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Ring Basics

Given a ring R, an ideal I ⊂ R is a subset of the ring R such that:
1 I is closed under addition

a, b ∈ I ⇒ a+ b ∈ I

2 I is closed under multiplication by elements of R

a ∈ I , s ∈ R ⇒ s · a ∈ I
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Ring Basics

Given a ring R, an ideal I ⊂ R is a subset of the ring R such that:
1 I is closed under addition

a, b ∈ I ⇒ a+ b ∈ I

2 I is closed under multiplication by elements of R

a ∈ I , s ∈ R ⇒ s · a ∈ I

Examples:
1 (0) is ideal generated by the 0 element of the ring
2 R is an ideal
3 ring of integers Z then the set of all even numbers is the ideal

generated by 2, denoted (2)
4 In Q[x ] the set of all polynomials whose constant coefficient is zero is

the ideal (x) generated by x
5 In Q[x , y ] the set of all polynomials whose constant coefficient is zero

is the ideal (x , y) generated by x and y
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Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I
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Quotient Rings

Given a ring R, and an ideal I ⊂ R , we can form equivalence classes
of elements of R modulo I

a ∼ b ⇔ a− b ∈ I

If we only consider these equivalence classes, we have the quotient
ring R/I

Examples:
1 R = Z and I = (2) gives the field Z2

2 R = Z and I = (6) gives the set of integers modulo 6, Z6

An element q ∈ R is irreducible if q is not a unit and q = a · b ⇒
either a or b are a unit.

An ideal I ⊂ R is prime if for any a, b ∈ R, if ab ∈ I then a ∈ I or
b ∈ I

Two ideals I , J ⊂ R are coprime if I + J = R
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Unique Factorization Domains

An integral domain R is a unique factorization domain (UFD) if
1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)
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1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
2 Q[x ] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)

21 / 68



Unique Factorization Domains

An integral domain R is a unique factorization domain (UFD) if
1 every element in R is expressed as a product of finitely many

irreducible elements
2 Every irreducible element p ∈ R yields a prime ideal (p)

A very special kind of UFD, which we have seen a lot, is a principal
ideal domain (PID): R is a PID if every ideal of R is principal
(generated by one element)

Examples of PIDs and UFDs
1 Z is a PID (and hence UFD)
2 Q[x ] is a PID (and hence UFD)
3 any Euclidean domain is a PID (and hence UFD)
4 Q[x , y ] is a UFD but not a PID
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
the ring structure

1 φ(1) = 1
2 φ(a + b) = φ(a) + φ(b)
3 φ(ab) = φ(a) · φ(b)
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Ring Homomorphisms

A homomorphism between rings R, S is a map φ : R → S preserving
the ring structure

1 φ(1) = 1
2 φ(a + b) = φ(a) + φ(b)
3 φ(ab) = φ(a) · φ(b)

Natural homomorphism between a ring R and its quotient R/I

Two rings R , S are isomorphic, denoted R � S if there are two
homomorphisms φ : R → S and ψ : S → R such that

φ ◦ ψ : S → S and ψ ◦ φ : R → R

are the identity homomorphisms.

Example:
Z6 � Z2 × Z3
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Chinese Remainder Theorem

Setup: let R be Euclidean Domain and m1, . . . ,ms ∈ R be pairwise
coprime, i.e. gcd(mi ,mj) = 1, for i �= j . Let m = m1 · · ·ms .
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Chinese Remainder Theorem

Setup: let R be Euclidean Domain and m1, . . . ,ms ∈ R be pairwise
coprime, i.e. gcd(mi ,mj) = 1, for i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

R/(m) � R/(m1)× · · · × R/(ms)

Example when R = Z: m = 15, m1 = 3,m2 = 5

Z15 � Z3 × Z5

with homomorphisms:

a mod 15 → (a mod 3, a mod 5)

and
(x mod 3, y mod 5) → 6 · y − 5 · x mod 15

Because it is an isomorphism, can perform computations with either
representation!

How to prove this theorem? And why is it useful to have this
isomorphism? modular algorithms!
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Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

33 / 68



Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

34 / 68



Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

One homomorphism is easy:

a mod m → (a mod m1, . . . , a mod ms)

35 / 68



Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

One homomorphism is easy:

a mod m → (a mod m1, . . . , a mod ms)

How can we compute the other homomorphism?
1 Idea is similar to Lagrange interpolation!

36 / 68



Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

One homomorphism is easy:

a mod m → (a mod m1, . . . , a mod ms)

How can we compute the other homomorphism?
1 Idea is similar to Lagrange interpolation!
2 Find elements Li ∈ Zm such that

Li ≡ δij mod mj

37 / 68



Chinese Remainder Theorem - Proof for R = Z
Setup: m1, . . . ,ms ∈ Z be pairwise coprime, i.e. gcd(mi ,mj) = 1, for
i �= j . Let m = m1 · · ·ms .

Chinese Remainder Theorem

Z/(m) � Z/(m1)× · · · × Z/(ms)

One homomorphism is easy:

a mod m → (a mod m1, . . . , a mod ms)

How can we compute the other homomorphism?
1 Idea is similar to Lagrange interpolation!
2 Find elements Li ∈ Zm such that

Li ≡ δij mod mj

3 Then we have

(u1 mod m1, . . . , us mod ms) → u1L1 + · · ·+ usLs mod m

is the other homomorphism
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Finding the interpolators Li

This part follows from the fact that mi ’s are pairwise coprime.
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Finding the interpolators Li
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si ·mi + ti ·m/mi = 1

Taking Li = ti ·m/mi solves this part.

41 / 68



Finding the interpolators Li

This part follows from the fact that mi ’s are pairwise coprime.

gcd(mi ,m/mi ) = 1 ⇒ ∃ si , ti ∈ Z s.t.

si ·mi + ti ·m/mi = 1

Taking Li = ti ·m/mi solves this part.

This is what we did in our earlier example!
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Complexity of Computing Homomorphisms

To compute the first homomorphism, we simply need to compute a
mod mi for each mi , which takes O(logm · logmi )
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input: (u1, . . . , us) ∈ Zm1 × · · · × Zms

output: a ∈ Zm such that a = ui mod mi

By previous slide, enough to compute Li ’s
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assume here mi ≥ 2
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Complexity of Computing Homomorphisms

To compute the first homomorphism, we simply need to compute a
mod mi for each mi , which takes O(logm · logmi )

Computing second homomorphism:

input: (u1, . . . , us) ∈ Zm1 × · · · × Zms

output: a ∈ Zm such that a = ui mod mi

By previous slide, enough to compute Li ’s

First, need to compute m (as we are only given mi ’s as input). We
assume here mi ≥ 2

Computing m1m2, then m1m2m3, until we compute m, we have:

c ·
s�

i=2

log(m1 · · ·mi−1) · logmi ≤ c · log(m) ·
s�

i=2

logmi ≤ c · (logm)2

Now we can compute each element m/mi by our division algorithm in
O(log(m) log(mi )) time
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Complexity of Computing Homomorphisms

Now we have computed m,m/m1, . . . ,m/ms in time O(log2m) ops

What is left is to compute the interpolators Li ’s

We know that Li = ti ·m/mi , where

simi + tim/mi = 1

Thus, we need the extended Euclidean algorithm to compute (si , ti )

From previous class, cost is O(log(m/mi ) · log(mi ))

Gives total running time of O(log2m)

Both homomorphisms can be computed with O(log2m) operations.
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Mixed Radix Representation

Setup: 0 ≤ a < m = m1 · · ·ms , where the mi ≥ 2 are integers which
are not necessarily coprime
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Mixed Radix Representation

Setup: 0 ≤ a < m = m1 · · ·ms , where the mi ≥ 2 are integers which
are not necessarily coprime

Theorem: Can write a uniquely as

a = a0 + a1 ·m1 + a2 ·m1m2 + · · ·+ as−1 ·m1m1 · · ·ms−1

Proof by induction
1 Base case: s = 1
2 Assuming we know for s − 1 numbers m1, . . . ,ms−1
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Incremental Chinese Remaindering

Setup: here we are back to the setup that gcd(mi ,mj) = 1 (the CRT
setup)

Incremental Chinese remaindering computes

(a mod m1), (a mod m1m2), · · · , (a mod m1m2 · · ·ms−1)
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Incremental Chinese Remaindering

Setup: here we are back to the setup that gcd(mi ,mj) = 1 (the CRT
setup)

Incremental Chinese remaindering computes

(a mod m1), (a mod m1m2), · · · , (a mod m1m2 · · ·ms−1)

Why would we want to do that?

in some applications, we sometimes do not know in advance how big
the output integer will be
thus, we compute the result modulo many primes (which we have to
decide “on the fly”)
if we get same number modulo p1p2 · · · pk for some value of k , we
“guess” that we have the right result.
Good for randomized algorithms
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Conclusion

In today’s lecture, we learned

Properties of Rings and its quotients

Chinese Remainder Theorem (CRT)

Analysis of computation of homomorphisms in CRT

Mixed radix representation (alternative to CRT)

Iterative CRT and how one could use it to develop randomized
algorithms with lower bit complexity
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