRT
e Mixed radix representation (alternative to CRT)

°

Iterative CRT and how one could use it to develop randomized
algorithms with lower bit complexity
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